Magnetic Source Imaging and Infant MEG: Current Trends and Technical Advances
Abstract
:1. Introduction
1.1. Advantages of MEG Compared with fMRI and fNIRS in Developmental Studies
1.2. Current Technical Challenges in Developmental Cognitive Sciences with MEG
2. Topics of Infant Research Applying MEG Source Localization Analysis
2.1. Auditory Processing
2.2. Speech and Music
2.3. Somatosensory Activity
2.4. Vision
2.5. Sleep
2.6. Motor Activity
2.7. Clinical Studies: Epilepsy
3. Advances and Limitations in Infant MEG Source Localization Analysis
4. Future Directions
Author Contributions
Acknowledgments
Conflicts of Interest
Abbreviations
AER/F | Auditory-Evoked Response/Field |
BEM | Boundary Element Method |
dSPM | dynamic Statistical Parametric Mapping |
ECD | Equivalent Current Dipole |
EEG | Electroencephalography |
eLORETA | exact Low-Resolution Brain Electromagnetic Tomography |
EOG | Electro-oculogram |
FEM | Finite Element Method |
fMRI | functional Magnetic Resonance Imaging |
fNIRS | functional Near-Infrared Spectroscopy |
HPI | Head Position Indicator |
ICA | Independent Component Analysis |
LDN | Late Discriminative Negativity |
MEG | Magnetoencephalography |
MMR | Mismatch Response |
MNE | Minimum Norm Estimation |
MRI | Magnetic Resonance Imaging |
MSP | Magnetically Shielded Room |
MSI | Magnetic Source Imaging |
NAS | Neonatal Abstinence Syndrome |
NIRS | Near-Infrared Spectroscopy |
PET | Positron Emission Tomography |
PCA | Principal Component Analysis |
ROI | Region of interest |
SEF | Somatosensory-Evoked Field |
SEP | Somatosensory-Evoked Potential |
sLORETA | standardized Low-Resolution Brain Electromagnetic Tomography |
SNR | Signal-to-Noise Ratio |
SPECT | Single-Photon Emission Computed Tomography |
SQUID | Superconductive Quantum Interference Devices |
SSP | Signal-Space Projection |
SSS | Signal-Space Separation |
TBI | Traumatic Brain Injuries |
tSSS | temporal Signal-Space Separation |
VER | Visually-Evoked Response |
References
- Lew, S.; Sliva, D.D.; Choe, M.-S.; Grant, P.E.; Okada, Y.; Wolters, C.H.; Hämäläinen, M.S. Effects of sutures and fontanels on MEG and EEG source analysis in a realistic infant head model. NeuroImage 2013, 76, 282–293. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reynolds, G.D.; Richards, J.E. Cortical source localization of infant cognition. Dev. Neuropsychol. 2009, 34, 312–329. [Google Scholar] [CrossRef] [PubMed]
- Koles, Z.J.; Soong, A.C. EEG source localization: Implementing the spatio-temporal decomposition approach. Electroencephalogr. Clin. Neurophysiol. 1998, 107, 343–352. [Google Scholar] [CrossRef]
- Dale, A.M.; Liu, A.K.; Fischl, B.R.; Buckner, R.L.; Belliveau, J.W.; Lewine, J.D.; Halgren, E. Dynamic statistical parametric mapping: Combining fMRI and MEG for high-resolution imaging of cortical activity. Neuron 2000, 26, 55–67. [Google Scholar] [CrossRef]
- Cohen, D. Magnetoencephalography: Evidence of magnetic fields produced by alpha-rhythm currents. Science 1968, 161, 784–786. [Google Scholar] [CrossRef] [PubMed]
- Puce, A.; Hämäläinen, M.S. A Review of Issues Related to Data Acquisition and Analysis in EEG/MEG Studies. Brain Sci. 2017, 7, 58. [Google Scholar] [CrossRef]
- Baillet, S. Magnetoencephalography for brain electrophysiology and imaging. Nat. Neurosci. 2017, 20, 327–339. [Google Scholar] [CrossRef]
- Wilson, T.W.; Heinrichs-Graham, E.; Proskovec, A.L.; McDermott, T.J. Neuroimaging with magnetoencephalography: A dynamic view of brain pathophysiology. Transl. Res. J. Lab. Clin. Med. 2016, 175, 17–36. [Google Scholar] [CrossRef] [Green Version]
- Da Silva, F.L. EEG and MEG: Relevance to Neuroscience. Neuron 2013, 80, 1112–1128. [Google Scholar] [CrossRef] [Green Version]
- Hari, R.; Salmelin, R. Magnetoencephalography: From SQUIDs to neuroscience: Neuroimage 20th Anniversary Special Edition. NeuroImage 2012, 61, 386–396. [Google Scholar] [CrossRef]
- Hämäläinen, M.; Hari, R.; Ilmoniemi, R.J.; Knuutila, J.; Lounasmaa, O.V. Magnetoencephalography—Theory, instrumentation, and applications to noninvasive studies of the working human brain. Rev. Mod. Phys. 1993, 65, 413–497. [Google Scholar] [CrossRef]
- Ilmoniemi, R.J.; Sarvas, J. Brain Signals: Physics and Mathematics of MEG and EEG; The MIT Press: Cambridge, MA, USA, 2019. [Google Scholar]
- Hari, R.; Puce, A. MEG-EEG Primer; Oxford University Press: New York, NY, USA, 2017. [Google Scholar]
- Clinical Applications of Magnetoencephalography; Tobimatsu, S.; Kakigi, R. (Eds.) Springer: Berlin/Heidelberg, Germany, 2016. [Google Scholar]
- Magnetoencephalography: From Signals to Dynamic Cortical Networks; Supek, S.; Aine, C.J. (Eds.) Springer: Berlin/Heidelberg, Germany, 2014. [Google Scholar]
- MEG: An Introduction to Methods; Hansen, P.C.; Kringelbach, M.L.; Salmelin, R. (Eds.) Oxford University Press: New York, NY, USA, 2010. [Google Scholar]
- Papanicolaou, A.C. Clinical Magnetoencephalography and Magnetic Source Imaging; Cambridge University Press: Cambridge, UK, 2009. [Google Scholar]
- Magnetic Source Imaging of the Human Brain; Lu, Z.L.; Kaufman, L. (Eds.) Lawrence Earlbaum Associates: Mahwah, NJ, USA, 2003. [Google Scholar]
- O’Reilly, C.; Lewis, J.D.; Elsabbagh, M. Is functional brain connectivity atypical in autism? A systematic review of EEG and MEG studies. PLoS ONE 2017, 12, e0175870. [Google Scholar] [CrossRef] [PubMed]
- Kikuchi, M.; Yoshimura, Y.; Mutou, K.; Minabe, Y. Magnetoencephalography in the study of children with autism spectrum disorder. Psychiatry Clin. Neurosci. 2016, 70, 74–88. [Google Scholar] [CrossRef] [PubMed]
- Roberts, T.P.L.; Khan, S.Y.; Rey, M.; Monroe, J.F.; Cannon, K.; Blaskey, L.; Woldoff, S.; Qasmieh, S.; Gandal, M.; Schmidt, G.L.; et al. MEG detection of delayed auditory evoked responses in autism spectrum disorders: Towards an imaging biomarker for autism. Autism Res. 2010, 3, 8–18. [Google Scholar] [CrossRef] [PubMed]
- Stefan, H.; Trinka, E. Magnetoencephalography (MEG): Past, current and future perspectives for improved differentiation and treatment of epilepsies. Seizure 2017, 44, 121–124. [Google Scholar] [CrossRef] [Green Version]
- Lau, M.; Yam, D.; Burneo, J.G. A systematic review on MEG and its use in the presurgical evaluation of localization-related epilepsy. Epilepsy Res. 2008, 79, 97–104. [Google Scholar] [CrossRef]
- Shaw, A.D.; Knight, L.; Freeman, T.C.; Williams, G.M.; Moran, R.J.; Friston, K.J.; Walters, J.T.; Singh, K.D. Oscillatory, Computational, and Behavioral Evidence for Impaired GABAergic Inhibition in Schizophrenia. Schizophr. Bull. 2019. [Google Scholar] [CrossRef]
- Sanfratello, L.; Houck, J.M.; Calhoun, V.D. Dynamic Functional Network Connectivity in Schizophrenia with Magnetoencephalography and Functional Magnetic Resonance Imaging: Do Different Timescales Tell a Different Story? Brain Connect. 2019, 9, 251–262. [Google Scholar] [CrossRef]
- Sanfratello, L.; Houck, J.M.; Calhoun, V.D. Relationship between MEG global dynamic functional network connectivity measures and symptoms in schizophrenia. Schizophr. Res. 2019, 209, 129–134. [Google Scholar] [CrossRef]
- Van Bijnen, S.; Kärkkäinen, S.; Helenius, P.; Parviainen, T. Left hemisphere enhancement of auditory activation in language impaired children. Sci. Rep. 2019, 9, 9087. [Google Scholar] [CrossRef]
- Shah-Basak, P.P.; Kielar, A.; Deschamps, T.; Verhoeff, N.P.; Jokel, R.; Meltzer, J. Spontaneous oscillatory markers of cognitive status in two forms of dementia. Hum. Brain Mapp. 2019, 40, 1594–1607. [Google Scholar] [CrossRef] [PubMed]
- Cao, C.; Huang, P.; Wang, T.; Zhan, S.; Liu, W.; Pan, Y.; Wu, Y.; Li, H.; Sun, B.; Li, D. Cortico-subthalamic coherence in a patient with dystonia induced by chorea-acanthocytosis: A case report. Front. Hum. Neurosci. 2019, 13, 163. [Google Scholar] [CrossRef] [PubMed]
- Mahajan, A.; Zillgitt, A.; Alshammaa, A.; Patel, N.; Sidiropoulos, C.; LeWitt, P.; Bowyer, S. Cervical Dystonia and Executive Function: A Pilot Magnetoencephalography Study. Brain Sci. 2018, 8, 159. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Tian, S.; Tang, H.; Liu, X.; Yan, R.; Hua, L.; Shi, J.; Chen, Y.; Zhu, R.; Lu, Q. Identification of major depressive disorder and prediction of treatment response using functional connectivity between the prefrontal cortices and subgenual anterior cingulate: A real-world study. J. Affect. Disord. 2019, 252, 365–372. [Google Scholar] [CrossRef] [PubMed]
- Posner, J.; Marsh, R.; Maia, T.V.; Peterson, B.S.; Gruber, A.; Simpson, H.B. Reduced functional connectivity within the limbic cortico-striato-thalamo-cortical loop in unmedicated adults with obsessive-compulsive disorder. Hum. Brain Mapp. 2014, 35, 2852–2860. [Google Scholar] [CrossRef] [PubMed]
- Goldstein, A.; Zeev-Wolf, M.; Herz, N.; Ablin, J. Brain responses to other people’s pain in fibromyalgia: A magnetoencephalography study. Clin. Exp. Rheumatol. 2019, 37, 70–74. [Google Scholar] [PubMed]
- Filippi, M.; van den Heuvel, M.P.; Fornito, A.; He, Y.; Hulshoff Pol, H.E.; Agosta, F.; Comi, G.; Rocca, M.A. Assessment of system dysfunction in the brain through MRI-based connectomics. Lancet. Neurol. 2013, 12, 1189–1199. [Google Scholar] [CrossRef]
- Schwartz, E.S.; Edgar, J.C.; Gaetz, W.C.; Roberts, T.P. Magnetoencephalography. Pediatric Radiol. 2010, 40, 50–58. [Google Scholar] [CrossRef]
- Zhang, H.-Y.; Wang, S.-J.; Liu, B.; Ma, Z.-L.; Yang, M.; Zhang, Z.-J.; Teng, G.-J. Resting brain connectivity: Changes during the progress of Alzheimer disease. Radiology 2010, 256, 598–606. [Google Scholar] [CrossRef]
- Belmonte, M.K.; Allen, G.; Beckel-Mitchener, A.; Boulanger, L.M.; Carper, R.A.; Webb, S.J. Autism and abnormal development of brain connectivity. J. Neurosci. 2004, 24, 9228–9231. [Google Scholar] [CrossRef]
- Chen, Y.-H.; Saby, J.; Kuschner, E.; Gaetz, W.; Edgar, J.C.; Roberts, T.P. Magnetoencephalography and the infant brain. NeuroImage 2019, 189, 445–458. [Google Scholar] [CrossRef] [PubMed]
- Nevalainen, P.; Lauronen, L.; Pihko, E. Development of human somatosensory cortical functions–what have we learned from magnetoencephalography: A review. Front. Hum. Neurosci. 2014, 8, 158. [Google Scholar] [CrossRef] [PubMed]
- Huotilainen, M.; Shestakova, A.; Hukki, J. Using magnetoencephalography in assessing auditory skills in infants and children. Int. J. Psychophysiol. 2008, 68, 123–129. [Google Scholar] [CrossRef] [PubMed]
- Pinti, P.; Tachtsidis, I.; Hamilton, A.; Hirsch, J.; Aichelburg, C.; Gilbert, S.; Burgess, P.W. The present and future use of functional near-infrared spectroscopy (fNIRS) for cognitive neuroscience. Ann. N. Y. Acad. Sci. 2018. [Google Scholar] [CrossRef] [PubMed]
- Aslin, R.N. Questioning the questions that have been asked about the infant brain using near-infrared spectroscopy. Cogn. Neuropsychol. 2012, 29, 7–33. [Google Scholar] [CrossRef]
- Irimia, A.; Erhart, M.J.; Brown, T.T. Variability of magnetoencephalographic sensor sensitivity measures as a function of age, brain volume and cortical area. Clin. Neurophysiol. 2014, 125, 1973–1984. [Google Scholar] [CrossRef]
- Sambeth, A.; Pakarinen, S.; Ruohio, K.; Fellman, V.; van Zuijen, T.L.; Huotilainen, M. Change detection in newborns using a multiple deviant paradigm: A study using magnetoencephalography. Clin. Neurophysiol. 2009, 120, 530–538. [Google Scholar] [CrossRef]
- Sambeth, A.; Huotilainen, M.; Kushnerenko, E.; Fellman, V.; Pihko, E. Newborns discriminate novel from harmonic sounds: A study using magnetoencephalography. Clin. Neurophysiol. 2006, 117, 496–503. [Google Scholar] [CrossRef] [Green Version]
- Cheour, M.; Imada, T.; Taulu, S.; Ahonen, A.; Salonen, J.; Kuhl, P. Magnetoencephalography is feasible for infant assessment of auditory discrimination. Exp. Neurol. 2004, 190, 44–51. [Google Scholar] [CrossRef]
- Zhao, T.C.; Kuhl, P.K. Musical intervention enhances infants’ neural processing of temporal structure in music and speech. Proc. Natl. Acad. Sci. USA 2016, 113, 5212–5217. [Google Scholar] [CrossRef]
- Travis, K.E.; Leonard, M.K.; Brown, T.T.; Hagler Jr, D.J.; Curran, M.; Dale, A.M.; Elman, J.L.; Halgren, E. Spatiotemporal neural dynamics of word understanding in 12-to 18-month-old-infants. Cereb. Cortex 2011, 21, 1832–1839. [Google Scholar] [CrossRef] [PubMed]
- Riaz, B.; Pfeiffer, C.; Schneiderman, J.F. Evaluation of realistic layouts for next generation on-scalp MEG: Spatial information density maps. Sci. Rep. 2017, 7, 6974. [Google Scholar] [CrossRef] [PubMed]
- Larson, E.; Taulu, S. The importance of properly compensating for head movements during meg acquisition across different age groups. Brain Topogr. 2017, 30, 172–181. [Google Scholar] [CrossRef] [PubMed]
- Shukla, G.; Kazutaka, J.; Gupta, A.; Mosher, J.; Jones, S.; Alexopoulos, A.; Burgess, R.C. Magnetoencephalographic Identification of Epileptic Focus in Children With Generalized Electroencephalographic (EEG) Features but Focal Imaging Abnormalities. J. Child Neurol. 2017, 32, 981–995. [Google Scholar] [CrossRef] [PubMed]
- Roberts, T.P.; Paulson, D.N.; Hirschkoff, G.; Pratt, K.; Mascarenas, A.; Miller, P.; Han, M.; Caffrey, J.; Kincade, C.; Power, W. Artemis 123: Development of a whole-head infant and young child MEG system. Front. Hum. Neurosci. 2014, 8, 99. [Google Scholar] [CrossRef] [PubMed]
- Breuer, L.; Dammers, J.; Roberts, T.P.; Shah, N.J. Ocular and cardiac artifact rejection for real-time analysis in MEG. J. Neurosci. Methods 2014, 233, 105–114. [Google Scholar] [CrossRef] [PubMed]
- Howell, B.R.; Styner, M.A.; Gao, W.; Yap, P.-T.; Wang, L.; Baluyot, K.; Yacoub, E.; Chen, G.; Potts, T.; Salzwedel, A. The UNC/UMN baby connectome project (BCP): An overview of the study design and protocol development. NeuroImage 2019, 185, 891–905. [Google Scholar] [CrossRef]
- Lauronen, L.; Nevalainen, P.; Pihko, E. Magnetoencephalography in neonatology. Neurophysiol. Clin. Clin. Neurophysiol. 2012, 42, 27–34. [Google Scholar] [CrossRef]
- Lengle, J.; Chen, M.; Wakai, R. Improved neuromagnetic detection of fetal and neonatal auditory evoked responses. Clin. Neurophysiol. 2001, 112, 785–792. [Google Scholar] [CrossRef]
- Huotilainen, M.; Kujala, A.; Hotakainen, M.; Shestakova, A.; Kushnerenko, E.; Parkkonen, L.; Fellman, V.; Näätänen, R. Auditory magnetic responses of healthy newborns. Neuroreport 2003, 14, 1871–1875. [Google Scholar] [CrossRef]
- Holst, M.; Eswaran, H.; Lowery, C.; Murphy, P.; Norton, J.; Preissl, H. Development of auditory evoked fields in human fetuses and newborns: A longitudinal MEG study. Clin. Neurophysiol. 2005, 116, 1949–1955. [Google Scholar] [CrossRef] [PubMed]
- Draganova, R.; Eswaran, H.; Murphy, P.; Huotilainen, M.; Lowery, C.; Preissl, H. Sound frequency change detection in fetuses and newborns, a magnetoencephalographic study. NeuroImage 2005, 28, 354–361. [Google Scholar] [CrossRef] [PubMed]
- Draganova, R.; Eswaran, H.; Murphy, P.; Lowery, C.; Preissl, H. Serial magnetoencephalographic study of fetal and newborn auditory discriminative evoked responses. Early Hum. Dev. 2007, 83, 199–207. [Google Scholar] [CrossRef] [PubMed]
- Sheridan, C.J.; Draganova, R.; Ware, M.; Murphy, P.; Govindan, R.; Siegel, E.R.; Eswaran, H.; Preissl, H. Early development of brain responses to rapidly presented auditory stimulation: A magnetoencephalographic study. Brain Dev. 2010, 32, 642–657. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Muenssinger, J.; Matuz, T.; Schleger, F.; Kiefer-Schmidt, I.; Goelz, R.; Wacker-Gussmann, A.; Birbaumer, N.; Preissl, H. Auditory habituation in the fetus and neonate: An fMEG study. Dev. Sci. 2013, 16, 287–295. [Google Scholar] [CrossRef] [PubMed]
- Schleger, F.; Landerl, K.; Muenssinger, J.; Draganova, R.; Reinl, M.; Kiefer-Schmidt, I.; Weiss, M.; Wacker-Gußmann, A.; Huotilainen, M.; Preissl, H. Magnetoencephalographic signatures of numerosity discrimination in fetuses and neonates. Dev. Neuropsychol. 2014, 39, 316–329. [Google Scholar] [CrossRef] [PubMed]
- Edgar, J.C.; Murray, R.; Kuschner, E.S.; Pratt, K.; Paulson, D.N.; Dell, J.; Golembski, R.; Lam, P.; Bloy, L.; Gaetz, W. The maturation of auditory responses in infants and young children: A cross-sectional study from 6 to 59 months. Front. Neuroanat. 2015, 9, 131. [Google Scholar] [CrossRef] [PubMed]
- Kujala, A.; Huotilainen, M.; Hotakainen, M.; Lennes, M.; Parkkonen, L.; Fellman, V.; Näätänen, R. Speech-sound discrimination in neonates as measured with MEG. Neuroreport 2004, 15, 2089–2092. [Google Scholar] [CrossRef]
- Pihko, E.; Lauronen, L.; Wikström, H.; Taulu, S.; Nurminen, J.; Kivitie-Kallio, S.; Okada, Y. Somatosensory evoked potentials and magnetic fields elicited by tactile stimulation of the hand during active and quiet sleep in newborns. Clin. Neurophysiol. 2004, 115, 448–455. [Google Scholar] [CrossRef]
- Imada, T.; Zhang, Y.; Cheour, M.; Taulu, S.; Ahonen, A.; Kuhl, P.K. Infant speech perception activates Broca’s area: A developmental magnetoencephalography study. Neuroreport 2006, 17, 957–962. [Google Scholar] [CrossRef]
- Sambeth, A.; Ruohio, K.; Alku, P.; Fellman, V.; Huotilainen, M. Sleeping newborns extract prosody from continuous speech. Clin. Neurophysiol. 2008, 119, 332–341. [Google Scholar] [CrossRef] [PubMed]
- Bosseler, A.; Taulu, S.; Pihko, E.; Mäkelä, J.; Imada, T.; Ahonen, A.; Kuhl, P. Theta brain rhythms index perceptual narrowing in infant speech perception. Front. Psychol. 2013, 4, 690. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kuhl, P.K.; Ramírez, R.R.; Bosseler, A.; Lin, J.-F.L.; Imada, T. Infants’ brain responses to speech suggest analysis by synthesis. Proc. Natl. Acad. Sci. USA 2014, 111, 11238–11245. [Google Scholar] [CrossRef] [PubMed]
- Hartkopf, J.; Schleger, F.; Weiss, M.; Hertrich, I.; Kiefer-Schmidt, I.; Preissl, H.; Muenssinger, J. Neuromagnetic signatures of syllable processing in fetuses and infants provide no evidence for habituation. Early Hum. Dev. 2016, 100, 61–66. [Google Scholar] [CrossRef] [PubMed]
- Ferjan Ramírez, N.; Ramírez, R.R.; Clarke, M.; Taulu, S.; Kuhl, P.K. Speech discrimination in 11-month-old bilingual and monolingual infants: A magnetoencephalography study. Dev. Sci. 2017, 20, e12427. [Google Scholar] [CrossRef] [PubMed]
- Gondo, K.; Tobimatsu, S.; Kira, R.; Tokunaga, Y.; Yamamoto, T.; Hara, T. A magnetoencephalographic study on development of the somatosensory cortex in infants. Neuroreport 2001, 12, 3227–3231. [Google Scholar] [CrossRef] [PubMed]
- Pihko, E.; Lauronen, L.; Wikström, H.; Parkkonen, L.; Okada, Y. Somatosensory evoked magnetic fields to median nerve stimulation in newborns. Proceedings of International Congress Series; Elsevier: Amsterdam, The Netherlands, 2005; pp. 211–214. [Google Scholar]
- Lauronen, L.; Nevalainen, P.; Wikström, H.; Parkkonen, L.; Okada, Y.; Pihko, E. Immaturity of somatosensory cortical processing in human newborns. NeuroImage 2006, 33, 195–203. [Google Scholar] [CrossRef]
- Nevalainen, P.; Lauronen, L.; Sambeth, A.; Wikström, H.; Okada, Y.; Pihko, E. Somatosensory evoked magnetic fields from the primary and secondary somatosensory cortices in healthy newborns. NeuroImage 2008, 40, 738–745. [Google Scholar] [CrossRef]
- Pihko, E.; Nevalainen, P.; Stephen, J.; Okada, Y.; Lauronen, L. Maturation of somatosensory cortical processing from birth to adulthood revealed by magnetoencephalography. Clin. Neurophysiol. 2009, 120, 1552–1561. [Google Scholar] [CrossRef]
- Nevalainen, P.; Pihko, E.; Metsäranta, M.; Sambeth, A.; Wikström, H.; Okada, Y.; Autti, T.; Lauronen, L. Evoked magnetic fields from primary and secondary somatosensory cortices: A reliable tool for assessment of cortical processing in the neonatal period. Clin. Neurophysiol. 2012, 123, 2377–2383. [Google Scholar] [CrossRef]
- Meltzoff, A.N.; Ramírez, R.R.; Saby, J.N.; Larson, E.; Taulu, S.; Marshall, P.J. Infant brain responses to felt and observed touch of hands and feet: An MEG study. Dev. Sci. 2018, 21, e12651. [Google Scholar] [CrossRef] [PubMed]
- Sheridan, C.J.; Preissl, H.; Siegel, E.R.; Murphy, P.; Ware, M.; Lowery, C.L.; Eswaran, H. Neonatal and fetal response decrement of evoked responses: A MEG study. Clin. Neurophysiol. 2008, 119, 796–804. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Matuz, T.; Govindan, R.B.; Preissl, H.; Siegel, E.R.; Muenssinger, J.; Murphy, P.; Ware, M.; Lowery, C.L.; Eswaran, H. Habituation of visual evoked responses in neonates and fetuses: A MEG study. Dev. Cogn. Neurosci. 2012, 2, 303–316. [Google Scholar] [CrossRef] [PubMed]
- Berchicci, M.; Zhang, T.; Romero, L.; Peters, A.; Annett, R.; Teuscher, U.; Bertollo, M.; Okada, Y.; Stephen, J.; Comani, S. Development of mu rhythm in infants and preschool children. Dev. Neurosci. 2011, 33, 130–143. [Google Scholar] [CrossRef] [PubMed]
- Berchicci, M.; Tamburro, G.; Comani, S. The intrahemispheric functional properties of the developing sensorimotor cortex are influenced by maturation. Front. Hum. Neurosci. 2015, 9, 39. [Google Scholar] [CrossRef]
- Pihko, E.; Lauronen, L.; Kivistö, K.; Nevalainen, P. Increasing the efficiency of neonatal MEG measurements by alternating auditory and tactile stimulation. Clin. Neurophysiol. 2011, 122, 808–814. [Google Scholar] [CrossRef] [PubMed]
- Lutter, W.; Wakai, R.; Maier, M.; Baryshnikov, B. MEG sleep pattern dependence of auditory evoked fields in young infants. Neurol. Clin. Neurophysiol. 2004, 2004, 77. [Google Scholar]
- Lutter, W.; Maier, M.; Wakai, R. Development of MEG sleep patterns and magnetic auditory evoked responses during early infancy. Clin. Neurophysiol. 2006, 117, 522–530. [Google Scholar] [CrossRef]
- Wakai, R.; Lutter, W. Slow rhythms and sleep spindles in early infancy. Neurosci. Lett. 2016, 630, 164–168. [Google Scholar] [CrossRef] [Green Version]
- Haddad, N.; Shihabuddin, B.; Preissl, H.; Holst, M.; Lowery, C.L.; Eswaran, H. Magnetoencephalography in healthy neonates. Clin. Neurophysiol. 2006, 117, 289–294. [Google Scholar] [CrossRef]
- Hanaya, R.; Okamoto, H.; Fujimoto, A.; Ochi, A.; Go, C.; Snead, C.O., 3rd; Widjaja, E.; Chuang, S.H.; Kemp, S.M.; Otsubo, H. Total intravenous anesthesia affecting spike sources of magnetoencephalography in pediatric epilepsy patients: Focal seizures vs. non-focal seizures. Epilepsy Res. 2013, 105, 326–336. [Google Scholar] [CrossRef] [PubMed]
- Shibata, S.; Mosher, J.C.; Kotagal, P.; Gupta, A.; Alexopoulos, A.V.; Burgess, R.C. Magnetoencephalographic recordings in infants using a standard-sized array: Technical adequacy and diagnostic yield. J. Clin. Neurophysiol. 2017, 34, 461–468. [Google Scholar] [CrossRef] [PubMed]
- Garcia-Tarodo, S.; Funke, M.; Caballero, L.; Zhu, L.; Shah, M.N.; Von Allmen, G.K. Magnetoencephalographic Recordings in Infants: A Retrospective Analysis of Seizure-Focus Yield and Postsurgical Outcomes. J. Clin. Neurophysiol. 2018, 35, 454–462. [Google Scholar] [CrossRef] [PubMed]
- Gramfort, A.; Luessi, M.; Larson, E.; Engemann, D.A.; Strohmeier, D.; Brodbeck, C.; Parkkonen, L.; Hämäläinen, M.S. MNE software for processing MEG and EEG data. NeuroImage 2014, 86, 446–460. [Google Scholar] [CrossRef] [PubMed]
- Lee, A.K.; Larson, E.; Maddox, R.K. Mapping cortical dynamics using simultaneous MEG/EEG and anatomically-constrained minimum-norm estimates: An auditory attention example. Jove 2012, 68, e4262. [Google Scholar] [CrossRef] [PubMed]
- Edgar, J.C.; Huang, M.; Weisend, M.; Sherwood, A.; Miller, G.; Adler, L.; Canive, J. Interpreting abnormality: An EEG and MEG study of P50 and the auditory paired-stimulus paradigm. Biol. Psychol. 2003, 65, 1–20. [Google Scholar] [CrossRef]
- Pindrik, J.; Hoang, N.; Smith, L.; Halverson, M.; Wojnaroski, M.; McNally, K.; Gedela, S.; Ostendorf, A.P. Preoperative evaluation and surgical management of infants and toddlers with drug-resistant epilepsy. Neurosurg. Focus 2018, 45, E3. [Google Scholar] [CrossRef] [PubMed]
- Wehner, D.T.; Hämäläinen, M.S.; Mody, M.; Ahlfors, S.P. Head movements of children in MEG: Quantification, effects on source estimation, and compensation. NeuroImage 2008, 40, 541–550. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Taulu, S.; Simola, J.; Kajola, M. MEG recordings of DC fields using the signal space separation method (SSS). Neurol Clin Neurophysiol. 2004, 2004, 35. [Google Scholar] [PubMed]
- Okada, Y.; Pratt, K.; Atwood, C.; Mascarenas, A.; Reineman, R.; Nurminen, J.; Paulson, D. BabySQUID: A mobile, high-resolution multichannel magnetoencephalography system for neonatal brain assessment. Rev. Sci. Instrum. 2006, 77, 024301. [Google Scholar] [CrossRef]
- Esch, L.; Sun, L.; Klüber, V.; Lew, S.; Baumgarten, D.; Grant, P.E.; Okada, Y.; Haueisen, J.; Hämäläinen, M.S.; Dinh, C. MNE scan: Software for real-time processing of electrophysiological data. J. Neurosci. Methods 2018, 303, 55–67. [Google Scholar] [CrossRef] [PubMed]
- Boto, E.; Holmes, N.; Leggett, J.; Roberts, G.; Shah, V.; Meyer, S.S.; Muñoz, L.D.; Mullinger, K.J.; Tierney, T.M.; Bestmann, S. Moving magnetoencephalography towards real-world applications with a wearable system. Nature 2018, 555, 657. [Google Scholar] [CrossRef] [PubMed]
- Knappe, S.; Sander, T.; Trahms, L. Optically-pumped magnetometers for MEG. In Magnetoencephalography; Springer: Berlin/Heidelberg, Germany, 2014; pp. 993–999. [Google Scholar]
- Johnson, B.W.; Crain, S.; Thornton, R.; Tesan, G.; Reid, M. Measurement of brain function in pre-school children using a custom sized whole-head MEG sensor array. Clin. Neurophysiol. 2010, 121, 340–349. [Google Scholar] [CrossRef] [PubMed]
- Dimitriadis, S.I.; Routley, B.; Linden, D.E.; Singh, K.D. Reliability of Static and Dynamic Network Metrics in the Resting-State: A MEG-beamformed Connectivity Analysis. Front. Neurosci. 2018, 12. [Google Scholar] [CrossRef] [PubMed]
- Hirata, M.; Ikeda, T.; Kikuchi, M.; Kimura, T.; Hiraishi, H.; Yoshimura, Y.; Asada, M. Hyperscanning MEG for understanding mother–child cerebral interactions. Front. Hum. Neurosci. 2014, 8, 118. [Google Scholar] [CrossRef]
- Ronconi, L.; Molteni, M.; Casartelli, L. Building blocks of others’ understanding: A perspective shift in investigating social-communicative deficit in autism. Front. Hum. Neurosci. 2016, 10, 144. [Google Scholar] [CrossRef] [PubMed]
- Edgar, J.C.; Heiken, K.; Chen, Y.-H.; Herrington, J.D.; Chow, V.; Liu, S.; Bloy, L.; Huang, M.; Pandey, J.; Cannon, K.M. Resting-state alpha in autism spectrum disorder and alpha associations with thalamic volume. J. Autism Dev. Disord. 2015, 45, 795–804. [Google Scholar] [CrossRef]
- Wilson, T.W.; Rojas, D.C.; Reite, M.L.; Teale, P.D.; Rogers, S.J. Children and adolescents with autism exhibit reduced MEG steady-state gamma responses. Biol. Psychiatry 2007, 62, 192–197. [Google Scholar] [CrossRef]
- Papadelis, C.; Ahtam, B.; Nazarova, M.; Nimec, D.; Snyder, B.; Grant, P.E.; Okada, Y. Cortical somatosensory reorganization in children with spastic cerebral palsy: A multimodal neuroimaging study. Front. Hum. Neurosci. 2014, 8, 725. [Google Scholar] [CrossRef]
- Larson, E.; Lee, A.K. Potential use of MEG to understand abnormalities in auditory function in clinical populations. Front. Hum. Neurosci. 2014, 8, 151. [Google Scholar] [CrossRef]
- Vasung, L.; Abaci Turk, E.; Ferradal, S.L.; Sutin, J.; Stout, J.N.; Ahtam, B.; Lin, P.Y.; Grant, P.E. Exploring early human brain development with structural and physiological neuroimaging. Neuroimage 2019, 187, 226–254. [Google Scholar] [CrossRef] [PubMed]
- Hasegawa, C.; Takahashi, T.; Yoshimura, Y.; Nobukawa, S.; Ikeda, T.; Saito, D.N.; Kumazaki, H.; Minabe, Y.; Kikuchi, M. Developmental Trajectory of Infant Brain Signal Variability: A Longitudinal Pilot Study. Front Neurosci 2018, 12, 566. [Google Scholar] [CrossRef] [PubMed]
- Hartkopf, J.; Schleger, F.; Keune, J.; Wiechers, C.; Pauluschke-Froehlich, J.; Weiss, M.; Conzelmann, A.; Brucker, S.; Preissl, H.; Kiefer-Schmidt, I. Impact of Intrauterine Growth Restriction on Cognitive and Motor Development at 2 Years of Age. Front. Physiol. 2018, 9, 1278. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Muenssinger, J.; Matuz, T.; Schleger, F.; Draganova, R.; Weiss, M.; Kiefer-Schmidt, I.; Wacker-Gussmann, A.; Govindan, R.B.; Lowery, C.L.; Eswaran, H.; et al. Sensitivity to Auditory Spectral Width in the Fetus and Infant - An fMEG Study. Front. Hum. Neurosci. 2013, 7, 917. [Google Scholar] [CrossRef] [PubMed]
- Preissl, H.; Lowery, C.L.; Eswaran, H. Fetal magnetoencephalography: Viewing the developing brain in utero. Int. Rev. Neurobiol. 2005, 68, 1–23. [Google Scholar] [CrossRef] [PubMed]
- Rose, D.F.; Eswaran, H. Spontaneous neuronal activity in fetuses and newborns. Exp. Neurol. 2004, 190 (Suppl. 1), S37–S43. [Google Scholar] [CrossRef]
- Wakai, R.T.; Leuthold, A.C.; Martin, C.B. Fetal auditory evoked responses detected by magnetoencephalography. Am. J. Obstet. Gynecol. 1996, 174, 1484–1486. [Google Scholar] [CrossRef]
- Anderson, A.L.; Thomason, M.E. Functional plasticity before the cradle: A review of neural functional imaging in the human fetus. Neurosci. Biobehav. Rev. 2013, 37, 2220–2232. [Google Scholar] [CrossRef]
Authors (years) | Sample Size | Age(s) | Materials | Paradigms & Components | Recording Parameters | Preprocessing | Head Position Standardization | Source Modeling | No source Analysis, other Analysis |
---|---|---|---|---|---|---|---|---|---|
Auditory | |||||||||
Lengle, Chen and Wakai [56] | F: 19; N: 16 | F: 20 – 40 weeks; N: 0.5 – 1.5 months | Pure tone | Block; AEF | R side recorded; 96 trials in each run, 4 – 8 runs | Spatial & matched filter; Manual artifact rejection; Average; Bandpass filter (2–10 Hz) | Not reported | Not reported | Waveform analysis |
Huotilainen, Kujala, Hotakainen, Shestakova, Kushnerenko, Parkkonen, Fellman and Näätänen [57] | 12 | 2–12 days | Tones with 2 upper harmonics | Oddball; MMR | Either side recorded; Accepted at least 350 standard trials & 95 deviant trials | Epoch (−150–700 ms); Artifact rejection (> 1500 fT/cm); Average; Bandpass filter (1–20 Hz); Baseline correction; SSP | Verify at the beginning of each recording | ECD with spherical head model | |
Cheour, Imada, Taulu, Ahonen, Salonen and Kuhl [46] | 4/8 | 1–6 days | Tones with 3 upper harmonics | Oddball; MMR | L side recorded; | Epoch (−100–700 ms); Head movement rejection; SSS; Lowpass filter (20 Hz); Baseline correction; | Translated to a reference head location of the device coordinate system | Not reported | Waveform analysis |
Holst, Eswaran, Lowery, Murphy, Norton and Preissl [58] | F: 16/18; N: 14/18 | F: above 27 weeks; N: 6 days–6 weeks | Pure tones | Oddball; AEF | Both sides recorded; | SSP; Epoch (−200–800 ms); Artifact rejection (> 2 pT); Average; Bandpass filter (0.5–10 Hz) | Not reported | Not reported | Waveform analysis |
Draganova, Eswaran, Murphy, Huotilainen, Lowery and Preissl [59] | F: 12; N: 5 | F: 33–36 weeks; N: < 0.5 months | Tones with 2 upper harmonics | Oddball; MMR & LDN | Supine position; Accepted at least 300 standard trials & 44 deviant trials | SSP; Epoch (−100–600 ms); Artifact rejection (> 2 pT); Average; Bandpass filter (0.5–10 Hz) | Not reported | Not reported | Waveform analysis |
Sambeth, Huotilainen, Kushnerenko, Fellman and Pihko [45] | 12/13 | 1–8 days | Tones with 2 upper harmonics | Double oddball; MMR & LDN | R side recorded; Accepted at least 100 trials | Movement artifact rejection; Average; SSS; Vector sums; Lowpass filter (40 Hz) | Recorded but not standardized | Attempted but not reported | Waveform analysis |
Draganova, Eswaran, Murphy, Lowery and Preissl [60] | F: 18; N: 9 | F: 28–29 weeks, follow-up every 2 weeks | Tones with 2 upper harmonics | Oddball; MMR & AEF | Supine position; Accepted at least 600 standard trials & 70 deviant trials | SSP; Artifact rejection (> 2 pT); Average; Bandpass filter (0.5–10 Hz) | Not reported | Not reported | Waveform analysis |
Sambeth, Pakarinen, Ruohio, Fellman, van Zuijen and Huotilainen [44] | 12/13 | 1–8 days | Tones with 2 upper harmonics | Multifeature oddball; MMR, LDN, & AEF | R side recorded; Accepted at least 140 trials | Epoch; Artifact rejection; SSS (for 2 infants); Vector sums; Lowpass filter (40 Hz) | Recorded but not standardized | Not reported | Waveform analysis |
Sheridan, Draganova, Ware, Murphy, Govindan, Siegel, Eswaran and Preissl [61] | F: 20/22; N: 15 | F: 29–38 weeks; N: 2–38 days | Pure tones | Oddball; AEF | Supine position | SSP; Epoch (−200–1000 ms); Or epoch (−100–800 ms); Artifact rejection (> 2 pT); Average | Not reported | Not reported | Waveform analysis |
Muenssinger, Matuz, Schleger, Kiefer-Schmidt, Goelz, Wacker-Gussmann, Birbaumer and Preissl [62] | F: 36/41; N: 15/22 | F: 30–39 weeks; N: 6–89 days | Pure tones | Auditory habituation; AEF & MMR | R side recorded | SSP; Highpass filter (1 Hz); Lowpass filter (N: 15 Hz); Epoch (−90–330 ms); Artifact rejection (> 2 pT) | Not reported | Not reported | Waveform analysis |
Schleger, Landerl, Muenssinger, Draganova, Reinl, Kiefer-Schmidt, Weiss, Wacker-Gußmann, Huotilainen and Preissl [63] | F: 23/30; N: 16/30 | F: 30–39 weeks; N: 14–89 days | Pure tones | Oddball; MMR | R side recorded | SSP; Bandpass filter (N: 1–15 Hz); Epoch (−200–750 ms); Artifact rejection (> 2 pT) | Not reported | Not reported | Waveform analysis |
Edgar, Murray, Kuschner, Pratt, Paulson, Dell, Golembski, Lam, Bloy and Gaetz [64] | 29/36 | 6–59 months | Pure tones | Block; AEF (P2m, N2m) | Accepted trials ranged from 30 to 206 | Downsampled (300 Hz); Epoch (−200–400 ms); Artifact rejection; Average; Bandpass filter (2–55 Hz) | Recorded but not standardized | Not reported | Waveform analysis |
Music | |||||||||
Zhao and Kuhl [47] | 71/94 | 9 months | Piano and woodblock sounds; Synthesized speech /bi/ | Oddball; MMR | Presented 1250 trials (200 deviant trials) | tSSS; Head movement compensation; SSP; Bandpass filter (1–40 Hz); Remove bad channels; Epoch (−50–900 ms); Artifact rejection (> 2 pT/cm, or peak-to-peak > 1.5 pT); Average; Baseline correction | Aligned to individual mean head position; Source space and the BEM surface aligned and scaled to fit individual head shape | BEM isolated-skull approach with inner skull surface from an MRI template; dSPM without dipole orientation constraints | |
Speech | |||||||||
Kujala, Huotilainen, Hotakainen, Lennes, Parkkonen, Fellman and Näätänen [65] | 10 | 1–25 days | Vowels | Oddball; MMR | Either or both sides recorded | Epoch(−150–700 ms); Artifact rejection (> 1500 fT/cm); Average; SSP; Bandpass filter (1–20 Hz); Baseline correction | Recorded but not standardized | ECDs with spherical head model with origin (0, 0, 25) mm | |
Pihko, Lauronen, Wikström, Taulu, Nurminen, Kivitie-Kallio and Okada [66] | 10/18 | 1–4 days | Single syllables | Oddball; MMR & AEF (P1m, P2m) | R side recorded | Average; Vector sums; Lowpass filter (40 Hz) | Not reported | Not reported | Waveform analysis |
Imada, Zhang, Cheour, Taulu, Ahonen and Kuhl [67] | N: 18; 6-month: 17; 12-month: 8 | 5 days; 6 months; 12 months | Pure tones; Harmonics; Single syllables | Oddball; MMR | L side recorded | Epoch (−100–800/1200 ms); Head movement rejection; SSS; Average; Head standardization; Lowpass filter (20 Hz); Baseline correction | L auditory regions aligned to have the same position and orientation | MNE L1 based on ROIs with spherical head models (1 for each age) | |
Sambeth, Ruohio, Alku, Fellman and Huotilainen [68] | 11 | 1–5 days | Singing; Speech | Alternating blocks; AEF (P1m) | R side recorded; Accepted at least 125 trials | Epoch (−100–800 ms); Head movement rejection; Average; SSS; Vector sums; Lowpass filter (40 Hz) | Not reported | Not reported | Waveform analysis |
Bosseler et al. [69] | 6-month: 7; 12-month: 11; Exclude 17 infants; Adult: 9 | 6 months; 12 months; Adult | Single syllables | Oddball; Theta oscillation | Whole-head measurement | Epoch (−100–1200 ms); Average; tSSS; Head movement compensation | Converted to a standardized position within the MEG sensor array | Not reported | Time-frequency analysis |
Kuhl, Ramírez, Bosseler, Lin and Imada [70] Exp. 1 | 7-month: 7/25; 11-month: 10/24; Adult: 10/14 | 7 months; 11 months; Adult | Single syllables | Double oddball; MMR | Whole-head measurement; Accepted at least 40 trials | SSS; tSSS; Head movement compensation; Artifact rejection (peak-to-peak > 8 pT/cm); Average; Lowpass filter (20 Hz); Baseline correction | Recorded but not reported | MNE with spherical head model, using 6-mo MRI template | |
Kuhl, Ramírez, Bosseler, Lin and Imada [70] Exp. 2 | 7-month: 8; 11-month: 8; Excluded: 16 | 7 months; 12 months | Single syllables | Same as Exp. 1 | Whole-head measurement; Accepted at least 30 trials | SSS; Bandpass filter (1–20 Hz); SSP; tSSS; Head movement compensation; Artifact rejection (peak-to-peak > 1.5 pT/cm); Average; Baseline correction | Recorded but not reported | BEM isolated-skull approach with inner skull surface from 12-mo MRI template, and sLORETA without dipole constraints | |
Hartkopf et al. [71] | F: 30; N: 28 | F: 28–39 weeks; N: 0–3 months | Single syllables | Auditory habituation; AEF | R side recorded; 140 sequences each with 8 trials | SSP; Lowpass filter (F: 10 Hz, N: 15 Hz); Highpass filter (1 Hz); Epoch (−100–500 ms); Artifact rejection (> 2 pT) | Not reported | Not reported | Waveform analysis |
Ferjan Ramírez, Ramírez, Clarke, Taulu and Kuhl [72] | 16/33 | 11 months | Single syllables | Double oddball; MMR | Whole-head measurement; Accepted at least 75 trials | Downsampled (500 Hz); tSSS; Head movement compensation; SSP; Bandpass filter (1–40 Hz); Epoch (−100–700 ms); Artifact rejection (> 3 pT/cm or 4 pT); Average; Baseline correction | Transformed to the mean head position; Source space and the BEM surface aligned and scaled to fit individual head shape | BEM with 14-mo MRI template, and sLORETA without dipole constraints | |
Somatosensory | |||||||||
Gondo, Tobimatsu, Kira, Tokunaga, Yamamoto and Hara [73] | 12 | 12–18 months | Air pressure pulses | Block; SEF | R side recorded; Accepted 128 or 256 trials | Epoch (−50–250 ms) | Not reported | Single ECD with spherical head model | |
Pihko, Lauronen, Wikström, Taulu, Nurminen, Kivitie-Kallio and Okada [66] | 6/14 | 1–3 days | Air pressure pulses | Block; SEF (P1m, P2m) | R side recorded | Average; Movement rejection; SSS | Not reported | Not reported | Waveform analysis |
Pihko, Lauronen, Wikström, Parkkonen and Okada [74] | 16 | 1–5 days | Electrical stimulation; Air pressure pulses | Block; SEF (M30, M70, M250) | R side recorded | Average; Movement rejection; SSS; Bandpass filter | Not reported | Single ECD | |
Lauronen, Nevalainen, Wikström, Parkkonen, Okada and Pihko [75] | N: 26; 6-mo: 5; Adult: 10 | N: CA 38–42 weeks; 6-months: 6.5 months; Adult | Electrical stimulation; Air pressure pulses | Block; SEF (N1, N20m) | R side recorded; Accepted trials ranged from 92 to 267 | Epoch (start from −100 ms); Average; Movement rejection; SSS; Bandpass filter (1–90 Hz) | Recorded but not reported | ECDs with spherical head model | |
Nevalainen, Lauronen, Sambeth, Wikström, Okada and Pihko [76] | 20/21 | 1–6 days | Air pressure pulses | Block; SEF (M60, M200) | R side recorded; Accepted 250 trials | Epoch (start from −100 ms); Average; SSS or SSP; Baseline correction; Lowpass filter (90 Hz) | Recorded but not reported | ECDs with spherical head model with origin (0, 0, 30) mm | |
Pihko, Nevalainen, Stephen, Okada and Lauronen [77] | 51 (20, 9, 8, 8, 12) | 1 d–57 years (Newborn, 6-months, 12–18 months, 1.6–6 years, Adult) | Air pressure pulses | Block; SEF (M30, M60) | R side recorded; Accepted trials ranged from 106 to 686 | Epoch (start from −100 ms); Average; SSS; tSSS; Bandpass filter (1–90 Hz) | Recorded but not reported | ECDs with spherical head model with origin from individual’s preauricular and nasion crossing | |
Nevalainen, Pihko, Metsäranta, Sambeth, Wikström, Okada, Autti and Lauronen [78] | 44/46 | 1–23 days | Air pressure pulses | Block; SEF | R side recorded, some with both sides recorded; Accepted 265 trials on average | tSSS; Movement artifact rejection; Epoch (start from −100 ms); Average; Lowpass filter (90 Hz) | Recorded but not reported | ECDs with spherical head model | |
Meltzoff, Ramírez, Saby, Larson, Taulu and Marshall [79] | Exp 1: 21/30; Exp 2: 22/41 | 7 months | Air pressure pulses; Videos of hands being touched | Block; SEF | Whole-head measurement; 400 or 480 air pulses trials, and 44 or 50 for video trials | tSSS; Head movement compensation; SSP; Bandpass filter (1–40 Hz); Head position standardization; Epoch (−250–750/1750 ms); Artifact rejection (> 3 pT/cm or 4 pT) | Transformed to individual’s mean head position; Later transformed to the mean head position of all infants | ECD, eLORETA with 3 dipoles at each time point | |
Vision | |||||||||
Sheridan, Preissl, Siegel, Murphy, Ware, Lowery and Eswaran [80] | 25 (follow up this group) | F: 29–37 weeks; N: 6–22 days | Light flashes | Short-term habituation; VER | Occipital region recorded; 60 or 90 sequences each with 4 flashes | SSP; Epoch (−1000–1000 ms); Artifact rejection (> 2 pT); Average | Recorded but not reported | Not reported | Waveform analysis |
Matuz, Govindan, Preissl, Siegel, Muenssinger, Murphy, Ware, Lowery and Eswaran [81] | F: 37/40; (follow up some of them) N: 23/26 | F: 30–38 weeks; N: 6–22 days | Light flashes; Pure tone | Short-term habituation; VER | Occipital region recorded; 90 sequences each with 4 flashes followed by a tone | SSP; Epoch (−1000–1000 ms); Artifact rejection (> 2 pT); Average | Recorded but not reported | Not reported | Waveform analysis |
Motor | |||||||||
Berchicci, Zhang, Romero, Peters, Annett, Teuscher, Bertollo, Okada, Stephen and Comani [82] | I: 14/25; C: 12/18; A: 6 | I: 11–47 weeks; C: 24–60 months; A: 20–39 years | Grasp or squeeze a pipette | Block; Mu rhythm | L side recorded; Accepted 20 trials | Artifact and 60 Hz line noise removal; Artifact rejection (manual); Functional topography approach; Bandpass filter (0–10 Hz for infants) | Recorded but not standardized | Not reported | Time-frequency analysis |
Berchicci, Tamburro and Comani [83] | I: 14/25 C: 12/18 A: 6 | I: 11–47 weeks C: 24–60 months A: 20–39 years | Grasp or squeeze a pipette | Block; Mu rhythm | L side recorded | Bandpass filter (0.5–40 Hz); PCA; ICA reject artifact | Not reported | Not reported | Time-frequency analysis |
Multimodal | |||||||||
Travis, Leonard, Brown, Hagler Jr, Curran, Dale, Elman and Halgren [48] | 16/24 | 12–18 months | Spoken words; Signal corrected noise; Pictures | Block; N400m | Whole-head measurement; 30 trials of each condition | Lowpass filter (50 Hz); Bad channel removal; Artifact removal (> 3000 fT/cm); ICA artifact removal; Epoch (−200–1200/1500 ms) | Recorded but not reported | BEM and dSPM with cortex reconstructed from individual MRI | |
Pihko et al. [84] | 22 | 1–18 days | Air pressure pulses; Vowels | Alternating stimuli; AEF, SEF | L side recorded; Accepted trials ranged from 75 to 596 | Epoch (start from −100 ms); Average; Movement artifact rejection; tSSS; Lowpass filter (90 Hz); Baseline correction | Recorded but not reported | ECDs with spherical head model | |
Sleep | |||||||||
Lutter, Wakai, Maier and Baryshnikov [85] | 7 | 1.5–8.5 weeks | Pure tone; Sleep | Block; AEF, Sleep patterns | Not reported | Not reported | Not reported | Not reported | Waveform analysis |
Lutter, Maier and Wakai [86] | 10/18 | CA 39–66 weeks | Pure tone; Sleep | Block; AEF, Sleep patterns | Accepted at least 60 trials | Bandpass filter (0.5–20 Hz) | Recorded 3 participants but not reported | ECD fitted but not reported | Waveform analysis |
Wakai and Lutter [87] | 7 | CA 46–63 weeks | Sleep | Sleep patterns, Sleep spindles | R side recorded | Lowpass filter (30 Hz) | Not reported | No reported | Time-frequency analysis |
Spontaneous | |||||||||
Haddad et al. [88] | 19/21 | CA 38–45 weeks | Awake or sleep | Spontaneous pattern | Both sides and back position recorded | Cardiac artifact rejection (manual); Highpass filter (0.5 Hz); Lowpass filter (70 Hz); | Not reported | Not reported | Continuous waveform analysis;Time-frequency analysis |
Epilepsy (examples) | |||||||||
Hanaya et al. [89] | 19 | 0.5–14 years | Epileptic spikes; Total intravenous anesthesia | Resting | Whole-head measurement in supine position; Recording time ranged from 10 to 38 minutes | Bandpass filter (10–70 Hz); Notch filter (60 Hz) | Not reported | Single moving dipole with single-shell spherical model | |
Shibata, Mosher, Kotagal, Gupta, Alexopoulos and Burgess [90] | 9 | < 2 years | Epileptic spikes | Resting | Whole-head measurement in supine position; Averaged recording time 62 minutes | tSSS; Head movement compensation (to initial head position) | Shifted to default position | Single ECD with spherical head model | |
Shukla, Kazutaka, Gupta, Mosher, Jones, Alexopoulos and Burgess [51] | 9 | 10 months–15 years | Epileptic spikes | Resting | Whole-head measurement in supine position; Averaged recording time 58 minutes; Averaged 38 spikes | tSSS | Recorded | Single ECD coregistering to individual MRI | |
Garcia-Tarodo, Funke, Caballero, Zhu, Shah and Von Allmen [91] | 31 | 3–23 months | Epileptic spikes | Resting | Recording time ranged from 60–75 minutes; | Not reported | Recorded but not reported | Multiple ECD | |
*Acronyms | Number of “included/ recruited” samples; F = fetuses; N = neonates; I = infants; C = children; A = adults; Exp = experiment | CA = conceptional age | AEF = auditory-evoked field; MMR = mismatch response; LDN = late discriminative negativity; SEF = somatosensory-evoked response; VER = visually-evoked response; | R = right; L = left | t/SSS = temporal signal-spaceseparation; SSP = signal-space projection; PCA = principal component analysis; ICA = independent component analysis | ECD = equivalent current dipole; BEM = boundary element methods; dSPM = dynamic statistical parametric mapping; e/sLORETA = exact/standardized low-resolution electromagnetic tomography; MNE = minimum norm estimation; ROI = regions of interest; MRI = magnetic resonance imaging |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kao, C.; Zhang, Y. Magnetic Source Imaging and Infant MEG: Current Trends and Technical Advances. Brain Sci. 2019, 9, 181. https://doi.org/10.3390/brainsci9080181
Kao C, Zhang Y. Magnetic Source Imaging and Infant MEG: Current Trends and Technical Advances. Brain Sciences. 2019; 9(8):181. https://doi.org/10.3390/brainsci9080181
Chicago/Turabian StyleKao, Chieh, and Yang Zhang. 2019. "Magnetic Source Imaging and Infant MEG: Current Trends and Technical Advances" Brain Sciences 9, no. 8: 181. https://doi.org/10.3390/brainsci9080181
APA StyleKao, C., & Zhang, Y. (2019). Magnetic Source Imaging and Infant MEG: Current Trends and Technical Advances. Brain Sciences, 9(8), 181. https://doi.org/10.3390/brainsci9080181