Improving the Aromatic Profiles of Catarratto Wines: Impact of Metschnikowia pulcherrima and Glutathione-Rich Inactivated Yeasts
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Drawing and Sampling
2.2. Winemaking
2.3. Monitoring Yeast Populations
2.4. Yeast Collection and Genotypic Characterization
2.5. Dominance of S. cerevisiae and M. pulcherrima Isolates
2.6. Must and Wine Analysis
2.6.1. Chemical Properties
2.6.2. Volatile Organic Compounds
2.7. Sensory Analysis
2.8. Statistical Analysis
3. Results and Discussion
3.1. Microbial Growth Dynamic
3.2. Molecular Analysis
3.3. Kinetics of the Main Oenological Properties
3.4. Oenological Data Analysis
3.5. Volatile Organic Compound Composition
3.6. Sensory Analysis
3.7. Sensory Profiles Associated with Volatile Organic Compounds
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Alfonzo, A.; Prestianni, R.; Gaglio, R.; Matraxia, M.; Maggio, A.; Naselli, V.; Craparo, V.; Badalamenti, N.; Bruno, M.; Vagnoli, P.; et al. Effects of different yeast strains, nutrients and glutathione-rich inactivated yeast addition on the aroma characteristics of Catarratto wines. Int. J. Food Microbiol. 2021, 360, 109325. [Google Scholar] [CrossRef]
- Izquierdo Cañas, P.M.; García-Romero, E.; Heras Manso, J.M.; Fernández-González, M. Influence of sequential inoculation of Wickerhamomyces anomalus and Saccharomyces cerevisiae in the quality of red wines. Eur. Food Res. Technol. 2014, 239, 279–286. [Google Scholar] [CrossRef]
- Varela, C. The impact of non-Saccharomyces yeasts in the production of alcoholic beverages. Appl. Microbiol. Biotechnol. 2016, 100, 9861–9874. [Google Scholar] [CrossRef]
- Ciani, M.; Comitini, F. Non-Saccharomyces wine yeasts have a promising role in biotechnological approaches to winemaking. Ann. Microbiol. 2011, 61, 25–32. [Google Scholar] [CrossRef]
- Francesca, N.; Gaglio, R.; Matraxia, M.; Naselli, V.; Prestianni, R.; Settanni, L.; Badalamenti, N.; Columba, P.; Bruno, M.; Maggio, A.; et al. Technological screening and application of Saccharomyces cerevisiae strains isolated from fermented honey by-products for the sensory improvement of Spiritu re fascitrari, a typical Sicilian distilled beverage. Food Microbiol. 2022, 104, 103968. [Google Scholar] [CrossRef]
- Gaglio, R.; Alfonzo, A.; Francesca, N.; Corona, O.; Di Gerlando, R.; Columba, P.; Moschetti, G. Production of the Sicilian distillate “Spiritu re fascitrari” from honey by-products: An interesting source of yeast diversity. Int. J. Food Microbiol. 2017, 261, 62–72. [Google Scholar] [CrossRef]
- Guarcello, R.; Gaglio, R.; Todaro, A.; Alfonzo, A.; Schicchi, R.; Cirlincione, F.; Moschetti, G.; Francesca, N. Insights into the cultivable microbial ecology of “Manna” ash products extracted from Fraxinus angustifolia (Oleaceae) trees in Sicily, Italy. Front. Microbiol. 2019, 10, 984. [Google Scholar] [CrossRef]
- Sinacori, M.; Francesca, N.; Alfonzo, A.; Cruciata, M.; Sannino, C.; Settanni, L.; Moschetti, G. Cultivable microorganisms associated with honeys of different geographical and botanical origin. Food Microbiol. 2014, 38, 284–294. [Google Scholar] [CrossRef]
- Lappa, I.K.; Kachrimanidou, V.; Pateraki, C.; Koulougliotis, D.; Eriotou, E.; Kopsahelis. Indigenous yeasts: Emerging trends and challenges in winemaking. Curr. Opin. Food Sci. 2020, 32, 133–143. [Google Scholar] [CrossRef]
- Rossouw, D.; Bauer, F.F. Exploring the phenotypic space of non-Saccharomyces wine yeast biodiversity. Food Microbiol. 2016, 55, 32–46. [Google Scholar] [CrossRef]
- Gonzalez, R.; Morales, P. Truth in wine yeast. Microb. Biotechnol. 2022, 15, 1339–1356. [Google Scholar] [CrossRef]
- Fleet, G.H. Yeast interactions and wine flavour. Int. J. Food Microbiol. 2003, 86, 11–22. [Google Scholar] [CrossRef]
- Wang, C.; Mas, A.; Esteve-Zarzoso, B. The interaction between Saccharomyces cerevisiae and non-Saccharomyces yeast during alcoholic fermentation is species and strain specific. Front. Microbiol. 2016, 7, 502. [Google Scholar] [CrossRef] [PubMed]
- Benito, S.; Hofmann, T.; Laier, M.; Lochbühler, B.; Schüttler, A.; Ebert, K.; Frtishm, S.; Röcker, J.; Rauhut, D. Effect on quality and composition of Riesling wines fermented by sequential inoculation with non-Saccharomyces and Saccharomyces cerevisiae. Eur. Food Res. Technol. 2015, 241, 707–717. [Google Scholar] [CrossRef]
- Ruiz, J.; Belda, I.; Beisert, B.; Navascués, E.; Marquina, D.; Calderón, F.; Rauhut, D.; Santos, A.; Benito, S. Analytical impact of Metschnikowia pulcherrima in the volatile profile of Verdejo white wines. Appl. Microbiol. Biotechnol. 2018, 102, 8501–8509. [Google Scholar] [CrossRef]
- Aplin, J.J.; Paup, V.D.; Ross, C.F.; Edwards, C.G. Chemical and Sensory Profiles of Merlot Wines Produced by Sequential Inoculation of Metschnikowia pulcherrima or Meyerzyma guilliermondii. Fermentation 2021, 7, 126. [Google Scholar] [CrossRef]
- Varela, C.; Bartel, C.; Espinase Nandorfy, D.; Bilogrevic, E.; Tran, T.; Heinrich, A.; Balzan, T.; Bindon, K.; Borneman, A. Volatile aroma composition and sensory profile of Shiraz and Cabernet Sauvignon wines produced with novel Metschnikowia pulcherrima yeast starter cultures. Aust. J. Grape Wine Res. 2021, 27, 406–418. [Google Scholar] [CrossRef]
- Kritzinger, E.C.; Bauer, F.F.; Du Toit, W.J. Role of glutathione in winemaking: A review. J. Agric. Food Chem. 2013, 61, 269–277. [Google Scholar] [CrossRef]
- Badea, G.A.; Antoce, A.O. Glutathione as a possible replacement of sulfur dioxide in winemaking technologies: A review. Sci. Pap. Ser. B Hortic. 2015, 59, 123–140. [Google Scholar]
- Binati, R.L.; Larini, I.; Salvetti, E.; Torriani, S. Glutathione production by non-Saccharomyces yeasts and its impact on winemaking: A review. Food Res. Int. 2022, 156, 111333. [Google Scholar] [CrossRef]
- Lyu, X.; Del Prado, D.R.; Araujo, L.D.; Quek, S.Y.; Kilmartin, P.A. Effect of glutathione addition at harvest on Sauvignon Blanc wines. Aust. J. Grape Wine Res. 2021, 27, 431–441. [Google Scholar] [CrossRef]
- Ferrer-Gallego, R.; Puxeu, M.; Nart, E.; Martín, L.; Andorrà, I. Evaluation of Tempranillo and Albariño SO2-free wines produced by different chemical alternatives and winemaking procedures. Food Res. Int. 2017, 102, 647–657. [Google Scholar] [CrossRef]
- Ganga, M.A.; Carriles, P.; Raynal, C.; Heras, J.M.; Ortiz-Julien, A.; Dumont, A. Lots of Latin makes for maximum aroma revelation in white wines. Aust. N. Z. Grapegrow. Winemak. 2013, 598, 73–77. [Google Scholar] [CrossRef]
- Bahut, F.; Romanet, R.; Sieczkowski, N.; Schmitt-Kopplin, P.; Nikolantonaki, M.; Gougeon, R.D. Antioxidant activity from inactivated yeast: Expanding knowledge beyond the glutathione-related oxidative stability of wine. Food Chem. 2020, 325, 126941. [Google Scholar] [CrossRef]
- Pallmann, C.L.; Brown, J.A.; Olineka, T.L.; Cocolin, L.; Mills, D.A.; Bisson, L.F. Use of WL medium to profile native flora fermentations. Am. J. Enol. Vitic. 2001, 52, 198–203. [Google Scholar] [CrossRef]
- Legras, J.L.; Karst, F. Optimisation of interdelta analysis for Saccharomyces cerevisiae strain characterisation. FEMS Microbiol. Lett. 2003, 221, 249–255. [Google Scholar] [CrossRef]
- Barbosa, C.; Mendes-Faia, A.; Mendes-Ferreira, A. The nitrogen source impacts major volatile compounds released by Saccharomyces cerevisiae during alcoholic fermentation. Int. J. Food Microbiol. 2012, 160, 87–93. [Google Scholar] [CrossRef]
- Alfonzo, A.; Francesca, N.; Mercurio, V.; Prestianni, R.; Settanni, L.; Spanò, G.; Naselli, V.; Moschetti, G. Use of grape racemes from Grillo cultivar to increase the acidity level of sparkling base wines produced with different Saccharomyces cerevisiae strains. Yeast 2020, 37, 475–486. [Google Scholar] [CrossRef]
- Prestianni, R.; Matraxia, M.; Naselli, V.; Pirrone, A.; Badalamenti, N.; Ingrassia, M.; Gaglio, R.; Settanni, L.; Columba, P.; Maggio, A.; et al. Use of sequentially inoculation of Saccharomyces cerevisiae and Hanseniaspora uvarum strains isolated from honey by-products to improve and stabilize the quality of mead produced in Sicily. Food Microbiol. 2022, 107, 104064. [Google Scholar] [CrossRef]
- OIV. Office International de la Vigne et du Vin Compendium of International Methods of Wine and Must Analysis. Vol. 2. Paris, France. 2020. Available online: http://www.oiv.int (accessed on 7 July 2022).
- Sagratini, G.; Maggi, F.; Caprioli, G.; Cristalli, G.; Ricciutelli, M.; Torregiani, E.; Vittori, S. Comparative study of aroma profile and phenolic content of Montepulciano monovarietal red wines from the Marches and Abruzzo regions of Italy using HS-SPME–GC–MS and HPLC–MS. Food Chem. 2012, 132, 1592–1599. [Google Scholar] [CrossRef]
- Butkhup, L.; Jeenphakdee, M.; Jorjong, S.; Samappito, S.; Samappito, W.; Chowtivannakul, S. HS-SPME-GC-MS analysis of volatile aromatic compounds in alcohol related beverages made with mulberry fruits. Food Sci. Biotechnol. 2011, 20, 1021–1032. [Google Scholar] [CrossRef]
- Jackson, R.S. Wine Tasting: A Professional Handbook, 3rd ed.; Academic Press: London, UK, 2017; pp. 19–291. [Google Scholar]
- Romancino, D.P.; Di Maio, S.; Muriella, R.; Oliva, D. Analysis of non-Saccharomyces yeast populations isolated from grape musts from Sicily (Italy). J. Appl. Microbiol. 2008, 105, 2248–2254. [Google Scholar] [CrossRef] [PubMed]
- Scacco, A.; Oliva, D.; Di Maio, S.; Polizzotto, G.; Genna, G.; Tripodi, G.; Lanza, C.M.; Verzera, A. Indigenous Saccharomyces cerevisiae strains and their influence on the quality of Cataratto, Inzolia and Grillo white wines. Food Res. Int. 2012, 46, 1–9. [Google Scholar] [CrossRef]
- Esteve-Zarzoso, B.; Belloch, C.; Uruburu, F.; Querol, A. Identification of yeasts by RFLP analysis of the 5.8 S rRNA gene and the two ribosomal internal transcribed spacers. Int. J. Syst. Evol. Microbiol. 1999, 49, 329–337. [Google Scholar] [CrossRef]
- Granchi, L.; Bosco, M.; Messini, A.; Vincenzini, M. Rapid detection and quantification of yeast species during spontaneous wine fermentation by PCR–RFLP analysis of the rDNA ITS region. J. Appl. Microbiol. 1999, 87, 949–956. [Google Scholar] [CrossRef]
- Contreras, A.; Curtin, C.; Varela, C. Yeast population dynamics reveal a potential ‘collaboration’ between Metschnikowia pulcherrima and Saccharomyces uvarum for the production of reduced alcohol wines during Shiraz fermentation. Appl. Microbiol. Biotechnol. 2015, 99, 1885–1895. [Google Scholar] [CrossRef]
- Ministero delle Politiche Agricole Alimentari e Forestali Decreto 10 Agosto 2017. Available online: https://www.gazzettaufficiale.it/eli/id/2017/08/29/17A06065/sg (accessed on 31 January 2023).
- Cinquanta, L.; Zarzana, D.; Planeta, D.; Liguori, L.; Albanese, D.; Di Matteo, M.; Corona, O. Use of potassium polyaspartate for the tartaric stabilization of sicilian white wines. Chem. Eng. Trans. 2019, 75, 277–282. [Google Scholar] [CrossRef]
- Corona, O. Wine-making with protection of must against oxidation in a warm, semi-arid terroir. S. Afr. J. Enol. Vitic. 2010, 31, 58–63. [Google Scholar] [CrossRef]
- Liu, P.T.; Lu, L.; Duan, C.Q.; Yan, G.L. The contribution of indigenous non-Saccharomyces wine yeast to improved aromatic quality of Cabernet Sauvignon wines by spontaneous fermentation. LWT–Food Sci. Technol. 2016, 71, 356–363. [Google Scholar] [CrossRef]
- Puertas, B.; Jimenez-Hierro, M.J.; Cantos-Villar, E.; Marrufo-Curtido, A.; Carbú, M.; Cuevas, F.J.; Moreno-Rojas, J.M.; González-Rodríguez, V.E.; Cantoral, J.M.; Ruiz-Moreno, M.J. The influence of yeast on chemical composition and sensory properties of dry white wines. Food Chem. 2018, 253, 227–235. [Google Scholar] [CrossRef]
- Vejarano, R.; Gil-Calderón, A. Commercially available non-Saccharomyces yeasts for winemaking: Current market, advantages over Saccharomyces, biocompatibility, and safety. Fermentation 2021, 7, 171. [Google Scholar] [CrossRef]
- Mislata, A.M.; Puxeu, M.; Andorrà, I.; Espligares, N.; de Lamo, S.; Mestres, M.; Ferrer-Gallego, R. Effect of the addition of non-Saccharomyces at first alcoholic fermentation on the enological characteristics of Cava wines. Fermentation 2021, 7, 64. [Google Scholar] [CrossRef]
- Rigou, P.; Mekoue, J.; Sieczkowski, N.; Doco, T.; Vernhet, A. Impact of industrial yeast derivative products on the modification of wine aroma compounds and sensorial profile. A review. Food Chem. 2021, 358, 129760. [Google Scholar] [CrossRef]
- The Good Scents Company Information System. Available online: http://www.thegoodscentscompany.com/ (accessed on 13 July 2022).
- Flavornet and Human Odor Space. Available online: http://www.flavornet.org/ (accessed on 13 July 2022).
- LRI & Odour Database. Available online: http://www.odour.org.uk/ (accessed on 13 July 2022).
- Vilanova, M.; Martínez, C. First study of determination of aromatic compounds of red wine from Vitis vinifera cv. Castanal grown in Galicia (NW Spain). Eur. Food Res. Technol. 2007, 224, 431–436. [Google Scholar] [CrossRef]
- American Industrial Hygiene Association. Odor Thresholds for Chemicals with Established Occupational Health Standards; Aiha: Fairfax, VA, USA, 1989; pp. 1–95. [Google Scholar]
- Darici, M.E.R.V.E.; Cabaroglu, T.; Ferreira, V.; Lopez, R. Chemical and sensory characterisation of the aroma of Çalkarasi rosé wine. Aust. J. Grape Wine Res. 2014, 20, 340–346. [Google Scholar] [CrossRef]
- Ferreira, V.; Culleré, L.; López, R.; Cacho, J. Determination of important odor-active aldehydes of wine through gas chromatography–mass spectrometry of their O-(2, 3, 4, 5, 6-pentafluorobenzyl) oximes formed directly in the solid phase extraction cartridge used for selective isolation. J. Chromatogr. A 2004, 1028, 339–345. [Google Scholar] [CrossRef] [PubMed]
- Duan, L.L.; Shi, Y.; Jiang, R.; Yang, Q.; Wang, Y.Q.; Liu, P.T.; Duan, P.Q.; Yan, G.L. Effects of adding unsaturated fatty acids on fatty acid composition of Saccharomyces cerevisiae and major volatile compounds in wine. S. Afr. J. Enol. Vitic. 2015, 36, 285–295. [Google Scholar] [CrossRef]
- Pino, J.A.; Queris, O. Analysis of volatile compounds of pineapple wine using solid-phase microextraction techniques. Food Chem. 2010, 122, 1241–1246. [Google Scholar] [CrossRef]
- Tao, Y.; Zhang, L. Intensity prediction of typical aroma characters of cabernet sauvignon wine in Changli County (China). LWT—Food Sci. Technol. 2010, 43, 1550–1556. [Google Scholar] [CrossRef]
- Zhang, L.; Tao, Y.S.; Wen, Y.; Wang, H. Aroma evaluation of young Chinese Merlot wines with denomination of origin. South Afr. J. Enol. Vitic. 2013, 34, 46–53. [Google Scholar] [CrossRef]
- Zhang, B.; Xu, D.; Duan, C.; Yan, G. Synergistic effect enhances 2-phenylethyl acetate production in the mixed fermentation of Hanseniaspora vineae and Saccharomyces cerevisiae. Process Biochem. 2020, 90, 44–49. [Google Scholar] [CrossRef]
- Xu, Y.; Zhao, J.; Liu, X.; Zhang, C.; Zhao, Z.; Li, X.; Sun, B. Flavor mystery of Chinese traditional fermented baijiu: The great contribution of ester compounds. Food Chem. 2022, 369, 130920. [Google Scholar] [CrossRef] [PubMed]
- Tempère, S.; Marchal, A.; Barbe, J.C.; Bely, M.; Masneuf-Pomarede, I.; Marullo, P.; Albertin, W. The complexity of wine: Clarifying the role of microorganisms. Appl. Microbiol. Biotechnol. 2018, 102, 3995–4007. [Google Scholar] [CrossRef] [PubMed]
- Burdock, G.A. Fenaroli’s Handbook of Flavor Ingredients, 6th ed.; CRC Press: Boca Raton, FL, USA, 2017; pp. 1–2137. [Google Scholar]
- Ribéreau-Gayon, P.; Glories, Y.; Maujean, A.; Dubourdieu, D. Handbook of Enology, Volume 2: The Chemistry of Wine—Stabilization and Treatments, 2nd ed.; Wiley: Hoboken, FL, USA, 2006; pp. 51–64. [Google Scholar]
- Vázquez-Pateiro, I.; Arias-González, U.; Mirás-Avalos, J.M.; Falqué, E. Evolution of the aroma of Treixadura wines during bottle aging. Foods 2020, 9, 1419. [Google Scholar] [CrossRef] [PubMed]
- Fang, Y.; Qian, M. Aroma compounds in Oregon Pinot Noir wine determined by aroma extract dilution analysis (AEDA). Flavour Fragr. J. 2005, 20, 22–29. [Google Scholar] [CrossRef]
Sample | SO2 Free | SO2 Total | Total Extract | Total Phenols | p-DACA Flavans | Absorbance | Oxidation Test | Buffer Power | Ash Alkalinity |
---|---|---|---|---|---|---|---|---|---|
(mg/L) | (mg/L) | (g/L) | (mg/L Catechins) | (mg/L Catechins) | (420 nm) | (%) | (meq/L) | (meq/L) | |
T1 | 29.00 ± 1.00 a | 128.00 ± 0.00 a | 18.80 ± 0.09 b | 92.74 ± 0.84 a | 19.80 ± 0.08 a | 0.079 ± 0.000 c | 5.74 ± 0.09 a | 31.25 ± 0.08 b | 12.28 ± 0.05 c |
T2 | 22.00 ± 0.00 b | 115.00 ± 2.00 b | 19.10 ± 0.07 a | 93.47 ± 0.39 a | 10.23 ± 0.11 b | 0.080 ± 0.003 c | 1.12 ± 0.03 b | 31.25 ± 0.17 b | 12.58 ± 0.07 b |
C1 | 16.00 ± 2.00 c | 109.00 ± 1.00 c | 18.50 ± 0.08 c | 84.38 ± 1.13 c | 1.63 ± 0.08 d | 0.101 ± 0.001 a | 0.00 ± 0.00 c | 31.32 ± 0.12 b | 12.11 ± 0.07 d |
C2 | 29.00 ± 1.00 a | 105.00 ± 1.00 d | 19.00 ± 0.11 ab | 83.36 ± 0.67 b | 3.12 ± 0.05 c | 0.093 ± 0.002 b | 0.00 ± 0.00 c | 32.34 ± 0.13 a | 13.43 ± 0.02 a |
S.S. | *** | *** | *** | *** | *** | *** | *** | *** | *** |
tR (min.s) | LRI 1 | Compounds 2 | Aroma Description [47,48,49,50] | Odour Threshold 3 | C1 4 (OAV) | C2 4 (OAV) | T1 4 (OAV) | T2 4 (OAV) | S.s. 5 |
---|---|---|---|---|---|---|---|---|---|
Σ Alcohols | 33.00 ± 1.32 b | 36.48 ± 1.46 a | 18.84 ± 0.75 c | 19.19 ± 0.76 c | *** | ||||
10.55 | 758 | 3-methyl-1-butanol | Fusel | 40,000 [51] | 26.65 ± 1.07 b (<1) | 29.59 ± 1.18 a (<1) | 12.82 ± 0.51 d (<1) | 15.59 ± 0.62 c (<1) | *** |
36.49 | 1110 | Phenylethyl alcohol | Floral, rose | 125,000 [52] | 6.35 ± 0.25 b (<1) | 6.89 ± 0.28 a (<1) | 6.02 ± 0.24 b (<1) | 3.60 ± 0.14 c (<1) | *** |
Σ Ethers | 4.75 ± 0.19 a | 4.16 ± 0.17 b | 4.24 ± 0.17 b | 2.53 ± 0.10 c | *** | ||||
32.14 | 1042 | Ethyl benzyl ether | Tropical fruit, pineapple | unknown | 4.75 ± 0.19 a (n.d. 6) | 4.16 ± 0.17 b (n.d. 6) | 4.24 ± 0.17 b (n.d. 6) | 2.53 ± 0.10 c (n.d. 6) | *** |
Σ Aldehydes | 17.37 ± 0.69 a | 4.91 ± 0.20 c | 11.85 ± 0.47 b | 2.73 ± 0.11 d | *** | ||||
24.89 | 958 | Benzaldehyde | Bitter almond, cherry | 1500 [53] | 6.31 ± 0.25 a (<1) | 4.91 ± 0.20 b (<1) | 3.60 ± 0.14 c (<1) | 2.73 ± 0.11 d (<1) | *** |
37.08 | 1203 | Decanal | Floral, orange peel citrus | 0.1 [54] | tr (n.d. 6) | tr (n.d. 6) | tr (n.d. 6) | tr (n.d. 6) | n.d. 6 |
56.38 | 1411 | Dodecanal | Citrus, floral | 2 [55] | 11.06 ± 0.44 a (5.53) | 0.00 ± 0.00 c (<1) | 8.25 ± 0.33 b (4.13) | 0.00 ± 0.00 c (<1) | *** |
Σ EEFAs | 1401.74 ± 56.08 d | 1848.45 ± 73.94 c | 2318.98 ± 92.76 a | 2056.15 ± 82.25 b | *** | ||||
27.64 | 989 | Ethyl hexanoate | Sweet fruity, pineapple, green apple | 5 [55] | 33.79 ± 1.35 b (6.76) | 48.86 ± 1.95 a (9.77) | 27.85 ± 1.11 c (5.57) | 32.14 ± 1.29 b (6.42) | *** |
37.44 | 1208 | Ethyl octanoate | Fruity, pear | 2 [55] | 901.19 ± 36.05 a (450.60) | 730.52 ± 29.22 b (365.26) | 837.67 ± 33.51 a (418.84) | 596.78 ± 23.87 c (298.39) | *** |
51.00 | 1379 | Ethyl decanoate | Fruity, grape | 200 [55] | 273.88 ± 10.96 c (1.37) | 928.14 ± 37.13 b (4.64) | 1253.71 ± 50.15 a (6.27) | 1236.22 ± 49.45 a (6.18) | *** |
54.98 | 1391 | Ethyl 9-decenoate | Fruity, fatty | 100 [56] | 184.44 ± 7.38 ab (1.84) | 137.73 ± 5.51 c (1.38) | 199.75 ± 7.99 a (2.00) | 178.82 ± 7.15 b (1.79) | *** |
67.44 | 1599 | Ethyl dodecanoate | Sweet, waxy, floral | 2000 [55] | 8.44 ± 0.34 b (<1) | 3.20 ± 0.13 c (<1) | 0.00 ± 0.00 d (<1) | 12.19 ± 0.49 a (<1) | *** |
Σ HAAs | 15.10 ± 0.60 b | 19.09 ± 0.76 a | 6.25 ± 0.25 d | 9.71 ± 0.39 c | *** | ||||
18.59 | 882 | 3-methyl-1-butanol acetate | Sweet fruity, banana | 0.75 [52] | 15.10 ± 0.60 b (20.13) | 19.09 ± 0.76 a (25.45) | 6.25 ± 0.25 d (8.33) | 9.71 ± 0.39 c (12.95) | *** |
Σ EEBAs | 12.94 ± 0.52 b | 8.02 ± 0.32 c | 0.00 ± 0.00 d | 14.56 ± 0.58 a | *** | ||||
58.69 | 1447 | Isopentyl octanoate | Fruity, pineapple, coconut | 125 [57] | 12.94 ± 0.52 b (<1) | 8.02 ± 0.32 c (<1) | 0.00 ± 0.00 d (<1) | 14.56 ± 0.58 a (<1) | *** |
Σ MEs | 233.83 ± 9.35 a | 106.27 ± 4.26 bc | 118.12 ± 4.74 b | 98.84 ± 3.96 c | *** | ||||
6.80 | 611 | Ethyl acetate | Ethereal, fruity | 7500 [55] | 65.36 ± 2.61 a (<1) | 9.10 ± 0.36 d (<1) | 33.72 ± 1.35 c (<1) | 38.29 ± 1.53 b (<1) | *** |
34.79 | 1089 | Methyl benzoate | Green almond | 10 [56] | 36.94 ± 1.48 a (3.69) | 25.00 ± 1.00 b (2.50) | 24.22 ± 0.97 b (2.42) | 14.93 ± 0.60 c (1.49) | *** |
46.19 | 1268 | 2-phenylethyl hexanoate | Sweet, honey, floral | 94 [58] | 10.28 ± 0.41 a (<1) | 5.03 ± 0.20 b (<1) | 0.00 ± 0.00 c (<1) | 0.00 ± 0.00 c (<1) | *** |
46.24 | 1542 | 2-phenylethyl acetate | Rose | 250 [55] | 0.00 ± 0.00 c (<1) | 0.00 ± 0.00 c (<1) | 3.69 ± 0.15 b (<1) | 5.45 ± 0.22 a (<1) | *** |
Σ Others | 121.25 ± 4.85 a | 67.62 ± 2.70 b | 56.49 ± 2.27 c | 40.17 ± 1.61 d | *** | ||||
7.50 | 634 | Tetrahydrofuran | Butter, caramel | unknown | 40.89 ± 1.64 a (n.d. 6) | 35.68 ± 1.43 b (n.d. 6) | 26.44 ± 1.06 c (n.d. 6) | 23.34 ± 0.93 c (n.d. 6) | *** |
18.14 | 876 | 1,3-dimethylbenzene | Plastic odour | unknown | 12.08 ± 0.48 a (n.d. 6) | 8.03 ± 0.32 b (n.d. 6) | 4.14 ± 0.17 c (n.d. 6) | 2.89 ± 0.12 d (n.d. 6) | *** |
29.59 | 1023 | o-cymene | Herb | unknown | 15.37 ± 0.61 a (n.d. 6) | 9.97 ± 0.40 b (n.d. 6) | 5.41 ± 0.22 c (n.d. 6) | 3.67 ± 0.15 d (n.d. 6) | *** |
34.04 | 1097 | 1-butenyl benzene | unknown | unknown | 2.81 ± 0.11 a (n.d. 6) | 2.05 ± 0.08 b (n.d. 6) | 1.40 ± 0.06 c (n.d. 6) | 0.76 ± 0.03 d (n.d. 6) | *** |
44.34 | 1232 | Benzothiazole | Sulfury, rubbery, vegetable | unknown | 16.45 ± 0.66 a (n.d. 6) | 0.00 ± 0.00 b (n.d. 6) | 0.00 ± 0.00 b (n.d. 6) | 0.00 ± 0.00 b (n.d. 6) | *** |
50.79 | 1302 | 6-ethyltetralin (isomer) | unknown | unknown | 6.85 ± 0.27 (n.d. 6) | 3.10 ± 0.12 (n.d. 6) | 3.44 ± 0.14 (n.d. 6) | tr (n.d. 6) | n.d. 6 |
51.29 | 1311 | 6-ethyltetralin (isomer) | unknown | unknown | 7.66 ± 0.31 (n.d. 6) | 0.00 ± 0.00 (n.d. 6) | 2.97 ± 0.12 (n.d. 6) | tr (n.d. 6) | n.d. 6 |
54.53 | 1368 | 2-ethenyl-naphtalene | unknown | unknown | 11.50 ± 0.46 a (n.d. 6) | 6.36 ± 0.25 c (n.d. 6) | 10.83 ± 0.43 a (n.d. 6) | 9.51 ± 0.38 b (n.d. 6) | *** |
59.64 | 1485 | 2,6-di-tert-butylquinone | unknown | unknown | 7.64 ± 0.31 (n.d. 6) | 2.43 ± 0.10 (n.d. 6) | 1.86 ± 0.07 (n.d. 6) | tr (n.d. 6) | n.d. 6 |
Attributes | Trial | SEM | Statistical Significance | ||||
---|---|---|---|---|---|---|---|
C1 | C2 | T1 | T2 | Judges | Wine | ||
Appearance | |||||||
Yellow colour | 7.28 a | 7.15 a | 7.21 a | 7.29 a | 0.01 | n.s. | n.s. |
Green reflexes | 4.04 a | 3.63 b | 3.74 b | 3.68 b | 0.02 | *** | *** |
Odour | |||||||
Banana | 3.63 b | 3.94 a | 2.79 d | 3.15 c | 0.07 | *** | *** |
Citrus | 2.40 a | 1.00 c | 1.74 b | 1.00 c | 0.09 | *** | *** |
Fatty | 1.35 b | 1.22 c | 1.62 a | 1.32 b | 0.02 | *** | *** |
Floral | 2.53 a | 1.00 c | 1.97 b | 1.00 c | 0.10 | *** | *** |
Fruity | 8.54 c | 8.02 d | 8.88 a | 8.68 b | 0.05 | *** | *** |
Grape | 2.97 c | 2.99 c | 4.17 a | 3.43 b | 0.07 | *** | *** |
Green almond | 7.67 a | 6.84 b | 6.77 b | 5.71 c | 0.11 | *** | *** |
Intensity | 6.68 c | 7.19 b | 8.26 a | 7.40 b | 0.09 | *** | *** |
Pear | 5.14 b | 5.44 a | 4.76 d | 4.91 c | 0.04 | *** | *** |
Persistence | 7.11 d | 8.64 b | 8.12 c | 8.97 a | 0.10 | *** | *** |
Pineapple | 3.62 a | 3.63 a | 2.96 c | 3.44 b | 0.04 | *** | *** |
Sweet fruit | 7.25 b | 7.57 a | 5.75 d | 6.59 c | 0.10 | *** | *** |
Taste | |||||||
Sweet | 3.48 a | 3.59 a | 2.78 b | 2.68 b | 0.06 | *** | *** |
Sour | 5.38 b | 5.37 b | 8.11 a | 8.24 a | 0.21 | *** | *** |
Salty | 5.70 c | 5.85 c | 7.99 b | 8.39 a | 0.18 | *** | *** |
Bitter | 1.10 c | 1.25 b | 1.20 b | 1.42 a | 0.02 | *** | *** |
Mouthfeel | |||||||
Body | 7.80 c | 8.42 b | 8.55 b | 8.97 a | 0.06 | *** | *** |
Balance | 6.50 d | 7.49 c | 8.10 b | 8.65 a | 0.12 | *** | *** |
Flavour | |||||||
Banana-like | 2.47 b | 2.75 a | 1.93 d | 2.22 c | 0.07 | *** | *** |
Cherry pit | 3.67 a | 3.84 a | 3.77 a | 2.70 b | 0.07 | *** | *** |
Citrus | 3.92 a | 1.00 b | 3.58 a | 1.00 b | 0.21 | *** | *** |
Fruity | 6.15 c | 6.26 c | 7.79 a | 6.80 b | 0.10 | *** | *** |
Intensity | 7.80 c | 7.85 c | 8.12 b | 8.56 a | 0.04 | *** | *** |
Mandarin orange | 1.74 a | 1.00 c | 1.40 b | 1.00 c | 0.05 | *** | *** |
Persistence | 7.70 c | 8.78 a | 7.97 b | 8.94 a | 0.08 | *** | *** |
Pineapple | 7.11 a | 6.89 b | 6.86 b | 6.14 c | 0.05 | *** | *** |
Sweet apple | 2.51 c | 2.66 c | 3.89 a | 3.54 b | 0.09 | *** | *** |
Sweet fruit | 7.12 b | 7.56 a | 5.75 d | 6.58 c | 0.10 | *** | *** |
Overall quality | 7.50 d | 8.57 b | 8.25 c | 8.80 a | 0.07 | *** | *** |
Flavour | 6.98 c | 8.81 a | 8.11 b | 8.91 a | 0.11 | *** | *** |
Mouthfeel | 7.20 c | 8.32 a | 7.88 b | 7.97 b | 0.06 | *** | *** |
Odour | 7.20 c | 8.86 a | 8.01 b | 8.74 a | 0.10 | *** | *** |
Taste | 7.01 d | 7.54 c | 7.82 b | 8.11 a | 0.06 | *** | *** |
Finish | |||||||
After-smell | 6.80 c | 8.15 b | 8.21 b | 8.50 a | 0.10 | *** | *** |
After-taste | 7.10 c | 7.96 b | 8.22 b | 8.71 a | 0.09 | *** | *** |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Naselli, V.; Prestianni, R.; Badalamenti, N.; Matraxia, M.; Maggio, A.; Alfonzo, A.; Gaglio, R.; Vagnoli, P.; Settanni, L.; Bruno, M.; et al. Improving the Aromatic Profiles of Catarratto Wines: Impact of Metschnikowia pulcherrima and Glutathione-Rich Inactivated Yeasts. Antioxidants 2023, 12, 439. https://doi.org/10.3390/antiox12020439
Naselli V, Prestianni R, Badalamenti N, Matraxia M, Maggio A, Alfonzo A, Gaglio R, Vagnoli P, Settanni L, Bruno M, et al. Improving the Aromatic Profiles of Catarratto Wines: Impact of Metschnikowia pulcherrima and Glutathione-Rich Inactivated Yeasts. Antioxidants. 2023; 12(2):439. https://doi.org/10.3390/antiox12020439
Chicago/Turabian StyleNaselli, Vincenzo, Rosario Prestianni, Natale Badalamenti, Michele Matraxia, Antonella Maggio, Antonio Alfonzo, Raimondo Gaglio, Paola Vagnoli, Luca Settanni, Maurizio Bruno, and et al. 2023. "Improving the Aromatic Profiles of Catarratto Wines: Impact of Metschnikowia pulcherrima and Glutathione-Rich Inactivated Yeasts" Antioxidants 12, no. 2: 439. https://doi.org/10.3390/antiox12020439