Development of Green Banana Fruit Wines: Chemical Compositions and In Vitro Antioxidative Activities
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Preparation
2.2. Determination of Quality Parameters and Bioactive Components
2.3. UHPLC-MS Identification and Quantification of Phenolic Compounds
2.4. HS-SPME-GC-MS Analysis
2.5. Determination of In Vitro Antioxidant Activity
2.6. Cell-Culture-Based Antioxidant Capacities and Proliferation Inhibition Assays
2.7. Statistical Analysis
3. Results
3.1. Quality Parameters and Bioactive Components
3.2. Identification and Quantification of Phenolic Compounds
3.3. HS-SPME-GC-MS Analysis of Flavor Components
3.4. In Vitro Antioxidant Capacities
3.5. Comparison of Antioxidant Activities of Wine Samples Based on OPLS-DA
3.6. Cell-Culture-Based Antioxidant Capacities and Cell Viability of 3T3-L1 Preadipocytes
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gupta, V.; Dave, S.; Parihar, N. Removal of copper (II) from aqueous solutions using chemically activated banana peels as an adsorbent. Pollut. Res. 2020, 39, 287–291. [Google Scholar]
- Ince, M.; Ince, O.K.; Yonten, V.; Karaaslan, N.M. Nickel, lead, and cadmium removal using a low-cost adsorbent—Banana peel. At. Spectrosc. 2016, 37, 125–130. [Google Scholar] [CrossRef]
- Karimibavani, B.; Sengul, A.B.; Asmatulu, E. Converting briquettes of orange and banana peels into carbonaceous materials for activated sustainable carbon and fuel sources. Energy Ecol. Environ. 2020, 5, 161–170. [Google Scholar] [CrossRef]
- Patel, H.; Patel, A.; Surati, T.; Shah, G. Potential use of banana peels for the production of fermented products. IJED 2012, 9, 1–7. [Google Scholar]
- Mostafa, H.S. Banana plant as a source of valuable antimicrobial compounds and its current applications in the food sector. J. Food Sci. 2021, 86, 3778–3797. [Google Scholar] [CrossRef]
- Mitra, S.K.; Pathak, P.K.; Chakraborty, I. Potential underutilized tropical fruits of India. Acta Hortic. 2010, 2010, 61–68. [Google Scholar] [CrossRef]
- Hernández-Nava, R.G.; De, J.; Berrios, J.; Pan, J.; Osorio-Díaz, P.; Bello-Perez, L.A. Development and characterization of spaghetti with high resistant starch content supplemented with banana starch. Food Sci. Technol. Int. 2009, 15, 73–78. [Google Scholar] [CrossRef]
- Menezes, E.W.; Dan, M.C.T.; Cardenette, G.H.L.; Goñi, I.; Bello-Pérez, L.A.; Lajolo, F.M. In vitro colonic fermentation and glycemic response of different kinds of unripe banana flour. Plant Foods Hum. Nutr. 2010, 65, 379–385. [Google Scholar] [CrossRef]
- Jiang, H.; Zhang, Y.; Hong, Y.; Bi, Y.; Gu, Z.; Cheng, L.; Li, Z.; Li, C. Digestibility and changes to structural characteristics of green banana starch during in vitro digestion. Food Hydrocoll. 2015, 49, 192–199. [Google Scholar] [CrossRef]
- Fasolin, L.H.; de Almeida, G.C.; Castanho, P.S.; Netto-Oliveira, E.R. Cookies produced with banana meal: Chemical, physical and sensorial evaluation. Food Sci. Technol. 2007, 27, 524–529. [Google Scholar] [CrossRef] [Green Version]
- Ramli, S.; Alkarkhi, A.F.M.; Yeoh, S.Y.; Easa, A.M. Utilization of banana peel as a functional ingredient in yellow noodle. Asian J. Food Agro-Ind. 2009, 2, 321–329. [Google Scholar]
- Rebello, L.P.G.; Ramos, A.M.; Pertuzatti, P.B.; Barcia, M.T.; Castillo-Muñoz, N.; Hermosin-Gutierrez, I. Flour of banana (Musa AAA) peel as a source of antioxidant phenolic compounds. Food Res. Int. 2014, 55, 397–403. [Google Scholar] [CrossRef]
- Phirom-on, K.; Apiraksakorn, J. Development of cellulose-based prebiotic fiber from banana peel by enzymatic hydrolysis. Food Biosci. 2021, 41, 101083. [Google Scholar] [CrossRef]
- Dmochowska, A.; Czajkowska, J.; Jędrzejewski, R.; Stawiński, W.; Migdał, P.; Fiedot-Toboła, M. Pectin based banana peel extract as a stabilizing agent in zinc oxide nanoparticles synthesis. Int. J. Biol. Macromol. 2020, 165, 1581–1592. [Google Scholar] [CrossRef]
- Wu, T.R.; Wang, H.L.; Jiang, S.W.; Liu, D.D.; Wei, F. Optimization of extraction of tannins from banana peel using response surface methodology. Appl. Mech. Mater. 2014, 678, 566–571. [Google Scholar] [CrossRef]
- Kamal, A.M.; Taha, M.S.; Mousa, A.M. The radioprotective and anticancer effects of banana peels extract on male mice. J. Food Nutr. Res. 2019, 7, 827–835. [Google Scholar] [CrossRef] [Green Version]
- Rita, W.S.; Swantara, I.M.D.; Asih, I.A.R.A.; Puspawati, N.M. Antibacterial activity and antioxidant capacity of selected local banana peel (Musa sp.) methanol extracts cultivated in Bali. Int. J. Agric. Environ. Biotechnol. 2020, 5, 242–251. [Google Scholar] [CrossRef]
- Chaudhry, F.; Ahmad, M.L.; Hayat, Z.; Ranjha, M.M.A.N.; Chaudhry, K.; Elboughdiri, N.; Asmari, N.; Uddin, J. Extraction and evaluation of the antimicrobial activity of polyphenols from banana peels employing different extraction techniques. Separations 2022, 9, 165. [Google Scholar] [CrossRef]
- Islam, M.; Haque, A.R.; Kabir, M.; Hasan, M.; Khushe, K.J.; Hasan, S.M. Fruit by-products: The potential natural sources of antioxidants and α-glucosidase inhibitors. J. Food Sci. Technol. 2020, 58, 1715–1726. [Google Scholar] [CrossRef]
- González-Montelongo, R.; Lobo, M.G.; González, M. Antioxidant activity in banana peel extracts: Testing extraction conditions and related bioactive compounds. Food Chem. 2010, 119, 1030–1039. [Google Scholar] [CrossRef]
- Khoozani, A.A.; Birch, J.; Bekhit, A.E.D.A. Production, application and health effects of banana pulp and peel flour in the food industry. J. Food Sci. Technol. 2019, 56, 548–559. [Google Scholar] [CrossRef] [PubMed]
- Vu, H.T.; Scarlett, C.J.; Vuong, Q.V. Phenolic compounds within banana peel and their potential uses: A review. J. Funct. Foods 2018, 40, 238–248. [Google Scholar] [CrossRef]
- Durgadevi, P.K.S.; Saravanan, A.; Uma, S. Antioxidant potential and antitumour activities of Nendran banana peels in breast cancer cell line. Indian J. Pharm. Sci. 2019, 81, 464–473. [Google Scholar] [CrossRef]
- Li, L.; Sun, J.; Gao, H.; Shen, Y.; Li, C.; Yi, P.; He, X.; Ling, D.; Sheng, J.; Li, J.; et al. Effects of polysaccharide-based edible coatings on quality and antioxidant enzyme system of strawberry during cold storage. Int. J. Polym. Sci. 2017, 2017, 9746174. [Google Scholar] [CrossRef] [Green Version]
- Liu, G.; Sun, J.; He, X.; Tang, Y.; Li, J.; Ling, D.; Li, C.; Li, L.; Zheng, F.; Sheng, J.; et al. Fermentation process optimization and chemical constituent analysis on longan (Dimocarpus longan Lour.) wine. Food Chem. 2018, 256, 268–279. [Google Scholar] [CrossRef]
- Du, S.B.; Chen, X.W.; Dong, Z.Q.; Xie, H.C. Analysis of chemical components in alcohol extract of Rosa sertata × Rosa rugosa based on UPLC-Q-TOF-MS. Nat. Prod. Res. Dev. 2022, 34, 1129–1142. [Google Scholar] [CrossRef]
- Chen, G.; Wu, F.; Pei, F.; Cheng, S.; Muinde, B.; Hu, Q.; Zhao, L. Volatile components of white Hypsizygus marmoreus detected by electronic nose and HS-SPME-GC-MS: Influence of four drying methods. Int. J. Food Prop. 2017, 20, 2901–2910. [Google Scholar] [CrossRef] [Green Version]
- Shi, J.; Tong, G.; Yang, Q.; Huang, M.; Ye, H.; Liu, Y.; Wu, J.; Zhang, J.; Sun, X.; Zhao, D. Characterization of key aroma compounds in tartary buckwheat (Fagopyrum tataricum Gaertn.) by means of sensory-directed flavor analysis. J. Agric. Food Chem. 2021, 69, 11361–11371. [Google Scholar] [CrossRef]
- Sulaiman, S.F.; Yusoff, N.A.M.; Eldeen, I.M.; Seow, E.M.; Sajak, A.A.B.; Ooi, K.L. Correlation between total phenolic and mineral contents with antioxidant activity of eight Malaysian bananas (Musa sp.). J. Food Compos. Anal. 2011, 24, 1–10. [Google Scholar] [CrossRef]
- Luna-Vital, D.A.; De Mejía, E.G.; Mendoza, S.; Loarca-Piña, G. Peptides present in the non-digestible fraction of common beans (Phaseolus vulgaris L.) inhibit the angiotensin-I converting enzyme by interacting with its catalytic cavity independent of their antioxidant capacity. Food Funct. 2015, 6, 1470–1479. [Google Scholar] [CrossRef]
- Kim, D.; Han, G.D. Ameliorating effects of fermented rice bran extract on oxidative stress induced by high glucose and hydrogen peroxide in 3T3-L1 adipocytes. Plant Foods Hum. Nutr. 2011, 66, 285–290. [Google Scholar] [CrossRef]
- Girard-Lalancette, K.; Pichette, A.; Legault, J. Sensitive cell-based assay using DCFH oxidation for the determination of pro-and antioxidant properties of compounds and mixtures: Analysis of fruit and vegetable juices. Food Chem. 2009, 115, 720–726. [Google Scholar] [CrossRef]
- Escudero-López, B.; Cerrillo, I.; Herrero-Martín, G.; Hornero-Méndez, D.; Gil-Izquierdo, A.; Medina, S.; Ferreres, F.; Berná, G.; Martín, F.; Fernández-Pachón, M.-S. Fermented orange juice: Source of higher carotenoid and flavanone contents. J. Agric. Food Chem. 2013, 61, 8773–8782. [Google Scholar] [CrossRef]
- Fatemeh, S.R.; Saifullah, R.; Abbas, F.M.A.; Azhar, M.E. Total phenolics, flavonoids and antioxidant activity of banana pulp and peel flours: Influence of variety and stage of ripeness. Int. Food Res. J. 2012, 19, 1041–1046. [Google Scholar]
- Debashis, M.; Vanlalruatfeli; Chandra, S.A. Shelf life got extended in salicylic acid treated and waxed Cavendish banana. Res. Crop. 2019, 20, 712–718. [Google Scholar] [CrossRef]
- Hur, S.J.; Lee, S.Y.; Kim, Y.C.; Choi, I.; Kim, G.B. Effect of fermentation on the antioxidant activity in plant-based foods. Food Chem. 2014, 160, 346–356. [Google Scholar] [CrossRef]
- Jung, H.; Lee, S.J.; Lim, J.H.; Kim, B.K.; Park, K.J. Chemical and sensory profiles of makgeolli, Korean commercial rice wine, from descriptive, chemical, and volatile compound analyses. Food Chem. 2014, 152, 624–632. [Google Scholar] [CrossRef]
- Khoo, H.E.; Azlan, A.; Ismail, A.; Abas, F.; Hamid, M. Inhibition of oxidative stress and lipid peroxidation by anthocyanins from defatted Canarium odontophyllum pericarp and peel using in vitro bioassays. PLoS ONE 2014, 9, e81447. [Google Scholar] [CrossRef] [Green Version]
- Poulos, S.P.; Dodson, M.V.; Hausman, G.J. Cell line models for differentiation: Preadipocytes and adipocytes. Exp. Biol. Med. 2010, 235, 1185–1193. [Google Scholar] [CrossRef]
- Mokbel, M.S.; Hashinaga, F. Antibacterial and antioxidant activities of banana (Musa, AAA cv. Cavendish) fruits peel. Am. J. Biochem. Biotechnol. 2005, 1, 125–131. [Google Scholar] [CrossRef]
- Gavimath, C.C.; Kalsekar, D.P.; Raorane, C.J.; Kulkarni, S.M.; Gavade, B.G.; Ravishankar, B.E.; Hooli, V.R. Comparative analysis of wine from different fruits. Int. J. Adv. Biotechnol. Res. 2012, 3, 810–813. [Google Scholar]
- Akubor, P.I.; Obio, S.O.; Nwadomere, K.A.; Obiomah, E. Production and quality evaluation of banana wine. Plant Foods Hum Nutr. 2003, 58, 1–6. [Google Scholar] [CrossRef]
- Mura, K.; Tanimura, W. Change of polyphenol compounds in banana pulp during ripening. Food Preserv. Sci. 2003, 29, 347–351. [Google Scholar] [CrossRef]
- Ji, L.; Srzednicki, G. Extraction of Aromatic Compounds from Banana Peels. In Proceedings of the II Southeast Asia Symposium on Quality Management in Postharvest Systems, Vientiane, Laos, 4–6 December 2013; Acedo, A., Jr., Kanlayanarat, S., Eds.; ISHS Acta Horticulturae: White River, South Africa, 2015; Volume 1088, pp. 541–546. [Google Scholar] [CrossRef]
Compounds | Retention Time (min) | [M + H]+ (m/z) | [M − H]− (m/z) | MS/MS Fragments | Molecular Weight (g/mol) | Chemical Formula |
---|---|---|---|---|---|---|
Gallic acid | 1.69 | - | 168.90 | 124.91, 78.90 | 170.12 | C7H6O5 |
Gentisic acid | 2.83 | - | 152.90 | 108.90, 80.92 | 154.12 | C7H6O4 |
Protocatechuic acid | 2.83 | - | 152.90 | 108.90, 90.88 | 154.12 | C7H6O4 |
Chlorogenic acid | 3.70 | - | 353.03 | 191.00, 84.88 | 354.31 | C16H18O9 |
Catechin | 3.82 | 291.07 | - | 138.96, 123.04 | 290.27 | C15H14O6 |
Caffeic acid | 4.55 | - | 178.90 | 134.93, 106.88 | 180.16 | C9H8O4 |
Vanillic acid | 4.57 | - | 166.9 | 151.93, 107.92 | 168.14 | C8H8O4 |
Epicatechin | 4.66 | 291.13 | - | 139.09, 123.10 | 290.27 | C15H14O6 |
Syringic acid | 4.75 | - | 196.97 | 181.96, 122.89 | 198.17 | C9H10O5 |
p-Coumaric acid | 5.99 | 165.11 | 163.0 | 119.07, 91.12 (ES+) 119.00, 93.30 (ES−) | 164.16 | C9H8O3 |
Ferulic acid | 6.74 | 194.99 | 192.97 | 145.01, 116.99 | 194.18 | C10H10O4 |
Salicylic acid | 8.33 | - | 136.90 | 92.89, 64.91 | 138.12 | C7H6O3 |
p-Hydroxybenzoic acid | 8.33 | - | 136.91 | 92.89, 64.91 | 138.13 | C7H6O3 |
Luteolin | 8.37 | 287.10 | - | 153.07, 121.09 | 286.24 | C15H10O6 |
Coumarin | 8.58 | 147.07 | - | 91.12, 77.08 | 146.14 | C9H6O2 |
Cinnamic acid | 8.97 | 149.00 | - | 131.00 103.00 | 148.16 | C9H8O2 |
Apigenin | 9.15 | 271.10 | - | 153.07, 119.07 | 270.24 | C15H10O5 |
Kaempferol | 9.28 | 287.09 | - | 153.07, 121.09 | 28623 | C15H10O6 |
No | Phenolics | Concentration (μg/mL) | Minimum Detectable Concentration (μg/mL) | ||
---|---|---|---|---|---|
Green Banana Peel Wine | Green Banana Pulp Wine | Green Banana Wine | |||
1 | Gallic acid | 4.536 | 0.46 | 1.209 | 4.59 |
2 | Gentisic acid | 0.009 | 0.038 | ND | 2.53 |
3 | Protocatechuic acid | 0.22 | ND | ND | 1.64 |
4 | Chlorogenic acid | ND | ND | ND | 8.38 |
5 | Catechin | 0.034 | ND | 0.007 | 5.42 |
6 | Caffeic acid | 0.782 | 0.048 | 0.011 | 9.27 |
7 | Vanillic acid | ND | ND | ND | 5.11 |
8 | Epicatechin | 0.109 | 0.124 | 0.131 | 2.03 |
9 | Syringic acid | 0.042 | 0.012 | 0.021 | 3.44 |
10 | p-Coumaric acid | 0.337 | 0.013 | ND | 4.35 |
11 | Ferulic acid | 10.493 | 0.047 | 0.286 | 15.49 |
12 | Salicylic acid | 0.065 | ND | 0.040 | 5.85 |
13 | p-Hydroxybenzoic acid | 0.055 | ND | 0.038 | 7.17 |
14 | Luteolin | ND | ND | ND | 3.19 |
15 | Coumarin | ND | ND | ND | 4.06 |
16 | Cinnamic acid | ND | ND | ND | 25.87 |
17 | Apigenin | 0.0013 | ND | ND | 0.46 |
18 | Kaempferol | 0.007 | ND | 0.005 | 2.22 |
No | Compounds | Relative Content (%) | Threshold (mg/L) | Characteristic | ||
---|---|---|---|---|---|---|
GBPW | GBMW | GBW | ||||
Fatty Acid Esters | ||||||
1 | Ethyl palmitate | 1.40 | 3.57 | 2.03 | 2.26 | Weak, waxy, and creamy aromas |
2 | Ethyl octanoate | - | 0.66 | - | 0.17 | Brandy aroma |
3 | Ethyl pelargonate | - | 0.63 | - | 0.85 × 10 −3 | Cantaloupe flavor |
4 | Ethyl caprate | - | 0.25 | - | 0.2 | Coconut flavor |
5 | 2,6-Diethylphenyl isocyanate | - | 1.88 | - | - | - |
6 | Ethyl laurate | - | 1.72 | 1.61 | 1.5 | Floral and fruity aromas |
7 | Ethyl tridecanoate | - | 0.18 | - | - | - |
8 | Ethyl undecanoate | - | 0.84 | - | 1 | - |
9 | Ethyl myristate | - | 2.85 | 2.31 | 4 | Iris aroma |
10 | 13-Methyl-tetradecanoic acid ethyl ester | - | 0.10 | - | - | - |
11 | Ethyl pentadecanoate | - | 0.67 | - | - | - |
12 | Methyl palmitate | - | 0.28 | - | 4 | - |
13 | Ethyl stearate | - | 0.16 | - | - | Faint waxy scent |
Acids | ||||||
14 | Acetic acid | - | 0.98 | - | - | Pungent smell |
Alcohols | ||||||
15 | 3-Methyl-1-butanol | 72.02 | 54.04 | 76.49 | 0.3 | Fruity and mellow flavors |
16 | 2,3-Butanediol | 4.52 | 0.70 | - | - | - |
17 | (2R,3R)-(-)-2,3-Butanediol | - | 4.79 | - | - | - |
18 | 4-Carvomenthenol | - | 0.13 | - | - | - |
Alkenes | ||||||
19 | (+)-α-Longipinene | - | 0.20 | - | - | - |
20 | Longifolene | - | 4.26 | 2.11 | - | - |
21 | Bicyclo[7.2.0]undec-4-ene,4,11,11-trimethyl-8-methylene-,(1R,4Z,9S)- | - | 0.58 | - | - | - |
Phenol | ||||||
22 | 2,4-di-tert-butylphenol | 19.06 | 9.16 | 11.53 | - | Phenol odor |
Total Content | 97.00 | 88.63 | 96.08 |
No | Compounds | ROAV | ||
---|---|---|---|---|
GBPW | GBMW | GBW | ||
Fatty Acid Esters | ||||
1 | Ethyl palmitate | 0.243 | 0.620 | 0.352 |
2 | Ethyl octanoate | - | 1.523 | - |
3 | Ethyl pelargonate | - | - | - |
4 | Ethyl caprate | - | 0.490 | - |
5 | 2,6-Diethylphenyl isocyanate | - | - | - |
6 | Ethyl laurate | - | 0.450 | 0.421 |
7 | Ethyl tridecanoate | - | - | - |
8 | Ethyl undecanoate | - | 0.329 | - |
9 | Ethyl myristate | - | 0.279 | 0.227 |
10 | 13-Methyl-tetradecanoic acid ethyl ester | - | - | - |
11 | Ethyl pentadecanoate | - | - | - |
12 | Methyl palmitate | - | 0.027 | - |
13 | Ethyl stearate | - | - | - |
Acids | ||||
14 | Acetic acid | - | - | - |
Alcohols | ||||
15 | 3-Methyl-1-butanol | 94.156 | 70.650 | 100.000 |
16 | 2,3-Butanediol | - | - | - |
17 | (2R,3R)-(-)-2,3-Butanediol | - | - | - |
18 | 4-Carvomenthenol | - | - | - |
Alkenes | ||||
19 | (+)-α-Longipinene | - | - | - |
20 | Longifolene | - | - | - |
21 | Bicyclo[7.2.0]undec-4-ene,4,11,11-trimethyl-8-methylene-,(1R,4Z,9S)- | - | - | - |
Phenol | ||||
22 | 2,4-di-tert-butylphenol | - | - | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Z.; Qin, C.; He, X.; Chen, B.; Tang, J.; Liu, G.; Li, L.; Yang, Y.; Ye, D.; Li, J.; et al. Development of Green Banana Fruit Wines: Chemical Compositions and In Vitro Antioxidative Activities. Antioxidants 2023, 12, 93. https://doi.org/10.3390/antiox12010093
Li Z, Qin C, He X, Chen B, Tang J, Liu G, Li L, Yang Y, Ye D, Li J, et al. Development of Green Banana Fruit Wines: Chemical Compositions and In Vitro Antioxidative Activities. Antioxidants. 2023; 12(1):93. https://doi.org/10.3390/antiox12010093
Chicago/Turabian StyleLi, Zhichun, Cuina Qin, Xuemei He, Bojie Chen, Jie Tang, Guoming Liu, Li Li, Ying Yang, Dongqing Ye, Jiemin Li, and et al. 2023. "Development of Green Banana Fruit Wines: Chemical Compositions and In Vitro Antioxidative Activities" Antioxidants 12, no. 1: 93. https://doi.org/10.3390/antiox12010093