Role of Oxidative Stress in HIV-1-Associated Neurocognitive Disorder and Protection by Gene Delivery of Antioxidant Enzymes
Abstract
:1. Clinical Presentation of HIV-1-Associated Neurocognitive Disorder
2. Neuropathogenesis of HAND
2.1. Role of HIV-1 Proteins in Neuronal Damage
2.1.1. Trans-Acting Protein Tat
2.1.2. Envelope Glycoprotein gp120
2.1.3. Other HIV-1 Proteins
2.2. HIV-1 Proteins and Astrocytes
3. Oxidative Stress in HAND
3.1. Role of Oxidative Stress in HAND
3.2. Oxidative Stress Associated with Tat
3.3. Gp120-Induced Oxidative Stress
3.4. Oxidative Stress Associated with Vpr
4. Animal Models of HAND
5. Antioxidant Therapeutic Approaches in HAND
5.1. Experimental Data
5.1.1. Upstream Antioxidant Therapy
5.1.2. Downstream Antioxidant Therapy
5.2. Clinical Trials
5.3. Gene Delivery of Antioxidant Enzymes in HAND
5.3.1. Introduction
5.3.2. Effects of Gene Delivery of Antioxidant Enzymes on Oxidative Stress, Apoptosis and Neuronal Loss in Animal Models of HAND
5.3.3. Gp120-Mediated Abnormalities of the Blood-Brain Barrier are Mitigated by Gene Transfer of Antioxidant Enzymes
5.3.4. SV40-Mediated Gene Delivery of Antioxidant Enzymes Reduces gp120-Induced Neuroinflammation
6. Conclusions
Acknowledgments
Conflict of Interest
References
- McArthur, J.C.; Hoover, D.R.; Bacellar, H.; Miller, E.N.; Cohen, B.A.; Becker, J.T.; Graham, N.M.; McArthur, J.H.; Selnes, O.A.; Jacobson, L.P.; et al. Dementia in AIDS patients: Incidence and risk factors. Multicenter AIDS Cohort Study. Neurology 1993, 43, 2245–2252. [Google Scholar] [CrossRef] [PubMed]
- Major, E.O.; Rausch, D.; Marra, C.; Clifford, D. HIV-associated dementia. Science 2000, 288, 440–442. [Google Scholar] [PubMed]
- Koutsilieri, E.; Sopper, S.; Scheller, C.; ter Meulen, V.; Riederer, P. Parkinsonism in HIV dementia. J. Neural Transm. 2002, 109, 767–775. [Google Scholar] [CrossRef] [PubMed]
- Antinori, A.; Arendt, G.; Becker, J.T.; Brew, B.J.; Byrd, D.A.; Cherner, M.; Clifford, D.B.; Cinque, P.; Epstein, L.G.; Gookin, K.; et al. Updated research nosology for HIV-associated neurocognitive disorders. Neurology 2007, 69, 1789–1799. [Google Scholar] [CrossRef] [PubMed]
- Woods, S.P.; Moore, D.J.; Weber, E.; Grant, I. Cognitive neuropsychology of HIV-associated neurocognitive disorders. Neuropsychol. Rev. 2009, 19, 152–168. [Google Scholar] [CrossRef] [PubMed]
- McArthur, J.C.; Brew, B.J.; Nath, A. Neurological complications of HIV infection. Lancet Neurol. 2005, 4, 543–555. [Google Scholar] [CrossRef] [PubMed]
- Nath, A.; Sacktor, N. Influence of highly active antiretroviral therapy on persistence of HIV in the central nervous system. Curr. Opin. Neurol. 2006, 19, 358–361. [Google Scholar] [CrossRef] [PubMed]
- Ances, B.M.; Ellis, R.J. Dementia and neurocognitive disorders due to HIV-1 infection. Semin. Neurol. 2007, 27, 86–92. [Google Scholar] [CrossRef] [PubMed]
- Mattson, M.P.; Haughey, N.J.; Nath, A. Cell death in HIV dementia. Cell Death Diff. 2005, 12, 893–904. [Google Scholar] [CrossRef]
- Rumbaugh, J.A.; Nath, A. Developments in HIV neuropathogenesis. Curr. Pharm. Des. 2006, 12, 1023–1044. [Google Scholar] [CrossRef] [PubMed]
- Gonzalez-Scarano, F.; Martin-Garcia, J. The neuropathogenesis of AIDS. Nat. Rev. Immunol. 2005, 5, 69–81. [Google Scholar] [CrossRef] [PubMed]
- Kaul, M.; Garden, G.A.; Lipton, S.A. Pathways to neuronal injury and apoptosis in HIV-associated dementia. Nature 2001, 410, 988–994. [Google Scholar] [CrossRef] [PubMed]
- Van de Bovenkamp, M.; Nottet, H.S.; Pereira, C.F. Interactions of human immunodeficiency virus-1 proteins with neurons: Possible role in the development of human immunodeficiency virus-1 associated dementia. Eur. J. Clin. Investig. 2002, 32, 619–627. [Google Scholar] [CrossRef]
- Eugenin, E.A.; D’Aversa, T.G.; Lopez, L.; Calderon, T.M.; Berman, J.W. MCP-1 (CCL2) protects human neurons and astrocytes from NMDA or HIV-tat-induced apoptosis. J. Neurochem. 2003, 85, 1299–1311. [Google Scholar] [CrossRef] [PubMed]
- Eugenin, E.A.; Osiecli, K.; Lopez, L.; Goldstein, H.; Calderon, T.M.; Berman, J.W. CCL2/monocyte chemoattractant protein-1 mediates enhanced transmigration of human immunodeficiency virus (HIV)-infected leukocytes across the blood-brain barrier: A potential mechanism of HIV-CNS invasion and neuroAIDS. J. Neurosci. 2006, 26, 1098–1106. [Google Scholar] [CrossRef] [PubMed]
- Ghezzi, S.; Noolan, D.M.; Aluigi, M.G.; Vallanti, G.; Cota, M.; Benelli, R.; Morini, M.; Reeves, J.D.; Vicenzi, E.; Poli, G.; et al. Inhibition of CXCR-3-dependent HIV-1 infection by extracellular HIV-1 Tat. Biochem. Byophys. Res. Commun. 2000, 270, 992–996. [Google Scholar] [CrossRef]
- Magnuson, D.S.; Knudsen, B.E.; Geiger, J.D.; Brownstone, R.M.; Nath, A. Human immunodeficiency virus type 1 Tat activates non-N-methyl-o-aspartate excitatory amino receptors and causes neurotoxicity. Ann. Neurol. 1995, 37, 373–380. [Google Scholar] [CrossRef] [PubMed]
- Bonavia, R.; Bajetto, A.; Barbero, S.; Albini, A.; Noonan, D.M.; Schettini, G. HIV-1 Tat causes apoptosis death and calcium homeostasis alterations in rat neurons. Biochem. Biophys. Res. Commun. 2001, 288, 301–308. [Google Scholar] [CrossRef] [PubMed]
- Haughey, N.J.; Nath, A.; Mattson, M.P. HIV-1 Tat through phosphorylation of NMDA receptors potentiates glutamate excitotoxicity. J. Neurochem. 2001, 78, 457–467. [Google Scholar] [CrossRef] [PubMed]
- Norman, J.P.; Perry, S.W.; Reynolds, H.M. HIV-1 Tat activates neuronal ryanodine receptors with rapid induction of the unfolded protein response and mitochondrial hyperpolarization. PLoS One 2008, 3, e3731. [Google Scholar] [CrossRef] [PubMed]
- Kruman, I.I.; Nath, A.; Mattson, M.P. HIV-1 protein Tat induces apoptosis of hippocampal neurons by a mechanism involving caspase activation, calcium overload, and oxidative stress. Exp. Neurol. 1998, 154, 276–288. [Google Scholar] [CrossRef] [PubMed]
- Nath, A.; Haughey, N.J.; Jones, M.; Anderson, C.; Bell, J.E.; Geiger, J.D. Synergistic neurotoxicity by human immunodeficiency virus proteins Tat and gp120: Protection by memantine. Ann. Neurol. 2000, 47, 186–194. [Google Scholar] [CrossRef] [PubMed]
- Haughey, N.J.; Cutler, R.G.; Tamara, A.; McArthur, J.C.; Vargas, D.L.; Pardo, C.A.; Turchan, J.; Nath, A.; Mattson, M.P. Perturbation of sphingolipid metabolism and ceramide production in HIV-dementia. Ann. Neurol. 2004, 5, 257–267. [Google Scholar] [CrossRef]
- Bonfoco, E.; Krainc, D.; Ankarcrona, M.; Nicotera, P.; Lipton, S.A. Apoptosis and necrosis: Two distinct events induced, respectively, by mild and intense insults with N-methyl-d-aspartate or nitric oxide/superoxide in cortical cell cultures. Proc. Natl. Acad. Sci. USA 1995, 92, 7162–7166. [Google Scholar] [CrossRef] [PubMed]
- Jones, M.; Olafson, K.; del Bigio, M.R.; Peeling, J.; Nath, A. Intraventricular injection of human immunodeficiency virus type 1 (HIV-1) tat protein causes inflammation, gliosis, apoptosis, and ventricular enlargment. J. Neuropathol. Exp. Neurol. 1998, 57, 563–570. [Google Scholar] [CrossRef] [PubMed]
- Bansal, A.K.; Mactutus, C.F.; Nath, A.; Maragos, W.; Hauser, K.F.; Booze, R.M. Neurotoxicity of HIV-1 proteins gp120 and Tat in the rat striatum. Brain Res. 2000, 879, 42–49. [Google Scholar] [CrossRef] [PubMed]
- Askenov, M.Y.; Hasselrot, U.; Bansal, A.K.; Wu, G.; Nath, A.; Anderson, C.; Mactutus, C.F.; Booze, R.M. Oxidative damage induced by the injection of HIV-1 Tat protein in the rat striatum. Neurosci. Lett. 2001, 305, 5–8. [Google Scholar] [CrossRef] [PubMed]
- Askenov, M.Y.; Hasselrot, U.; Wu, G.; Nath, A.; Anderson, C.; Mactutus, C.F.; Booze, R.M. Temporal relationship between HIV-1 Tat-induced neuronal degeneration, OX-42 immunoreactivity, reactive astrocytosis, and protein oxidation in the rat striatum. Brain Res. 2003, 987, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Theodore, S.; Cass, W.A.; Maragos, W.F. Methamphetamine and human immunodeficiency virus protein Tat synergize to destroy dopaminergic terminals in the rat striatum. Neuroscience 2006, 137, 925–935. [Google Scholar] [CrossRef] [PubMed]
- Wiley, C.A.; Baldwin, M.; Achim, C.L. Expression of HIV regulatory and structural mRNA in the central nervous system. AIDS 1996, 10, 843–847. [Google Scholar] [CrossRef] [PubMed]
- Hudson, L.; Liu, J.; Nath, A.; Jones, M.; Raghavan, R.; Naravan, O.; Male, D.; Everall, I. Detection of the human immunodeficiency virus regulatory protein Tat in CNS tissues. J. Neurovirol. 2000, 6, 144–155. [Google Scholar] [CrossRef]
- Garden, G.A.; Guo, W.; Jayadev, S.; Tun, C.; Balcaitis, S.; Choi, J.; Montine, T.J.; Moller, T.; Morrison, R.S. HIV associated neurodegeneration requires p53 in neurons and microglia. FASEB J. 2004, 18, 1141–1143. [Google Scholar] [PubMed]
- Xu, Y.; Kulkosky, J.; Acheampong, E.; Nunnari, G.; Sullivan, J.; Pomerantz, R.J. HIV-1-mediated apoptosis of neuronal cells: Proximal molecular mechanisms of HIV-1-induced encephalopathy. Proc. Natl. Acad. Sci. USA 2004, 101, 7070–7075. [Google Scholar] [CrossRef] [PubMed]
- Meucci, O.; Fatatis, A.; Simen, A.A.; Bushell, T.J.; Gray, P.W.; Miller, R.J. Chemokines regulate hippocampal neuronal signalling and gp120 neurotoxicity. Proc. Natl. Acad. Sci. USA 1998, 95, 14500–14505. [Google Scholar] [CrossRef] [PubMed]
- Regulier, E.G.; Reiss, K.; Khalili, K.; Amini, S.; Zagury, J.F.; Katsikis, P.D.; Rappaport, J. T-cell and neuronal apoptosis in HIV infection: Implications for therapeutic intervention. Int. Rev. Immunol. 2004, 23, 25–59. [Google Scholar] [CrossRef] [PubMed]
- Kaul, M.; Lipton, S.A. Chemokines and activated macrophages in HIV gp120-induced neuronal apoptosis. Proc. Natl. Acad. Sci. USA 1999, 96, 8212–8216. [Google Scholar] [CrossRef] [PubMed]
- Lipton, S.A.; Choi, Y.B.; Pan, Z.H.; Lei, S.Z.; Chen, H.S.; Sucher, N.J.; Loscalzo, J.; Singel, D.J.; Stamler, J.S. A redox-based mechanism for the neuroprotective and neurodestructive effects of nitric oxide and related nitrosocompounds. Nature 1993, 364, 626–632. [Google Scholar] [CrossRef] [PubMed]
- Dreyer, E.B.; Kaiser, P.K.; Offermann, J.T.; Lipton, S.A. HIV-1 coat protein neurotoxicity prevented by calcium channel antagonists. Science 1990, 248, 364–367. [Google Scholar] [CrossRef] [PubMed]
- Adamson, D.C.; Wildemann, B.; Sasaki, M.D.; Glass, J.D.; McArthur, J.C.; Christov, V.I.; Dawson, T.M.; Dawson, V.L. Immunologic NO synthase elevation in severe AIDS dementia and induction by HIV-1 gp41. Science 1996, 274, 1917–1920. [Google Scholar] [CrossRef] [PubMed]
- Adamson, D.C.; Kopnisky, K.L.; Dawson, T.M.; Dawson, V.L. Mechanisms and structural determinants of HIV-1 coat protein, gp41-induced neurotoxicity. J. Neurosci. 1999, 19, 64–71. [Google Scholar] [PubMed]
- Hoshino, S.; Sun, B.; Konishi, M.; Shimura, M.; Segawa, T.; Hagiwara, Y.; Koyanagi, Y.; Iwamoto, A.; Mimaya, J.; Terunuma, H.; et al. Vpr in plasma of HIV type 1-positive patients is correlated with the HIV type 1 RNA titers. AIDS Res. Hum. Retrovir. 2007, 23, 391–397. [Google Scholar] [CrossRef] [PubMed]
- Levy, D.N.; Refaeli, Y.; Weiner, D.B. Extracellular Vpr protein increases cellular permissiveness to human immunodeficiency virus replication and reactivates virus from latency. J. Virol. 1995, 69, 1243–1252. [Google Scholar] [PubMed]
- Patel, C.A.; Mukhtar, M.; Pomerantz, R.J. HIV-1 Vpr induces apoptosis in human neuronal cells. J. Virol. 2000, 74, 9717–9726. [Google Scholar] [CrossRef] [PubMed]
- Rom, I.; Deshmane, S.L.; Mukerjee, R.; Khalili, K.; Amini, S.; Sawaya, B.E. HIV-1 Vpr deregulates calcium secretion in neural cells. Brain Res. 2009, 1275, 81–86. [Google Scholar] [CrossRef] [PubMed]
- Trillo-Pazos, G.; McFarlane-Abdulla, E.; Campbell, I.C.; Pilkington, G.J.; Everall, I.P. Recombinant nef HIV-IIIB protein is toxic to human neurons in culture. Brain Res. 2000, 864, 315–326. [Google Scholar] [CrossRef] [PubMed]
- Ranki, A.; Nyberg, M.; Ovod, V.; Haltia, M.; Elovaara, I.; Raininko, R.; Haapasalo, H.; Krohn, K. Abundant expression of HIV Nef and Rev proteins in brain astrocytes in vivo is associated with dementia. AIDS 1995, 9, 1001–1008. [Google Scholar] [CrossRef] [PubMed]
- Mabrouk, K.; van Rietschoten, J.; Vives, E.; Darbon, H.; Rochat, H.; Sabatier, J.M. Lethal neurotoxicity in mice of the basic domains of HIV and SIV Rev proteins. Study of these regions by circular dichroism. FEBS Lett. 1991, 289, 13–17. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Bentsman, G.; Potash, M.J.; Volsky, D.J. Human immunodeficiency virus type 1 efficiently binds to human fetal astrocytes and induces neuroinflammatory responses independent of infection. BMC Neurosci. 2007, 8, 31. [Google Scholar] [CrossRef] [PubMed]
- Gorry, P.R.; Howard, J.L.; Churchill, M.J.; Churchill, M.J.; Anderson, J.L.; Cunningham, A.; Adrian, D.; McPhee, D.A.; Purcell, D.F. Diminished production of human immunodeficiency virus type 1 in astrocytes results from inefficient translation of gag, env, and nef mRNAs despite efficient expression of Tat and Rev. J. Virol. 1999, 73, 352–361. [Google Scholar] [PubMed]
- Giulian, D.; Vaca, K.; Noonan, C.A. Secretion of neurotoxins by mononuclear phagocytes infected with HIV-1. Science 1990, 250, 1593–1596. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Jana, M.; Dasgupta, S.; Koka, S.; He, J.; Wood, C.; Pahan, K. Human immunodeficiency virus type 1 (HIV-1) Tat induces nitric-oxide synthase in human astroglia. J. Biol. Chem. 2002, 277, 39312–3919. [Google Scholar] [CrossRef] [PubMed]
- Conant, K.; Garzino-Demo, A.; Nath, A.; McAthur, J.C.; Halliday, W.; Power, C.; Gallo, R.C.; Major, E.O. Induction of monocyte chemoattractant protein-1 in HIV-1 Tat-stimulated astrocytes and elevation in AIDS dementia. Proc. Nat. Acad. Sci. USA 1998, 95, 3117–3121. [Google Scholar] [CrossRef] [PubMed]
- Zhou, B.Y.; Liu, Y.; Kim, B.; Xiao, Y.; He, J.J. Astrocyte activation and dysfunction and neuron death by HIV-1 Tat expression in astrocytes. Mol. Cell. Neurosci. 2004, 27, 296–305. [Google Scholar] [CrossRef] [PubMed]
- Uttara, B.; Singh, A.V.; Zamboni, P.; Mahajan, R.T. Oxidative stress and neurodegenerative diseases: A review of upstream and downstream antioxidant therapeutic options. Curr. Neuropharmacol. 2009, 7, 65–74. [Google Scholar] [CrossRef] [PubMed]
- Broughton, B.R.S.; Reutens, D.C.; Sobey, C.G. Apoptotic mechanisms after cerebral ischemia. Stroke 2009, 40, e331–e339. [Google Scholar] [CrossRef] [PubMed]
- Butterfield, D.A.; Castegna, A.; Lauderback, C.M.; Drake, J. Evidence that amyloid β-peptide induced lipid peroxidation and its sequelae in Alzheimer’s disease brain contribute to neuronal death. Neurobiol. Aging 2002, 23, 655–664. [Google Scholar] [CrossRef] [PubMed]
- Banerjee, A.; Zhanq, X.; Manda, K.R.; Banks, W.A.; Ercal, N. HIV proteins (gp120 and Tat) and methamphetamine in oxidative stress-induced damage in the brain: Potential role of the thiol antioxidant N-acetylcysteine amide. Free Rad. Biol. Med. 2010, 48, 1388–1398. [Google Scholar] [CrossRef] [PubMed]
- Steiner, J.; Haughey, N.; Li, W.; Venkatesan, A.; Anderson, C.; Reid, R.; Malpica, T.; Pocernich, C.; Butterfield, D.A.; Nath, A. Oxidative stress and therapeutic approaches in HIV dementia. Antioxid. Redox Sign. 2006, 8, 2089–2100. [Google Scholar] [CrossRef]
- Sims, N.R.; Muyderman, H. Mitochondria, oxidative metabolism and cell death in stroke. Biochim. Biophysis. Acta 2010, 1802, 80–91. [Google Scholar] [CrossRef]
- Dexter, D.T.; Carter, C.J.; Wells, F.R.; Javoy-Agid, F.; Agid, Y.; Lees, A.; Jenner, P.; Marsden, C.D. Basal lipid perxidation in substantia nigra is increased in Parkinson’s disease. J. Neurochem. 1987, 52, 381–389. [Google Scholar] [CrossRef]
- Beal, M.F. Aging, energy, and oxidative stress in neurodegenerative diseases. Ann. Neurol. 1995, 38, 357–366. [Google Scholar] [CrossRef] [PubMed]
- Smith, M.A.; Perry, G. Free radical damage, iron, and Alzheimer’s disease. J. Neurol. Sci. 1995, 134, 92–94. [Google Scholar] [CrossRef] [PubMed]
- Smith, M.A.; Sayre, L.M.; Monnier, V.M.; Perry, G. Radical ageing in Alzheimer’s disease. Trends Neurosci. 1995, 18, 172–176. [Google Scholar] [CrossRef] [PubMed]
- Cao, W.; Carney, J.M.; Duchon, A.; Floyd, R.A.; Chevion, M. Oxygen free radicals involvement in ischemia and reperfusion of the brain injury to brain. Neurosci. Lett. 1998, 88, 233–238. [Google Scholar] [CrossRef]
- Montoliu, C.; Valles, S.; Renau-Piqueras, J.; Guerri, C. Ethanol-induced oxygen radical formation and lipid peroxidation in rat brain: Effect of chronic alcohol consumption. J. Neurochem. 1994, 63, 1855–1862. [Google Scholar] [CrossRef]
- Smith, C.D.; Carney, J.M.; Starke-Reed, P.E.; Oliver, C.N.; Stadtman, E.R.; Floyd, R.A.; Markesberry, W.R. Excess brain protein oxidation and enzyme dysfunction in normal aging and in Alzheimer’s disease. Proc. Natl. Acad. Sci. USA 1991, 88, 10540–10543. [Google Scholar] [CrossRef] [PubMed]
- Mollace, V.; Nottet, H.S.; Clayette, P.; Turco, M.C.; Muscoli, C.; Salvemini, D.; Perno, C.F. Oxidative stress and neuroAIDS: Triggers, modulators and novel antioxidants. Trends Neurosci. 2001, 24, 411–416. [Google Scholar] [CrossRef]
- Turchan, J.; Pocernich, C.B.; Gairola, C.; Chauhan, A.; Schifitto, G.; Butterfield, D.A.; Buch, S.; Naravan, O.; Sinai, A.; Geiger, G.; et al. Oxidative stress in HIV demented patients and protection ex vivo with novel antioxidants. Neurology 2003, 60, 307–314. [Google Scholar] [CrossRef] [PubMed]
- Cutler, R.G.; Haughey, N.J.; Tammara, A.; McArthur, J.C.; Nath, A.; Reid, R.; Vargas, D.L.; Pardo, C.A.; Mattson, M.P. Dysregulation of sphingolipids and sterol metabolism by ApoE4 in HIV dementia. Neurology 2004, 63, 626–630. [Google Scholar] [CrossRef] [PubMed]
- Agrawal, L.; Louboutin, J.P.; Strayer, D.S. Preventing HIV-1 Tat-induced neuronal apoptosis using antioxidant enzymes: Mechanistic and therapeutic implications. Virology 2007, 363, 462–472. [Google Scholar] [CrossRef] [PubMed]
- Kruman, I.I.; Bruce-Keller, A.J.; Bredesen, D.; Waeg, G.; Mattson, M.P. Evidence that 4-hydroxynonenal mediates oxidative stress-induced neuronal apoptosis. J. Neurosci. 1997, 17, 5089–5100. [Google Scholar] [PubMed]
- Bruce-Keller, A.J.; Li, Y.J.; Lovell, M.A.; Kraemer, P.J.; Gary, D.S.; Brown, R.R.; Markesbery, W.R.; Mattson, M.P. 4-Hydroxynonenal, a product of lipid peroxidation, damages cholinergic neurons and impairs visuospatial memory in rats. J. Neuropathol. Exp. Neurol. 1998, 57, 257–267. [Google Scholar] [CrossRef] [PubMed]
- Bruce-Keller, A.J.; Barger, S.W.; Moss, N.I.; Pham, J.T.; Keller, J.N.; Nath, A. Proinflammatory and pro-oxidant properties of Tat in a microglial cell line: Attenuation by 17b-estradiol. J. Neurochem. 2001, 78, 1315–1324. [Google Scholar] [CrossRef] [PubMed]
- Agrawal, L.; Louboutin, J.P.; Reyes, B.A.S.; van Bockstaele, E.J.; Strayer, D.S. HIV-1 Tat neurotoxicity: A model of acute and chronic exposure, and neuroprotection by gene delivery of antioxidant enzymes. Neurobiol. Dis. 2012, 45, 657–670. [Google Scholar] [CrossRef] [PubMed]
- Nath, A.; Conant, K.; Chen, P.; Scott, C.; Major, E.O. Transient exposure to HIV-1 Tat protein results in cytokine production in macrophages and astrocytes: A hit and run phenomenon. J. Biol. Chem. 1999, 274, 17098–17102. [Google Scholar] [CrossRef] [PubMed]
- Andersen, J.K. Oxidative stress in neurodegeneration: Cause or consequence? Nat. Med. 2004, 5, S18–S25. [Google Scholar]
- Kruman, I.I.; Mattson, M.P. Pivotal role of mitochondrial calcium uptake in neural cell apoptosis and necrosis. J. Neurochem. 1999, 72, 529–540. [Google Scholar] [CrossRef] [PubMed]
- Shah, A.; Kumar, S.; Simon, S.D.; Singh, D.P.; Kumar, A. HIV gp120- and methamphetamine-mediated oxidative stress induces astrocyte apoptosis via cytochrome P4502E1. Cell Death Dis. 2013, 4, e850. [Google Scholar] [CrossRef] [PubMed]
- Louboutin, J.P.; Agrawal, L.; Reyes, B.A.S.; van Bockstaele, E.J.; Strayer, D.S. HIV-1 gp120-induced injury to the blood-brain barrier: Role of metalloproteinases 2 and 9 and relationship to oxidative stress. J. Neuropathol. Exp. Neurol. 2010, 69, 801–816. [Google Scholar] [CrossRef] [PubMed]
- Louboutin, J.P.; Agrawal, L.; Reyes, B.A.S.; van Bockstaele, E.J.; Strayer, D.S. A rat model of human immunodeficiency virus 1 encephalopathy using envelope glycoprotein gp120 expression delivered by SV40 vectors. J. Neuropathol. Exp. Neurol. 2009, 68, 456–473. [Google Scholar] [CrossRef] [PubMed]
- Strayer, D.S. Gene therapy using SV40-derived vectors: What does the future hold? J. Cell Physiol. 1999, 181, 375–384. [Google Scholar] [CrossRef]
- Strayer, D.S.; Kondo, R.; Milano, J.; Duan, L.X. Use of SV40-based vectors to transduce foreign genes to normal human peripheral blood mononuclear cells. Gene Ther. 1997, 4, 219–225. [Google Scholar] [CrossRef] [PubMed]
- McKee, H.J.; Strayer, D.S. Immune responses against SIV envelope glycoprotein, using recombinant SV40 as a vaccine delivery vector. Vaccine 2002, 20, 3613–3625. [Google Scholar] [CrossRef] [PubMed]
- Cordelier, P.; Calarota, S.A.; Pomerantz, R.J.; Xiaoshan, J.; Strayer, D.S. Inhibition of HIV-1 in the central nervous system by IFN-α2 delivered by an SV40 vector. J. Interferon Cytokine Res. 2003, 23, 477–488. [Google Scholar] [CrossRef] [PubMed]
- Cordelier, P.; van Bockstaele, E.; Calarota, S.A.; Strayer, D.S. Inhibiting AIDS in the central nervous system: Gene delivery to protect neurons from HIV. Mol. Ther. 2003, 7, 801–810. [Google Scholar] [CrossRef] [PubMed]
- Cordelier, P.; Strayer, D.S. Using gene delivery to protect HIV-susceptible CNS cells: Inhibiting HIV replication in microglia. Virus Res. 2006, 118, 87–97. [Google Scholar] [CrossRef] [PubMed]
- Ferrucci, R.; Nonnemacher, M.R.; Cohen, E.A.; Wigdahl, B. Extracellular human immunodeficiency 1 virus type 1 viral protein R causes reductions in astrocytic ATP and glutathione levels compromising the antioxidant reservoir. Virus Res. 2012, 167, 358–369. [Google Scholar] [CrossRef] [PubMed]
- Hurtrel, M.; Ganiere, J.P.; Guelfi, J.F.; Chakrabarti, L.; Maire, M.A.; Gray, F.; Montagnier, L.; Hurtrel, B. Comparison of early and late feline immunodeficiency virus encephalopathies. AIDS 1992, 6, 399–406. [Google Scholar] [CrossRef] [PubMed]
- Thormar, H. Maedi-visna virus and its relationship to human deficiency virus. AIDS Rev. 2005, 7, 233–245. [Google Scholar] [PubMed]
- Lackner, A.A.; Veazey, R.S. Current concepts in AIDS pathogenesis: Insights from the SIV/macaque model. Annu. Rev. Med. 2007, 58, 461–476. [Google Scholar] [CrossRef] [PubMed]
- Toggas, S.M.; Masliah, E.; Rockenstein, E.M.; Rall, G.F.; Abraham, C.R.; Mucke, L. Central nervous system damage produced by expression of the HIV-1 coat protein gp120 in transgenic mice. Nature 1994, 367, 188–193. [Google Scholar] [CrossRef] [PubMed]
- Avgeropoulos, N.; Kelley, B.; Middaugh, L.; Arrigo, S.; Persidsky, Y.; Gendelman, H.E.; Tyor, W.R. SCID mice with HIV encephalitis develop behavioral abnormalities. J. Acquir. Immune Defic. Syndr. 1998, 18, 13–20. [Google Scholar] [CrossRef]
- Bruce-Keller, A.J.; Turchan-Cholewo, J.; Smart, E.J.; Geurin, T.; Chauhan, A.; Reid, R.; Xu, R.; Nath, A.; Knapp, P.E.; Hauser, K.F. Morphine causes rapid increases in glial activation and neuronal injury in the striatum of inducible HIV-1 Tat transgenic mice. Glia 2008, 56, 1414–1427. [Google Scholar] [CrossRef] [PubMed]
- Agrawal, L.; Louboutin, J.P.; Reyes, B.A.S.; van Bockstaele, E.J.; Strayer, D.S. Antioxidant enzyme gene delivery to protect from HIV-1 gp120-induced neuronal apoptosis. Gene Ther. 2006, 13, 1645–1656. [Google Scholar] [CrossRef] [PubMed]
- Louboutin, J.P.; Agrawal, L.; Reyes, B.A.S.; van Bockstaele, E.J.; Strayer, D.S. Protecting neurons from HIV-1 gp120-induced oxidant stress using both localized intracerebral and generalized intraventricular administration of antioxidant enzymes delivered by SV40-derived vectors. Gene Ther. 2007, 14, 1650–1661. [Google Scholar] [CrossRef] [PubMed]
- Nosheny, R.L.; Bachis, A.; Acquas, E.; Mocchetti, I. Human immunodeficiency virus type 1 glycoprotein gp120 reduces the levels of brain-derived neurotrophic factor in vivo: Potential implication for neuronal cell death. Eur. J. Neurosci. 2004, 20, 2857–2864. [Google Scholar] [PubMed]
- Butler, T.R.; Smith, K.J.; Self, R.L.; Braden, B.B.; Prendergast, M.A. Neurodegenerative effects of recombinant HIV-1 Tat(1–86) are associated with inhibition of microtubule formation and oxidative stress-related reductions in microtubule-associated protein-2(a,b). Neurochem. Res. 2011, 36, 819–828. [Google Scholar] [CrossRef] [PubMed]
- Zou, W.; Kim, B.O.; Zhou, B.Y.; Liu, Y.; Messing, A.; He, J. Protection against human immunodeficiency virus type 1 Tat neurotoxicity by Ginkgo biloba extract EGb 761 involving glial fibrillary acidic protein. Am. J. Pathol. 2007, 171, 1923–1935. [Google Scholar] [CrossRef] [PubMed]
- Pocernich, C.B.; La Fontaine, M.; Butterfield, D.A. In-vivo glutathione elevation protects against hydroxyl free radical-induced protein oxidation in rat brain. Neurochem. Int. 2000, 36, 185–191. [Google Scholar] [CrossRef] [PubMed]
- Kraus, R.L.; Pasieczny, R.; Lariosa-Willingham, K.; Turner, M.S.; Jiang, A.; Trauger, J.W. Antioxidant properties of minocycline: Neuroprotection in an oxidative stress assay and direct radical-scavenging activity. J. Neurochem. 2005, 94, 819–827. [Google Scholar] [CrossRef] [PubMed]
- Zinc, M.C.; Uhrlaub, J.; DeWitt, J.; Voelker, T.; Bullock, B.; Mankowski, J.; Tarwater, P.; Clements, J.; Barber, S. Neuroprotective anti-human immunodeficiency virus activity of minocycline. JAMA 2005, 293, 2003–2011. [Google Scholar] [CrossRef] [PubMed]
- Consortium, D. A randomized, double-blind, placebo-controlled trial of deprenyl and thioctic acid in human immunodeficiency virus-associated cognitive impairment: Dana Consortium on the therapy of HIV dementia and related cognitive disorders. Neurology 1998, 50, 645–651. [Google Scholar] [CrossRef] [PubMed]
- Sacktor, N.; Schifitto, G.; McDermott, M.P.; Marder, K.; McArthur, J.C.; Kieburtz, K. Transdermal seleginine in HIV-associated cognitive impairment: Pilot, placebo-controlled study. Neurology 2000, 54, 233–235. [Google Scholar] [CrossRef] [PubMed]
- Consortium, D. Safety and tolerability of the antioxidant OPC-14117 in HIV-associated cognitive impairment: The Dana Consortium on the therapy of HIV dementia and related cognitive disorders. Neurology 1997, 49, 142–146. [Google Scholar] [CrossRef] [PubMed]
- Pulliam, L.; Irwin, I.; Kusdra, L.; Rempel, H.; Flitter, W.D.; Garland, W.A. CPI-1189 attenuates effects of suspected neurotoxins associated with AIDS dementia: A possible role for ERK activation. Brain Res. 2001, 893, 95–103. [Google Scholar] [CrossRef] [PubMed]
- Clifford, D.B.; McArthur, J.C.; Schifitto, G.; Kieburtz, K.; McDermott, M.P.; Letendre, S.; Cohen, B.A.; Marder, K.; Ellis, R.J.; Marra, C.M.; et al. A randomized clinical trial of CPI-1189 for HIV-associated cognitive-motor impairment. Neurology 2002, 59, 1568–1573. [Google Scholar] [CrossRef] [PubMed]
- Watanabe, Y.; Chu, Y.; Andresen, J.J.; Nakane, H.; Faraci, F.M.; Heistad, D.D. Gene transfer of extracellular superoxide dismutase reduces cerebral vasospasm after subarachnoid hemorrhage. Stroke 2003, 34, 434–440. [Google Scholar] [CrossRef] [PubMed]
- Hoehn, B.; Yenari, M.A.; Sapolsky, R.M.; Steinberg, G.K. Glutathione peroxidase overexpression inhibits cytochrome C release and proapoptotic mediators to protect neurons from experimental stroke. Stroke 2003, 34, 2489–2494. [Google Scholar] [CrossRef] [PubMed]
- Ridet, J.L.; Bensadoun, J.C.; Deglon, N.; Aebischer, P.; Zurn, A.D. Lentivirus-mediated expression of glutathione peroxidase: Neuroprotection in murine models of Parkinsonʼs disease. Neurobiol. Dis. 2006, 21, 29–34. [Google Scholar] [CrossRef] [PubMed]
- Louboutin, J.P.; Marusich, E.; Fisher-Perkins, J.; Dufour, J.P.; Bunnell, B.A.; Strayer, D.S. Gene transfer to the Rhesus monkey brain using SV40-derived vectors is durable and safe. Gene Ther. 2011, 18, 682–691. [Google Scholar] [CrossRef] [PubMed]
- Louboutin, J.P.; Chekmasova, A.A.; Marusich, E.; Chowdhury, J.R.; Strayer, D.S. Efficient CNS gene delivery by intravenous injection. Nature Meth. 2010, 7, 905–907. [Google Scholar] [CrossRef]
- Agrawal, L.; Louboutin, J.P.; Marusich, E.; Reyes, B.A.S.; van Bockstaele, E.; Strayer, D.S. Dopaminergic neurotoxicity of HIV-1 gp120: Reactive oxygen species as signaling intermediates. Brain Res. 2010, 1306, 116–130. [Google Scholar] [CrossRef] [PubMed]
- Louboutin, J.P.; Reyes, B.A.S.; Agrawal, L.; van Bockstaele, E.J.; Strayer, D.S. Strategies for CNS-directed gene delivery: In vivo gene transfer to the brain using SV40-derived vectors. Gene Ther. 2007, 14, 939–949. [Google Scholar] [CrossRef] [PubMed]
- Louboutin, J.P.; Agrawal, L.; Reyes, B.A.S.; van Bockstaele, E.J.; Strayer, D.S. HIV-1 gp120 neurotoxicity proximally and at a distance from the point of exposure: Protection by rSV40 delivery of antioxidant enzyme. Neurobiol. Dis. 2009, 34, 462–476. [Google Scholar] [CrossRef] [PubMed]
- Louboutin, J.P.; Reyes, B.A.S.; Agrawal, L.; van Bockstaele, E.J.; Strayer, D.S. Intracisternal rSV40 administration provides effective pan-CNS transgene expression. Gene Ther. 2012, 19, 114–118. [Google Scholar] [CrossRef] [PubMed]
- Petito, C.K.; Roberts, B. Evidence of apoptotic cell death in HIV encephalitis. Am. J. Pathol. 1995, 146, 1121–1130. [Google Scholar] [PubMed]
- Noorbakhsh, F.; Ramachandran, R.; Barsby, N.; Ellestad, K.K.; LeBlanc, A.; Dickie, P.; Baker, G.; Hollenberg, M.D.; Cohen, E.A.; Power, C. MicroRNA profiling reveals new aspects of HIV neurodegeneration: Caspase-6 regulates astrocyte survival. FASEB J. 2010, 24, 1799–1812. [Google Scholar] [CrossRef] [PubMed]
- Singh, I.N.; Goody, R.J.; Dean, C.; Ahmad, N.M.; Lutz, S.E.; Knapp, P.E.; Nath, A.; Hauser, K.F. Apoptotic cell death of striatal neurons induced by human immunodeficiency virus-1 Tat and gp120: Differential involvement of caspase-3 and endonuclease G. J. Neurovirol. 2004, 10, 141–151. [Google Scholar] [CrossRef] [PubMed]
- Askenov, M.Y.; Askenova, M.V.; Mactutus, C.F.; Booze, R.M. Attenuated neurotoxicity of the transactivation-defective HIV-Tat protein in hippocampal cell cultures. Exp. Neurol. 2009, 219, 586–590. [Google Scholar] [CrossRef] [PubMed]
- Nosheny, R.L.; Bachis, A.; Aden, S.A.; de Bernardi, M.A.; Mocchetti, I. Intrastriatal administration of human immunodeficiency virus-1 glycoprotein 120 reduces glial cell-line derived neurotrophic factor levels and causes apoptosis in the substantia nigra. J. Neurobiol. 2006, 66, 1311–1321. [Google Scholar] [CrossRef] [PubMed]
- Nosheny, R.L.; Ahmed, F.; Yakovlev, A.; Meyer, E.M.; Ren, K.; Tessarollo, L.; Mocchetti, I. Brain-derived neurotrophic factor prevents the nigrostriatal degeneration induced by human immunodeficiency virus-1 glycoprotein 120 in vivo. Eur. J. Neurosci. 2007, 25, 2275–2284. [Google Scholar] [CrossRef] [PubMed]
- Bachis, A.; Aden, S.A.; Nosheny, R.L.; Andrews, P.M.; Mocchetti, I. Axonal transport of human immunodeficiency virus type 1 envelope protein glycoprotein 120 is found in association with neuronal apoptosis. J. Neurosci. 2006, 26, 6771–6780. [Google Scholar] [CrossRef] [PubMed]
- Louboutin, J.P.; Reyes, B.A.S.; Agrawal, L.; van Bockstaele, E.J.; Strayer, D.S. Gene delivery of antioxidant enzymes inhibits HIV-1 gp120-induced expression of caspases. Neuroscience 2012, 214, 68–77. [Google Scholar] [CrossRef] [PubMed]
- Cribbs, D.H.; Poon, W.W.; Rissman, R.A.; Blurton-Jones, M. Caspase-mediated degeneration in Alzheimer’s disease. Am. J. Pathol. 2004, 165, 353–355. [Google Scholar] [CrossRef] [PubMed]
- Sacktor, N.; Haughey, N.; Cutler, R.; Tamara, A.; Turchan, J.; Pardo, C.; Vargas, D.; Nath, A. Novel markers of oxidative stress in actively progressive HIV dementia. J. Neuroimmunol. 2004, 157, 176–184. [Google Scholar] [CrossRef] [PubMed]
- Ullrich, C.K.; Groopman, J.E.; Ganju, R.K. HIV-1 gp120- and gp160-induced apoptosis in cultured endothelial cells is mediated by caspases. Blood 2000, 96, 1436–1442. [Google Scholar]
- Price, T.O.; Ercal, N.; Nakaoke, R.; Banks, W.A. HIV-1 viral proteins gp120 and Tat induce oxidative stress in brain endothelial cells. Brain Res. 2005, 1045, 57–63. [Google Scholar] [CrossRef] [PubMed]
- Price, T.O.; Uras, F.; Banks, W.A.; Ercal, N. A novel antioxidant N-acetylcysteine amide prevents gp120- and Tat-induced oxidative stress in brain endothelial cells. Exp. Neurol. 2006, 201, 193–202. [Google Scholar] [CrossRef] [PubMed]
- Petito, C.K.; Cash, K.S. Blood-brain barrier abnormalities in the acquired immunodeficiency syndrome: Immunohistochemical localization of serum proteins in postmortem brain. Ann. Neurol. 1992, 32, 658–666. [Google Scholar] [CrossRef] [PubMed]
- Power, C.; Kong, P.A.; Crawford, T.O.; Wesselingh, S.; Glass, J.D.; McArthur, J.C.; Trapp, B.D. Cerebral white matter changes in acquired immunodeficiency syndrome dementia: Alterations of the blood-brain barrier. Ann. Neurol. 1993, 34, 339–350. [Google Scholar] [CrossRef] [PubMed]
- Avison, M.J.; Nath, A.; Greene-Avison, R.; Schmitt, F.A.; Greenberg, R.N.; Berger, J.R. Neuroimaging correlates of HIV-associated BBB compromise. J. Neuroimmunol. 2004, 157, 140–146. [Google Scholar] [CrossRef] [PubMed]
- Toneatto, S.; Finco, O.; van der Putten, H.; Abrignani, S.; Annunziata, P. Evidence of blood-brain barrier alteration and activation in HIV-1 gp120 transgenic mice. AIDS 1999, 13, 2343–2348. [Google Scholar] [CrossRef] [PubMed]
- Huang, M.B.; Hunter, M.; Bond, V.C. Effect of extracellular human immunodeficiency virus type 1 glycoprotein 120 on primary human vascular endothelium cell cultures. AIDS Res. Hum. Retrovir. 1999, 15, 1265–1277. [Google Scholar] [CrossRef] [PubMed]
- Dallasta, L.M.; Pisarov, L.A.; Esplen, J.E.; Werley, J.V.; Moses, A.V.; Nelson, J.A.; Achim, C.L. Blood-brain barrier tight junction disruption in human immunodeficiency virus-1 encephalitis. Am. J. Pathol. 1999, 155, 1915–1927. [Google Scholar] [CrossRef] [PubMed]
- Banks, W.A.; Ibrahimi, F.; Farr, S.A.; Flood, J.F.; Morley, J.E. Effects of wheatgerm agglutinin and aging on the regional brain uptake of HIV-1 gp120. Life Sci. 1999, 65, 81–89. [Google Scholar] [CrossRef] [PubMed]
- Banks, W.A.; Freed, E.O.; Wolf, K.M.; Robinson, S.M.; Franko, M.; Kumar, V.B. Transport of human immunodeficiency virus type 1 pseudoviruses across the blood-brain barrier: Role of envelope proteins and adsorptive endocytosis. J. Virol. 2001, 75, 4681–4691. [Google Scholar] [CrossRef] [PubMed]
- Banks, W.A.; Robinson, S.M.; Nath, A. Permeability of the blood-brain barrier to HIV-1 Tat. Exp. Neurol. 2005, 193, 218–227. [Google Scholar] [CrossRef] [PubMed]
- Cioni, C.; Annunziata, P. Circulating gp120 alters the blood-brain barrier permeability in HIV-1 gp120 transgenic mice. Neurosci. Lett. 2002, 330, 299–301. [Google Scholar] [CrossRef] [PubMed]
- Annunziata, P. Blood-brain barrier changes during invasion of the central nervous system by HIV-1. Old and new insights into the mechanism. J. Neurol. 2003, 250, 901–906. [Google Scholar] [CrossRef] [PubMed]
- Kanmogne, G.D.; Primeaux, C.; Grammas, P. HIV-1 gp120 proteins alter tight junction protein expression and brain endothelial cell permeability: Implications for the pathogenesis of HIV-associated dementia. J. Neuropath. Exp. Neurol. 2005, 64, 498–505. [Google Scholar] [PubMed]
- Kanmogne, G.D.; Schall, K.; Leibhart, J.; Knipe, B.; Gendelman, H.E.; Persidsky, Y. HIV-1 gp120 compromises blood-brain barrier integrity and enhance monocyte migration across blood-brain barrier: Implication for viral neuropathogenesis. J. Cereb. Blood Flow MeTab. 2007, 27, 123–134. [Google Scholar] [CrossRef] [PubMed]
- Louboutin, J.P.; Reyes, B.A.S.; Agrawal, L.; Maxwell, C.R.; van Bockstaele, E.J.; Strayer, D.S. Blood-brain barrier abnormalities caused by exposure to HIV-1 gp120—Protection by gene delivery of antioxidant enzymes. Neurobiol. Dis. 2010, 38, 313–325. [Google Scholar] [CrossRef] [PubMed]
- Clark, I.M.; Swingler, T.E.; Sampieri, C.L.; Edwards, D.R. The regulation of matrix metalloproteinases and their inhibitors. Int. J. Biochem. Cell Biol. 2008, 40, 1362–1378. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Manabe, S.; Gu, Z.; Lipton, S.A. Activation of matrix metalloproteinase-9 via neuronal nitric oxide synthase contributes to NMDA-induced retinal ganglion cell death. Investig. Ophtalmol. Vis. Sci. 2005, 46, 4747–4753. [Google Scholar] [CrossRef]
- Rosenberg, G.A. Matrix metalloproteinases in neuroinflammation. Glia 2002, 39, 279–291. [Google Scholar] [CrossRef] [PubMed]
- Gu, Z.; Kaul, M.; Yan, B.; Kridel, S.J.; Cui, J.; Strongin, A.; Smith, J.W.; Liddington, R.C.; Lipton, S.A. S-nitrosylation of matrix metalloproteinases: Signaling pathway to neuronal cell death. Science 2002, 297, 1186–1190. [Google Scholar] [CrossRef] [PubMed]
- Yong, V.W.; Power, C.; Forsyth, P.; Edwards, D.R. Metalloproteinases in biology and pathology of the central nervous system. Nat. Rev. Neurosci. 2001, 2, 502–511. [Google Scholar] [CrossRef] [PubMed]
- Lo, E.H.; Wang, X.; Cuzner, M.I. Extracellular proteolysis in brain injury and inflammation: Role for plasminogen activators and matrix metalloproteinases. J. Neurosci. Res. 2002, 69, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Gursoy-Ozdemir, Y.; Qiu, J.; Matsuoka, N.; Bolay, H.; Bermpohl, D.; Jin, H.; Wang, X.; Rosenberg, GA.; Lo, E.H.; Moskowitz, M.A. Cortical spreading depression activates and upregulates MMP-9. J. Clin. Investig. 2004, 113, 1447–1455. [Google Scholar] [CrossRef] [PubMed]
- Zozulya, A.L.; Reinke, E.; Baiu, D.C.; Baiu, D.C.; Karman, J.; Sandor, M.; Fabry, Z. Dendritic cell transmigration through brain microvessel endothelium is regulated by MIP-1α chemokine and matrix metalloproteinases. J. Immunol. 2007, 178, 520–529. [Google Scholar] [CrossRef] [PubMed]
- Haorah, J.; Schall, K.; Ramirez, S.H.; Persidsky, Y. Activation of protein kinases and matrix metalloproteinases causes blood-brain barrier injury: Novel mechanisms for neurodegeneration associated with alcohol abuse. Glia 2008, 56, 78–88. [Google Scholar] [CrossRef] [PubMed]
- Asahi, M.; Asahi, K.; Jung, J.-C.; del Zoppo, G.J.; Fini, M.E.; Lo, E.H. Role for matrix metalloproteinase 9 after focal cerebral ischemia: Effects of gene knockout and enzyme inhibition with BB-94. J. Cereb. Blood Flow MeTab. 2000, 20, 1681–1689. [Google Scholar] [CrossRef] [PubMed]
- Gasche, Y.; Copin, J.-C.; Sugawara, T.; Fujimura, M.; Chan, P.H. Matrix metalloproteinases inhibition prevents oxidative stress-associated blood-brain barrier disruption after transient focal cerebral ischemia. J. Cereb. Blood Flow MeTab. 2001, 21, 1393–1400. [Google Scholar] [CrossRef] [PubMed]
- Kim, G.W.; Gasche, Y.; Grzeschik, S.; Copin, J.-C.; Maier, C.M.; Chan, P.H. Neurodegeneration in striatum induced by the mitochondrial toxin 3-nitropropionic acid: Role of matrix metalloproteinase-9 in early blood-brain barrier disruption? J. Neurosci. 2003, 23, 8733–8742. [Google Scholar] [PubMed]
- Sporer, B.; Paul, R.; Koedel, U.; Grimm, R.; Wick, M.; Goebel, F.D.; Pfister, H.W. Presence of matrix metalloproteinase-9 activity in the cerebrospinal fluid of human immunodeficiency virus-infected patients. J. Infect. Dis. 1998, 178, 854–857. [Google Scholar] [CrossRef] [PubMed]
- Liuzzi, G.M.; Mastroianni, C.M.; Santacroce, M.P.; Fanelli, M.; D’Agostino, C.; Vullo, V.; Riccio, P. Increased activity of matrix metalloproteinases in the cerebrospinal fluid of patients with HIV-associated neurological diseases. J. Neurovirol. 2000, 6, 156–163. [Google Scholar] [CrossRef] [PubMed]
- Marshall, D.C.L.; Wyss-Coray, T.W.; Abraham, C.R. Induction of matrix metalloproteinase-2 in human immunodeficiency virus-1 glycoprotein 120 transgenic mouse brains. Neurosci. Lett. 1998, 254, 97–100. [Google Scholar] [CrossRef] [PubMed]
- Toschi, E.; Barillari, G.; Sgadari, C.; Bacigalupo, I.; Cereseto, A.; Carlei, D.; Palladino, C.; Zietz, C.; Leone, P.; Sturzl, M.; et al. Activation of matrix-metalloproteinase-2 and membrane-type-1-matrix-metalloproteinase in endothelial cells and induction of vascular permeability in vivo by human immunodeficiency virus-1 Tat protein and basic Fibroblast Growth Factor. Mol. Biol. Cell 2001, 12, 2934–2946. [Google Scholar] [CrossRef] [PubMed]
- Conant, K.; St Hillaire, C.; Anderson, C.; Galey, D.; Wang, J.; Nath, A. Human immunodeficiency virus type 1 Tat and methamphetamine affect the release and activation of matrix-degrading proteinases. J. Neurovirol. 2004, 10, 21–28. [Google Scholar] [CrossRef]
- Russo, R.; Siviglia, E.; Gliozzi, M.; Amantea, D.; Paoletti, A.; Berliocchi, L.; Bagetta, G.; Corasaniti, M.T. Evidence implicating matrix metalloproteinases in the mechanism underlying accumulation of IL-1β and neuronal apoptosis in the neocortex of HIV/gp120-exposed rats. Int. Rev. Neurobiol. 2007, 82, 407–421. [Google Scholar] [PubMed]
- Berman, N.E.; Marcario, J.K.; Yong, C.; Raghavan, R.; Raymond, L.A.; Joag, S.V.; Naravan, O.; Cheney, P.D. Microglial activation and neurological symptoms in the SIV model of neuroAIDS: Association with MHC-II and MMP-9 expression with behavioral deficits and evoked potential changes. Neurobiol. Dis. 1999, 6, 486–498. [Google Scholar] [CrossRef] [PubMed]
- Cinque, P.; Nebuloni, M.; Santovito, M.L.; Price, R.W.; Gissien, M.; Hagberg, L.; Bestetti, A.; Vago, G.; Lazzarin, A.; Blasi, F.; et al. The urokinase receptor is overexpressed in the AIDS dementia complex and other neurological manifestations. Ann. Neurol. 2004, 55, 687–694. [Google Scholar] [CrossRef] [PubMed]
- Dzwonek, J.; Rylski, M.; Kaczmarek, L. Matrix metalloproteinases and their endogenous inhibitors in neuronal physiology of the adult brain. FEBS Lett. 2004, 567, 129–135. [Google Scholar] [CrossRef] [PubMed]
- Siwik, D.A.; Colucci, W.S. Regulation of matrix metalloproteinases by cytokines and reactive oxygen/nitrogen species in the myocardium. Heart Fail. Rev. 2004, 9, 43–51. [Google Scholar] [CrossRef] [PubMed]
- Louboutin, J.P.; Reyes, B.A.S.; Agrawal, L.; van Bockstaele, E.J.; Strayer, D.S. HIV-1 gp120 upregulates matrix metalloproteinases and their inhibitors in a rat model of HIV encephalopathy. Eur. J. Neurosci. 2011, 34, 2015–2023. [Google Scholar] [CrossRef] [PubMed]
- Louboutin, J.P.; Reyes, B.A.S.; Agrawal, L.; van Bockstaele, E.J.; Strayer, D.S. HIV-1 gp120 induced neuroinflammation: Relationship to neuron loss and protection by rSV40-delivered antioxidant enzymes. Exp. Neurol. 2010, 221, 231–245. [Google Scholar] [CrossRef] [PubMed]
- Chan, P.H.; Schmidley, J.W.; Fishman, R.A.; Longar, S.M. Brain injury, edema, and vascular permeability changes induced by oxygen-derived free radicals. Neurology 1984, 34, 315–320. [Google Scholar] [CrossRef] [PubMed]
- Chan, P.H.; Yang, G.Y.; Carlson, E.; Epstein, C.J. Cold-induced brain edema and infarction are reduced in transgenic mice overexpressing CuZn-superoxide dismutase. Ann. Neurol. 1991, 29, 482–486. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.K.; Park, U.J.; Kim, S.Y.; Lee, J.H.; Kim, S.U.; Gwaq, B.J.; Lee, Y.B. Free radical production in CA1 neurons induces MIP-1alpha expression, microglial recruitment, and delayed neuronal death after transient forebrain ischemia. J. Neurosci. 2008, 28, 1721–1727. [Google Scholar] [CrossRef] [PubMed]
© 2014 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Louboutin, J.-P.; Strayer, D. Role of Oxidative Stress in HIV-1-Associated Neurocognitive Disorder and Protection by Gene Delivery of Antioxidant Enzymes. Antioxidants 2014, 3, 770-797. https://doi.org/10.3390/antiox3040770
Louboutin J-P, Strayer D. Role of Oxidative Stress in HIV-1-Associated Neurocognitive Disorder and Protection by Gene Delivery of Antioxidant Enzymes. Antioxidants. 2014; 3(4):770-797. https://doi.org/10.3390/antiox3040770
Chicago/Turabian StyleLouboutin, Jean-Pierre, and David Strayer. 2014. "Role of Oxidative Stress in HIV-1-Associated Neurocognitive Disorder and Protection by Gene Delivery of Antioxidant Enzymes" Antioxidants 3, no. 4: 770-797. https://doi.org/10.3390/antiox3040770
APA StyleLouboutin, J. -P., & Strayer, D. (2014). Role of Oxidative Stress in HIV-1-Associated Neurocognitive Disorder and Protection by Gene Delivery of Antioxidant Enzymes. Antioxidants, 3(4), 770-797. https://doi.org/10.3390/antiox3040770