The Validity of Functional Near-Infrared Spectroscopy Recordings of Visuospatial Working Memory Processes in Humans
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Tasks
2.2.1. Visuospatial WM Task
2.2.2. DD Task
2.2.3. fNIRS Tasks
2.3. fNIRS Recordings
2.4. Time Course of the Study
3. Results
3.1. Behavioral Data
3.2. fNIRS Data
4. Discussion
5. Conclusions
Supplementary Materials
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Friston, K.J. Modalities, modes, and models in functional neuroimaging. Science 2009, 326, 399–403. [Google Scholar] [CrossRef] [PubMed]
- Chance, B.; Zhuang, Z.; Unah, C.; Alter, C.; Lipton, L. Cognition-activated low-frequency modulation of light absorption in human brain. Proc. Natl. Acad. Sci. USA 1993, 90, 3770–3774. [Google Scholar] [CrossRef] [PubMed]
- Villringer, A.; Planck, J.; Hock, C.; Schleinkofer, L.; Dirnagl, U. Near infrared spectroscopy (NIRS): A new tool to study hemodynamic changes during activation of brain function in human adults. Neurosci. Lett. 1993, 154, 101–104. [Google Scholar] [CrossRef]
- Wolf, M.; Wolf, U.; Toronov, V.; Michalos, A.; Paunescu, L.A.; Choi, J.H.; Gratton, E. Different time evolution of oxyhemoglobin and deoxyhemoglobin concentration changes in the visual and motor cortices during functional stimulation: A near-infrared spectroscopy study. Neuroimage 2002, 16, 704–712. [Google Scholar] [CrossRef] [PubMed]
- Cui, X.; Bray, S.; Bryant, D.M.; Glover, G.H.; Reiss, A.L. A quantitative comparison of NIRS and fMRI across multiple cognitive tasks. Neuroimage 2011, 54, 2808–2821. [Google Scholar] [CrossRef] [PubMed]
- Sato, H.; Yahata, N.; Funane, T.; Takizawa, R.; Katura, T.; Atsumori, H.; Nishimura, Y.; Kinoshita, A.; Kiguchi, M.; Koizumi, H.; et al. A NIRS-fMRI investigation of prefrontal cortex activity during a working memory task. Neuroimage 2013, 83, 158–173. [Google Scholar] [CrossRef] [PubMed]
- Wijeakumar, S.; Huppert, T.J.; Magnotta, V.A.; Buss, A.T.; Spencer, J.P. Validating an image-based fNIRS approach with fMRI and a working memory task. Neuroimage 2017, 147, 204–218. [Google Scholar] [CrossRef] [PubMed]
- Fishburn, F.A.; Norr, M.E.; Medvedev, A.V.; Vaidya, C.J. Sensitivity of fNIRS to cognitive state and load. Front. Hum. Neurosci. 2014, 8, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Herff, C.; Heger, D.; Fortmann, O.; Hennrich, J.; Putze, F.; Schultz, T. Mental workload during n-back task—Quantified in the prefrontal cortex using fNIRS. Front. Hum. Neurosci. 2014, 7, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Owen, A.M.; McMillan, K.M.; Laird, A.R.; Bullmore, E. N-back working memory paradigm: A meta-analysis of normative functional neuroimaging studies. Hum. Brain Mapp. 2005, 25, 46–59. [Google Scholar] [CrossRef] [PubMed]
- Rottschy, C.; Langner, R.; Dogan, I.; Reetz, K.; Laird, A.R.; Schulz, J.B.; Fox, P.T.; Eickhoff, S.B. Modelling neural correlates of working memory: A coordinate-based meta-analysis. Neuroimage 2012, 60, 830–846. [Google Scholar] [CrossRef] [PubMed]
- Wager, T.D.; Smith, E.E. Neuroimaging studies of working memory: A meta-analysis. Cogn. Affect. Behav. Neurosci. 2003, 3, 255–274. [Google Scholar] [CrossRef] [PubMed]
- Baddeley, A.D. Working memory. Philos. Trans. R. Soc. B Biol. Sci. 1983, 302, 311–324. [Google Scholar] [CrossRef]
- Miyake, A.; Friedman, N.P.; Rettinger, D.A.; Shah, P.; Hegarty, M. How are visuospatial working memory, executive functioning, and spatial abilities related? A latent-variable analysis. J. Exp. Psychol. Gen. 2001, 130, 621–640. [Google Scholar] [CrossRef] [PubMed]
- Conway, A.R.A.; Kane, M.J.; Bunting, M.F.; Hambrick, D.Z.; Wilhelm, O.; Engle, R.W. Working memory span tasks: A methodological review and user’s guide. Psychon. Bull. Rev. 2005, 12, 769–786. [Google Scholar] [CrossRef] [PubMed]
- Oberauer, K.; Süß, H.M.; Wilhelm, O.; Wittmann, W.W. Which working memory functions predict intelligence? Intelligence 2008, 36, 641–652. [Google Scholar] [CrossRef] [Green Version]
- Schweizer, K. Investigating the relationship of working memory tasks and fluid intelligence tests by means of the fixed-links model in considering the impurity problem. Intelligence 2007, 35, 591–604. [Google Scholar] [CrossRef]
- Conway, A.R.A.; Kane, M.J.; Engle, R.W. Working memory capacity and its relation to general intelligence. Trends Cogn. Sci. 2003, 7, 547–552. [Google Scholar] [CrossRef] [PubMed]
- Smith, E.E.; Jonides, J. Storage and executive processes in the frontal lobes. Science 1999, 283, 1657–1661. [Google Scholar] [CrossRef] [PubMed]
- Smith, E.E.; Jonides, J.; Marshuetz, C.; Koeppe, R.A. Components of verbal working memory: Evidence from neuroimaging. Proc. Natl. Acad. Sci. USA 1998, 95, 876–882. [Google Scholar] [CrossRef] [PubMed]
- Friston, K.J.; Price, C.J.; Fletcher, P.; Moore, C.; Frackowiak, R.S.J.; Dolan, R.J. The trouble with cognitive subtraction. Neuroimage 1996, 4, 97–104. [Google Scholar] [CrossRef] [PubMed]
- Michon, J.A. The compleat time experiencer. In Time, Mind, and Behavior; Michon, J.A., Jackson, J.L., Eds.; Springer: Berlin, Germany, 1985; pp. 20–54. ISBN 978-3-642-70491-8. [Google Scholar]
- Münsterberg, H. Beiträge zur Experimentellen Psychologie: Heft 2; Akademische Verlagsbuchhandlung von J. C. B. Mohr: Freiburg, Germany, 1889. [Google Scholar]
- Rammsayer, T.H.; Lima, S.D. Duration discrimination of filled and empty auditory intervals: Cognitive and perceptual factors. Percept. Psychophys. 1991, 50, 565–574. [Google Scholar] [CrossRef] [PubMed]
- Rammsayer, T.; Ulrich, R. Elaborative rehearsal of nontemporal information interferes with temporal processing of durations in the range of seconds but not milliseconds. Acta Psychol. 2011, 137, 127–133. [Google Scholar] [CrossRef] [PubMed]
- Rammsayer, T.H. Neuropharmacological approaches to human timing. In Psychology of Time; Grondin, S., Ed.; Emerald Group Publishing Limited: Bingley, UK, 2008; pp. 295–320. ISBN 978-0-08046-977-5. [Google Scholar]
- Buonomano, D.V. Neural dynamics based timing in the subsecond to seconds range. Adv. Exp. Med. Biol. 2014, 829, 101–117. [Google Scholar] [CrossRef] [PubMed]
- Koch, G.; Oliveri, M.; Caltagirone, C. Neural networks engaged in milliseconds and seconds time processing: Evidence from transcranial magnetic stimulation and patients with cortical or subcortical dysfunction. Philos. Trans. R. Soc. B Biol. Sci. 2009, 364, 1907–1918. [Google Scholar] [CrossRef] [PubMed]
- Wiener, M.; Turkeltaub, P.; Coslett, H.B. The image of time: A voxel-wise meta-analysis. Neuroimage 2010, 49, 1728–1740. [Google Scholar] [CrossRef] [PubMed]
- Holcomb, H.H.; Medoff, D.R.; Caudill, P.J.; Zhao, Z.; Lahti, A.C.; Dannals, R.F.; Tamminga, C.A. Cerebral blood flow relationships associated with a difficult tone recognition task in trained normal volunteers. Cereb. Cortex 1998, 8, 534–542. [Google Scholar] [CrossRef] [PubMed]
- Nenadic, I.; Gaser, C.; Volz, H.-P.; Rammsayer, T.; Häger, F.; Sauer, H. Processing of temporal information and the basal ganglia: New evidence from fMRI. Exp. Brain Res. 2003, 148, 238–246. [Google Scholar] [CrossRef] [PubMed]
- Parks, R.W.; Loewenstein, D.A.; Dodrill, K.L.; Barker, W.W.; Yoshii, F.; Chang, J.Y.; Emran, A.; Apicella, A.; Sheramata, W.A.; Duara, R. Cerebral metabolic effects of a verbal fluency test: A PET scan study. J. Clin. Exp. Neuropsychol. 1988, 10, 565–575. [Google Scholar] [CrossRef] [PubMed]
- Neubauer, A.C.; Fink, A. Intelligence and neural efficiency. Neurosci. Biobehav. Rev. 2009, 33, 1004–1023. [Google Scholar] [CrossRef] [PubMed]
- Jung, R.E.; Haier, R.J. The parieto-frontal integration theory (P-FIT) of intelligence: Converging neuroimaging evidence. Behav. Brain Sci. 2007, 30, 135–187. [Google Scholar] [CrossRef] [PubMed]
- Ackerman, P.L.; Beier, M.E.; Boyle, M.O. Working memory and intelligence: The same or different constructs? Psychol. Bull. 2005, 131, 30–60. [Google Scholar] [CrossRef] [PubMed]
- Weiß, R.H. CFT 20-R—Grundintelligenztest Skala 2; Hogrefe: Göttingen, Germany, 2006. [Google Scholar]
- Hasselhorn, M.; Schumann-Hengsteler, R.; Gronauer, J.; Grube, D.; Mähler, C.; Schmid, I.; Seitz-Stein, K.; Zoelch, C. Arbeitsgedächtnistestbatterie für Kinder von fünf bis Zwölf Jahren (AGTB 5-12); Hogrefe: Göttingen, Germany, 2012. [Google Scholar]
- Ang, S.Y.; Lee, K. Exploring developmental differences in visual short-term memory and working memory. Dev. Psychol. 2010, 46, 279–285. [Google Scholar] [CrossRef] [PubMed]
- Kaernbach, C. Simple adaptive testing with the weighted up-down method. Percept. Psychophys. 1991, 49, 227–229. [Google Scholar] [CrossRef] [PubMed]
- Rammsayer, T.H. Developing a psychophysical measure to assess duration discrimination in the millisecond range. Eur. J. Psychol. Assess. 2012, 28, 172–180. [Google Scholar] [CrossRef]
- Tachtsidis, I.; Scholkmann, F. Publisher’s note: False positives and false negatives in functional near-infrared spectroscopy: Issues, challenges, and the way forward. Neurophotonics 2016, 3, 39801. [Google Scholar] [CrossRef] [PubMed]
- Yücel, M.A.; Aasted, C.M.; Petkov, M.P.; Borsook, D.; Boas, D.A.; Becerra, L. Specificity of hemodynamic brain responses to painful stimuli: A functional near-infrared spectroscopy study. Sci. Rep. 2015, 5, 9469. [Google Scholar] [CrossRef] [PubMed]
- Klem, G.H.; Lüders, H.O.; Jasper, H.H.; Elger, C. The ten-twenty electrode system of the International Federation. The International Federation of Clinical Neurophysiology. Electroencephalogr. Clin. Neurophysiol. Suppl. 1999, 52, 3–6. [Google Scholar] [CrossRef] [PubMed]
- Tsuzuki, D.; Dan, I. Spatial registration for functional near-infrared spectroscopy: From channel position on the scalp to cortical location in individual and group analyses. Neuroimage 2014, 85, 92–103. [Google Scholar] [CrossRef] [PubMed]
- Kirilina, E.; Jelzow, A.; Heine, A.; Niessing, M.; Wabnitz, H.; Brühl, R.; Ittermann, B.; Jacobs, A.M.; Tachtsidis, I. The physiological origin of task-evoked systemic artefacts in functional near infrared spectroscopy. Neuroimage 2012, 61, 70–81. [Google Scholar] [CrossRef] [PubMed]
- Saager, R.B.; Berger, A.J. Direct characterization and removal of interfering absorption trends in two-layer turbid media. J. Opt. Soc. Am. A Opt. Image Sci. Vis. 2005, 22, 1874–1882. [Google Scholar] [CrossRef] [PubMed]
- Gagnon, L.; Perdue, K.; Greve, D.N.; Goldenholz, D.; Kaskhedikar, G.; Boas, D.A. Improved recovery of the hemodynamic response in diffuse optical imaging using short optode separations and state-space modeling. Neuroimage 2011, 56, 1362–1371. [Google Scholar] [CrossRef] [PubMed]
- Delpy, D.T.; Cope, M.; van der Zee, P.; Arridge, S.; Wray, S.; Wyatt, J. Estimation of optical pathlength through tissue from direct time of flight measurement. Phys. Med. Biol. 1988, 33, 1433–1442. [Google Scholar] [CrossRef] [PubMed]
- Prahl, S. Tabulated Molar Extinction Coefficient for Hemoglobin in Water. Available online: http://omlc.org/spectra/hemoglobin/summary.html (accessed on 12 February 2018).
- Scholkmann, F.; Wolf, M. General equation for the differential pathlength factor of the frontal human head depending on wavelength and age. J. Biomed. Opt. 2013, 18, 105004. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Scholkmann, F.; Spichtig, S.; Muehlemann, T.; Wolf, M. How to detect and reduce movement artifacts in near-infrared imaging using moving standard deviation and spline interpolation. Physiol. Meas. 2010, 31, 649–662. [Google Scholar] [CrossRef] [PubMed]
- Metz, A.J.; Wolf, M.; Achermann, P.; Scholkmann, F. A new approach for automatic removal of movement artifacts in near-infrared spectroscopy time series by means of acceleration data. Algorithms 2015, 8, 1052–1075. [Google Scholar] [CrossRef] [Green Version]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2017. [Google Scholar]
- Holm, S. A simple sequentially rejective multiple test procedure. Scand. J. Stat. 1979, 6, 65–70. [Google Scholar]
- Plichta, M.M.; Herrmann, M.J.; Baehne, C.G.; Ehlis, A.-C.; Richter, M.M.; Pauli, P.; Fallgatter, A.J. Event-related functional near-infrared spectroscopy (fNIRS): Are the measurements reliable? Neuroimage 2006, 31, 116–124. [Google Scholar] [CrossRef] [PubMed]
- Zimeo Morais, G.A.; Scholkmann, F.; Balardin, J.B.; Furucho, R.A.; de Paula, R.C.V.; Biazoli, C.E.; Sato, J.R. Non-neuronal evoked and spontaneous hemodynamic changes in the anterior temporal region of the human head may lead to misinterpretations of functional near-infrared spectroscopy signals. Neurophotonics 2017, 5, 011002. [Google Scholar] [CrossRef] [PubMed]
- Cui, X.; Bray, S.; Reiss, A.L. Functional near infrared spectroscopy (NIRS) signal improvement based on negative correlation between oxygenated and deoxygenated hemoglobin dynamics. Neuroimage 2010, 49, 3039–3046. [Google Scholar] [CrossRef] [PubMed]
- Posner, M.; Petersen, S.; Fox, P.; Raichle, M. Localization of cognitive operations in the human brain. Science 1988, 240, 1627–1631. [Google Scholar] [CrossRef] [PubMed]
- Price, C.J.; Friston, K.J. Cognitive conjunction: A new approach to brain activation experiments. Neuroimage 1997, 5, 261–270. [Google Scholar] [CrossRef] [PubMed]
- Du Boisgueheneuc, F.; Levy, R.; Volle, E.; Seassau, M.; Duffau, H.; Kinkingnehun, S.; Samson, Y.; Zhang, S.; Dubois, B. Functions of the left superior frontal gyrus in humans: A lesion study. Brain 2006, 129, 3315–3328. [Google Scholar] [CrossRef] [PubMed]
- Jasdzewski, G.; Strangman, G.; Wagner, J.; Kwong, K.K.; Poldrack, R.A.; Boas, D.A. Differences in the hemodynamic response to event-related motor and visual paradigms as measured by near-infrared spectroscopy. Neuroimage 2003, 20, 479–488. [Google Scholar] [CrossRef]
- Causse, M.; Chua, Z.; Peysakhovich, V.; Del Campo, N.; Matton, N. Mental workload and neural efficiency quantified in the prefrontal cortex using fNIRS. Sci. Rep. 2017, 7, 5222. [Google Scholar] [CrossRef] [PubMed]
- Li, T.; Luo, Q.; Gong, H. Gender-specific hemodynamics in prefrontal cortex during a verbal working memory task by near-infrared spectroscopy. Behav. Brain Res. 2010, 209, 148–153. [Google Scholar] [CrossRef] [PubMed]
- Ayaz, H.; Shewokis, P.A.; Bunce, S.; Izzetoglu, K.; Willems, B.; Onaral, B. Optical brain monitoring for operator training and mental workload assessment. Neuroimage 2012, 59, 36–47. [Google Scholar] [CrossRef] [PubMed]
- Molteni, E.; Contini, D.; Caffini, M.; Baselli, G.; Spinelli, L.; Cubeddu, R.; Cerutti, S.; Bianchi, A.M.; Torricelli, A. Load-dependent brain activation assessed by time-domain functional near-infrared spectroscopy during a working memory task with graded levels of difficulty. J. Biomed. Opt. 2012, 17, 56005. [Google Scholar] [CrossRef] [PubMed]
- Franceschini, M.A.; Fantini, S.; Thompson, J.H.; Culver, J.P.; Boas, D.A. Hemodynamic evoked response of the sensorimotor cortex measured noninvasively with near-infrared optical imaging. Psychophysiology 2003, 40, 548–560. [Google Scholar] [CrossRef] [PubMed]
- Haier, R.J.; Siegel, B.V.; Nuechterlein, K.H.; Hazlett, E.; Wu, J.C.; Paek, J.; Browning, H.L.; Buchsbaum, M.S. Cortical glucose metabolic rate correlates of abstract reasoning and attention studied with positron emission tomography. Intelligence 1988, 12, 199–217. [Google Scholar] [CrossRef]
- Charlot, V.; Tzourio, N.; Zilbovicius, M.; Mazoyer, B.; Denis, M. Different mental imagery abilities result in different regional cerebrral blood flow activation patterns during cognitive tasks. Neuropsychologia 1992, 30, 565–580. [Google Scholar] [CrossRef]
- Tang, C.Y.; Eaves, E.L.; Ng, J.C.; Carpenter, D.M.; Mai, X.; Schroeder, D.H.; Condon, C.A.; Colom, R.; Haier, R.J. Brain networks for working memory and factors of intelligence assessed in males and females with fMRI and DTI. Intelligence 2010, 38, 293–303. [Google Scholar] [CrossRef]
- Dunst, B.; Benedek, M.; Jauk, E.; Bergner, S.; Koschutnig, K.; Sommer, M.; Ischebeck, A.; Spinath, B.; Arendasy, M.; Bühner, M.; et al. Neural efficiency as a function of task demands. Intelligence 2014, 42, 22–30. [Google Scholar] [CrossRef] [PubMed]
- Preusse, F.; van der Meer, E.; Deshpande, G.; Krueger, F.; Wartenburger, I. Fluid intelligence allows flexible recruitment of the parieto-frontal network in analogical reasoning. Front. Hum. Neurosci. 2011, 5, 22. [Google Scholar] [CrossRef] [PubMed]
- Rypma, B.; Berger, J.S.; Prabhakaran, V.; Bly, B.M.; Kimberg, D.Y.; Biswal, B.B.; D’Esposito, M. Neural correlates of cognitive efficiency. Neuroimage 2006, 33, 969–979. [Google Scholar] [CrossRef] [PubMed]
- Gray, J.R.; Chabris, C.F.; Braver, T.S. Neural mechanisms of general fluid intelligence. Nat. Neurosci. 2003, 6, 316–322. [Google Scholar] [CrossRef] [PubMed]
- Di Domenico, S.I.; Rodrigo, A.H.; Ayaz, H.; Fournier, M.A.; Ruocco, A.C. Decision-making conflict and the neural efficiency hypothesis of intelligence: A functional near-infrared spectroscopy investigation. Neuroimage 2015, 109, 307–317. [Google Scholar] [CrossRef] [PubMed]
Task | Total | LA | HA | |||
---|---|---|---|---|---|---|
M | SD | M | SD | M | SD | |
WM (span) | 5.9 | 0.96 | 5.4 | 0.75 | 6.4 | 0.91 |
DD (threshold in ms) | 28.7 | 10.61 | 30.2 | 11.15 | 27.3 | 10.11 |
Task | Condition | Total | LA | HA | ||||||
---|---|---|---|---|---|---|---|---|---|---|
M | SD | M | SD | M | SD | t(41) | p | d | ||
WM | control | 99.0 | 2.38 | 99.1 | 2.23 | 98.9 | 2.56 | 0.25 | 0.804 | 0.08 |
experimental | 88.7 | 7.15 | 89.0 | 7.22 | 88.4 | 7.23 | 0.27 | 0.791 | 0.08 | |
DD | control | 94.6 | 2.85 | 94.5 | 2.86 | 94.7 | 2.91 | −0.28 | 0.783 | −0.09 |
experimental | 78.0 | 9.84 | 79.0 | 9.98 | 77.1 | 9.85 | 0.63 | 0.530 | 0.19 |
Task | Hemoglobin Oxygenation | Condition | Total | LA | HA | |||
---|---|---|---|---|---|---|---|---|
M | SD | M | SD | M | SD | |||
WM | O2Hb | control | 0.05 | 0.38 | −0.07 | 0.35 | 0.15 | 0.39 |
experimental | 0.14 | 0.35 | 0.18 | 0.39 | 0.09 | 0.31 | ||
HHb | control | 0.04 | 0.14 | 0.08 | 0.16 | 0.00 | 0.12 | |
experimental | −0.05 | 0.15 | −0.07 | 0.15 | −0.03 | 0.16 | ||
DD | O2Hb | control | 0.14 | 0.48 | 0.10 | 0.35 | 0.17 | 0.59 |
experimental | 0.11 | 0.47 | 0.07 | 0.35 | 0.14 | 0.57 | ||
HHb | control | −0.03 | 0.16 | −0.01 | 0.14 | −0.05 | 0.18 | |
experimental | −0.03 | 0.19 | −0.02 | 0.10 | −0.04 | 0.25 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Witmer, J.S.; Aeschlimann, E.A.; Metz, A.J.; Troche, S.J.; Rammsayer, T.H. The Validity of Functional Near-Infrared Spectroscopy Recordings of Visuospatial Working Memory Processes in Humans. Brain Sci. 2018, 8, 62. https://doi.org/10.3390/brainsci8040062
Witmer JS, Aeschlimann EA, Metz AJ, Troche SJ, Rammsayer TH. The Validity of Functional Near-Infrared Spectroscopy Recordings of Visuospatial Working Memory Processes in Humans. Brain Sciences. 2018; 8(4):62. https://doi.org/10.3390/brainsci8040062
Chicago/Turabian StyleWitmer, Joëlle S., Eva A. Aeschlimann, Andreas J. Metz, Stefan J. Troche, and Thomas H. Rammsayer. 2018. "The Validity of Functional Near-Infrared Spectroscopy Recordings of Visuospatial Working Memory Processes in Humans" Brain Sciences 8, no. 4: 62. https://doi.org/10.3390/brainsci8040062
APA StyleWitmer, J. S., Aeschlimann, E. A., Metz, A. J., Troche, S. J., & Rammsayer, T. H. (2018). The Validity of Functional Near-Infrared Spectroscopy Recordings of Visuospatial Working Memory Processes in Humans. Brain Sciences, 8(4), 62. https://doi.org/10.3390/brainsci8040062