Antioxidant White Grape Seed Phenolics: Pressurized Liquid Extracts from Different Varieties
Abstract
:1. Introduction
2. Experimental Section
2.1. Chemicals
2.2. Samples
2.3. Pressurized Liquid Extraction (PLE)
2.4. LC-MS-MS (Minus or Hyphen)
Compound | Retention Time (min) | Parent Ion (m/z) | Product Ions | Collision Energy (eV) |
---|---|---|---|---|
Gallic acid | 2.19 | 169.0 [M−H]− | 125 | 26 |
Protocatechuic acid | 3.56 | 152.9 [M−H]− | 108/109 | 26/17 |
Caftaric acid | 3.91 | 310.9 [M−H]− | 148.9/174.9/178.9 | 30/19/26 |
Procyanidin B1 | 4.38 | 577.0 [M−H]− | 288.9/407/424.9 | 26 |
(+)Catechin | 4.88 | 289.0 [M−H]− | 203.1/245 | 26/15 |
Procyanidin B2 | 5.38 | 577.0 [M−H]− | 288.9/407.0/424.9 | 26 |
(−)Epicatechin | 6.14 | 289.0 [M−H]− | 203.1/245 | 26/15 |
(−)Epicatechin gallate | 7.34 | 441.0 [M−H]− | 125/169/289 | 26 |
Quercetin-3-glucuronide | 11.14 | 479.0 [M+H]+ | 302.9/461.5 | 18/14 |
Quercetin-3-glucoside | 11.30 | 465.0 [M+H]+ | 256.9/302.9 | 41/14 |
Quercetin-3-rutinoside | 10.33 | 609.1 [M−H]− | 178.8/270.9/300 | 44/56/37 |
Quercetin | 11.47 | 303.1 [M+H]+ | 153.0/229.1 | 33/28 |
2.5. Total Polyphenols
2.6. DPPH Radical Scavenging Activity
2.7. Statistical Analysis
3. Results and Discussion
3.1. Polyphenolic Composition and Antioxidant Activity of Grape Seeds from Galician White Varieties
Albariño | Caiño | Godello | Loureiro | Torrontes | Treixadura | |
---|---|---|---|---|---|---|
AA | 23.4 ± 3.9 | 24.4 ± 0.4 | 28.0 ± 0.3 | 29.8 ± 2.4 | 24.7 ± 0.9 | 26.8 ± 1.8 |
TP | 98.5 ± 11.3 | 99.7 ± 1.1 | 110 ± 10 | 112 ± 6 | 99.1 ± 1.6 | 121 ± 9 |
Gallic acid | 354 ± 130 | 233 ± 27 | 140 ± 41 | 250 ± 111 | 135 ± 20 | 461 ± 61 |
Protocatechuic acid | 7.5 ± 1.2 | 9.1 ± 1.0 | 8.1 ± 1.3 | 8.5 ± 0.8 | 9.1 ± 0.8 | 10.2 ± 1.8 |
Caftaric acid | 15.3 ± 6.5 | 38.1 ± 3.5 | 11.9 ± 3.2 | 27.4 ± 3.2 | 11.8 ± 0.5 | 11.8 ± 0.5 |
(+)Catechin | 8207 ± 1696 | 7424 ± 187 | 7091 ± 1335 | 6456 ± 963 | 2677 ± 278 | 8222 ± 651 |
(−)Epicatechin | 6146 ± 1855 | 4085 ± 88 | 3402 ± 775 | 3049 ± 646 | 1994 ± 42 | 10,603 ± 1690 |
(−)Epicatechin-gallate | 441 ± 95 | 332 ± 21 | 613 ± 197 | 322 ± 36 | 378 ± 67 | 498 ± 121 |
Procyanidins B1 and B3 | 1614 ± 272 | 2338 ± 164 | 2129 ± 409 | 2357 ± 327 | 709 ± 168 | 1820 ± 306 |
Procyanidin B2 | 1206 ± 163 | 1693 ± 42 | 1108 ± 211 | 1489 ± 401 | 1143 ± 61 | 2364 ± 398 |
Quercetin-3-glucoside | 4.1 ± 2.1 | 9.3 ± 2.4 | 4.5 ± 1.1 | 5.0 ± 2.5 | 3.5 ± 0.6 | 8.8 ± 3.9 |
Quercetin-3-glucuronide | 3.1 ± 1.3 | 33.3 ± 17.3 | 5.7 ± 1.7 | 9.7 ± 3.3 | 7.2 ± 3.2 | 4.7 ± 1.5 |
Quercetin-3-rutinoside | 2.3 ± 0.2 | 0.9 ± 0.1 | 3.1 ± 0.4 | 1.8 ± 0.6 | 1.3 ± 0.1 | 0.4 ± 0.1 |
Sum of compounds | 18,000 ± 2539 | 16,195 ± 270 | 14,516 ± 1623 | 13,976 ± 1275 | 7067 ± 341 | 24,022 ± 1884 |
3.2. Differentiation of Albariño Grape Seeds Produced in the Sub-Areas of DO Rias Baixas
Condado do Tea | O Rosal | Ribeira do Ulla | Val do Salnés | Ribeira Sacra | |
---|---|---|---|---|---|
AA | 20.8 ± 1.2 | 19.7 ± 0.6 | 25.8 ± 0.4 | 23.8 ± 4.4 | 29.3 ± 0.9 |
TP | 95.8 ± 4.6 | 79.5 ± 0.5 | 99.1 ± 5.3 | 101 ± 6 | 117 ± 2 |
Gallic acid | 339 ± 54 | 110 ± 28 | 393 ± 19 | 384 ± 82 | 532 ± 24 |
Protocatechuic acid | 8.1 ± 1.1 | 6.7 ± 0.7 | 8.6 ± 0.2 | 7.7 ± 0.9 | 5.8 ± 0.6 |
Caftaric acid | 13.6 ± 0.8 | 12.0 ± 1.5 | 12.7 ± 0.0 | 21.2 ± 10.8 | 13.1 ± 1.2 |
(+)Catechin | 8396 ± 547 | 4966 ± 573 | 8736 ± 555 | 8124 ± 738 | 10,705 ± 51 |
(−)Epicatechin | 5848 ± 287 | 2819 ± 393 | 6290 ± 1019 | 6991 ± 1750 | 8235 ± 108 |
(−)Epicatechin-gallate | 375 ± 94 | 379 ± 32 | 497 ± 39 | 461 ± 96 | 543 ± 75 |
Procyanidins B1 and B3 | 1466 ± 94 | 1283 ± 154 | 1576 ± 20 | 1776 ± 271 | 1951 ± 216 |
Procyanidin B2 | 1199 ± 100 | 958 ± 153 | 1106 ± 14 | 1292 ± 127 | 1392 ± 44 |
Quercetin-3-glucoside | 4.9 ± 1.0 | 1.1 ± 0.2 | 2.6 ± 0.0 | 6.1 ± 1.8 | 2.8 ± 0.4 |
Quercetin-3-glucuronide | 2.8 ± 0.5 | 3.7 ± 2.8 | 3.7 ± 2.7 | 3.2 ± 0.9 | 2.6 ± 0.5 |
Quercetin-3-rutinoside | 2.4 ± 0.3 | 2.0 ± 0.0 | 2.3 ± 0.0 | 2.3 ± 0.2 | 2.2 ± 0.1 |
Sum of compounds | 17,655 ± 642 | 10,540 ± 729 | 18,628 ± 1161 | 19,068 ± 1927 | 23,385 ± 263 |
3.3. Polyphenolic Composition of Seeds from Foreign White Grape Varieties Cultivated in Galicia
Gewürztraminer | Pinot Gris | Chardonnay | Riesling | Pinot Blanc | |
---|---|---|---|---|---|
AA | 35.8 ± 4.0 | 36.9 ± 0.1 | 38.0 ± 2.9 | 31.0 ± 0.4 | 41.3 ± 1.9 |
TP | 133 ± 19 | 138 ± 3 | 160 ± 10 | 123 ± 0 | 168 ± 6 |
Gallic acid | 296 ± 146 | 238 ± 15 | 829 ± 214 | 230 ± 31 | 683 ± 174 |
Protocatechuic acid | 9.6 ± 1.5 | 9.7 ± 0.4 | 9.7 ± 1.2 | 11.9 ± 2.9 | 8.4 ± 1.5 |
Caftaric acid | 22.2 ± 7.1 | 40.4 ± 0.2 | 20.2 ± 1.3 | 25.1 ± 1.8 | 21.5 ± 4.1 |
(+)Catechin | 13,794 ± 2877 | 13,033 ± 498 | 12,470 ± 1000 | 6235 ± 74 | 23,091 ± 2658 |
(−)Epicatechin | 6916 ± 1114 | 10,393 ± 397 | 19,396 ± 2867 | 6449 ± 483 | 16,043 ± 1268 |
(−)Epicatechin-gallate | 667 ± 151 | 518 ± 59 | 626 ± 25 | 489 ± 107 | 544 ± 62 |
Procyanidins B1 and B3 | 2327 ± 580 | 3029 ± 294 | 2244 ± 335 | 2793 ± 425 | 4737 ± 207 |
Procyanidin B2 | 1264 ± 44 | 1973 ± 327 | 2508 ± 116 | 2467 ± 13 | 2744 ± 450 |
Quercetin-3-glucoside | 4.1 ± 1.2 | 5.0 ± 0.2 | 13.4 ± 0.1 | 13.6 ± 3.4 | 3.7 ± 1.0 |
Quercetin-3-glucuronide | 2.6 ± 0.7 | 2.2 ± 0.4 | 2.0 ± 0.1 | 3.3 ± 1.0 | 1.9 ± 0.1 |
Quercetin-3-rutinoside | 2.6 ± 0.3 | 2.6 ± 0.0 | 1.8 ± 0.1 | 3.3 ± 0.3 | 2.5 ± 0.1 |
Sum of compounds | 25,305 ± 3147 | 29,245 ± 776 | 38,120 ± 3065 | 18,722 ± 657 | 47,881 ± 2992 |
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Ribéreau-Gayon, P.; Glories, Y.; Maujean, A.; Dubordieu, D. Handbook of Enology; John Wiley & Sons Ltd.: Chichester, UK, 2006. [Google Scholar]
- Maier, T.; Schieber, A.; Kammerer, D.R.; Carle, R. Residues of grape (Vitis vinifera L.) seed oil production as a valuable source of phenolic antioxidants. Food Chem. 2009, 112, 551–559. [Google Scholar] [CrossRef]
- Ghafoor, K.; Choi, Y.H.; Jeon, J.Y.; Jo, I.H. Optimization of ultrasound—Assisted extraction of phenolic compounds, antioxidants, and anthocyanins from grape (Vitis vinifera) seeds. J. Agric. Food Chem. 2009, 57, 4988–4994. [Google Scholar] [CrossRef] [PubMed]
- De la Cerda-Carrasco, A.; López-Solís, R.; Núñez-Kalasic, H.; Peña-Neira, A.; Obreque-Slier, E. Phenolic composition and antioxidant capacity of pomaces from four grape varieties (Vitis vinífera L.). J. Sci. Food Agric. 2015, 95, 1521–1527. [Google Scholar] [CrossRef] [PubMed]
- Lachman, J.; Hejtmánková, A.; Hejtmánková, K.; Hornícková, S.; Piveca, V.; Skala, O.; Dedina, M.; Pribyl, J. Towards complex utilisation of winemaking residues: Characterisation of grape seeds by total phenols, tocols and essential elements content as a by-product of winemaking. Ind. Crop. Prod. 2013, 49, 445–453. [Google Scholar] [CrossRef]
- Alvarez-Casas, M; Garcia-Jares, C; Llompart, M; Lores, M. Effect of experimental parameters in the pressurized solvent extraction of polyphenolic compounds from white grape marc. Food Chem. 2014, 15, 524–532. [Google Scholar]
- Alvarez-Casas, M.; Pajaro, M.; Lores, M.; Garcia-Jares, C. Characterization of grape marcs from native and foreign white varieties grown in north-western Spain by their polyphenolic composition and antioxidant activity. Eur. Food Res. Technol. in press.
- Dominguez, J.; Martínez-Cordeiro, H.; Alvarez-Casas, M.; Lores, M. Vermicomposting grape marc yields high quality organic biofertiliser and bioactive polyphenols. Waste Manag. Res. 2014, 32, 1235–1240. [Google Scholar] [CrossRef] [PubMed]
- Martínez-Cordeiro, H.; Alvarez-Casas, M.; Lores, M.; Dominguez, J. Vermicompostaje del bagazo de uva: Fuente de enmienda orgánica de alta calidad agrícola y de polifenoles bioactivos. Recur. Rurais 2013, 9, 55–63. [Google Scholar]
- Afonso, J.; Passos, C.P.; Manuel, A; Coimbra, M.A.; Silva, C.M.; Soares-da-Silva, P. Inhibitory effect of phenolic compounds from grape seeds (Vitis vinifera L.) on the activity of angiotensin I converting enzyme. LWT—Food Sci. Technol. 2013, 54, 265–270. [Google Scholar] [CrossRef]
- Yonguc, G.N.; Dodurga, Y.; Adiguzel, E.; Gundogdu, G.; Kucukatay, V.; Ozbal, S.; Yilmaz, I.; Cankurt, U.; Yilmaz, Y.; Akdogan, I. Grape seed extract has superior beneficial effects than vitamin E on oxidative stress and apoptosis in the hippocampus of streptozotocin induced diabetic rats. Gene 2015, 555, 119–126. [Google Scholar] [CrossRef] [PubMed]
- Filip, A.; Daicoviciu, D.; Clichici, S.; Bolfa, P.; Catoi, C.; Baldea, I.; Bolojan, L.; Olteanu, D.; Muresan, A.; Postescu, I.D. The effects of grape seeds polyphenols on SKH-1 mice skin irradiated with multiple doses of UV-B. J. Photochem. Photobiol. B Biol. 2011, 105, 133–142. [Google Scholar] [CrossRef] [PubMed]
- Hao, R.; Li, Q.; Zhao, J.; Li, H.; Wang, W.; Gao, J. Effects of grape seed procyanidins on growth performance, immune function and antioxidant capacity in weaned piglets. Livest. Sci. 2015, 178, 237–242. [Google Scholar] [CrossRef]
- Chouchouli, V.; Kalogeropoulos, N.; Konteles, S.J.; Karvela, E.; Makris, D.P.; Karathanos, V.T. Fortification of yoghurts with grape (Vitis vinifera) seed extracts. LWT-Food Sci. Technol. 2013, 53, 522–529. [Google Scholar] [CrossRef]
- Bayramoglu, E.E. Hidden treasure of the nature: PAs. The effects of grape seeds on free formaldehyde of leather. Ind. Crop. Prod. 2013, 41, 53–56. [Google Scholar] [CrossRef]
- Delgado-Adámez, J.; Gamero-Samino, E.; Valdés-Sánchez, E.; González-Gómez, D. In vitro estimation of the antibacterial activity and antioxidant capacity of aqueous extracts from grape-seeds (Vitis vinifera L.). Food Control 2012, 24, 136–141. [Google Scholar] [CrossRef]
- Joshi, S.S.; Su, X.; D’Souza, D.H. Antiviral effects of grape seed extract against feline calicivirus, murine norovirus, and hepatitis A virus in model food systems and under gastric conditions. Food Microbiol. 2015, 52, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Villani, T.S.; Reichert, W.; Ferruzzi, M.G.; Pasinetti, G.M.; Simon, J.E.; Wu, Q. Chemical investigation of commercial grape seed derived products to assess quality and detect adulteration. Food Chem. 2015, 70, 271–280. [Google Scholar] [CrossRef] [PubMed]
- Di Lecce, G.; Arranz, S.; Jauregui, O.; Tresserra-Rimbau, A.; Quifwer-Rada, P.; Lamuela-Raventós, M. Phenolic profiling of the skin, pulp and seeds of Albariño grapes using hybrid quadrupole time-of-flight and triple-quadrupole mass spectrometry. Food Chem. 2014, 145, 874–882. [Google Scholar] [CrossRef] [PubMed]
- Duba, K.S.; Casazza, A.A.; Mohamed, H.B.; Perego, P.; Fiori, L. Extraction of polyphenols from grape skins and defatted grape seeds using subcritical water: Experiments and modelling. Food Bioprod. Process. 2015, 94, 29–38. [Google Scholar] [CrossRef]
- Fernández, K.; Vega, M.; Aspé, E. An enzymatic extraction of proanthocyanidins from País grape seeds and skins. Food Chem. 2015, 168, 7–13. [Google Scholar] [CrossRef] [PubMed]
- Da Porto, C.; Porretto, E.; Decorti, D. Comparison of ultrasound-assisted extraction with conventional extraction methods of oil and polyphenols from grape (Vitis vinifera L.) seeds. Ultrason. Sonochem. 2013, 20, 1076–1080. [Google Scholar] [CrossRef] [PubMed]
- Cai, Y.; Yu, Y.; Duan, G.; Li, Y. Study on infrared-assisted extraction coupled with high performance liquid chromatography (HPLC) for determination of catechin, epicatechin, and procyanidin B2 in grape seeds. Food Chem. 2011, 127, 1872–1877. [Google Scholar] [CrossRef]
- Rockenbach, I.I.; Jungfer, E.; Ritter, C.; Santiago-Schübel, B.; Thiele, B.; Fett, R.; Galensa, R. Characterization of flavan-3-ols in seeds of grape pomace by CE, HPLC-DAD-MSn and LC-ESI-FTICR-MS. Food Res. Int. 2012, 48, 848–855. [Google Scholar] [CrossRef]
- Prodanov, M.; Vacas, V.; Hernandez, T.; Estrella, I.; Amador, B.; Winterhalter, P. Chemical characterisation of Malvar grape seeds (Vitis vinifera L.) by ultrafiltration and RP-HPLC-PAD-MS. J. Food Compos. Anal. 2013, 31, 284–292. [Google Scholar] [CrossRef]
- Kuhnert, S.; Lehmann, L.; Winterhalter, P. Rapid characterisation of grape seed extracts by a novel HPLC method on a diol stationary phase. J. Funct. Foods 2015, 15, 225–232. [Google Scholar] [CrossRef]
- Ferrer-Gallego, R.; Hernández-Hierro, J.M.; Rivas-Gonzalo, J.C.; Escribano-Bailón, M.T. Feasibility study on the use of near infrared spectroscopy to determine flavanols in grape seeds. Talanta 2010, 82, 1778–1783. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez-Pulido, F.J.; Hernández-Hierro, J.M.; Nogales-Bueno, J.; Gordillo, B.; González-Miret, M.L.; Heredia, F.J. A novel method for evaluating flavanols in grape seeds by near infrared hyperspectral imaging. Talanta 2014, 122, 145–150. [Google Scholar] [CrossRef] [PubMed]
- Singleton, V.L.; Rossi, J.A., Jr. Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. Am. J. Enol. Vitic. 1995, 16, 144–158. [Google Scholar]
- Brand-Williams, W.; Cuvelier, M.E.; Berset, C. Use of a free radical method to evaluate antioxidant activity. LWT—Food Sci. Technol. 1995, 28, 25–30. [Google Scholar] [CrossRef]
- Guendez, R.; Kallithraka, S.; Makris, D.; Kefalas, P. Determination of low molecular weight polyphenolic constituents in grape (Vitis vinifera sp.) seed extracts: Correlation with antiradical activity. Food Chem. 2005, 89, 1–9. [Google Scholar] [CrossRef]
- Rodríguez-Montealegre, R.; Romero-Peces, R.; Chacón-Vozmediano, J.L.; Martínez-Gascueña, J.; García-Romero, E. Phenolic compounds in skins and seeds of ten grape Vitis vinifera varieties grown in a warm climate. J. Food Compos. Anal. 2006, 19, 687–693. [Google Scholar] [CrossRef]
- Downey, M.O.; Harvey, J.S.; Robinson, S.P. The effect of bunch shading on berry development and flavonoid accumulation in Shiraz grapes. Aust. J. Grape Wine Res. 2004, 10, 55–73. [Google Scholar] [CrossRef]
- Kammerer, D.; Claus, A.; Carle, R.; Schieber, A. Polyphenol screening of pomace from red and white grape varieties (Vitis vinifera L.) by HPLC-DAD-MS/MS. J. Agric. Food Chem. 2004, 52, 4360–4367. [Google Scholar] [CrossRef] [PubMed]
- Yilmaz, Y.; Toledo, R.T. Major flavonoids in grape seeds and skins: Antioxidant capacity of catechin, epicatechin, and gallic acid. J. Agric. Food Chem. 2004, 52, 255–260. [Google Scholar] [CrossRef] [PubMed]
© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Garcia-Jares, C.; Vazquez, A.; Lamas, J.P.; Pajaro, M.; Alvarez-Casas, M.; Lores, M. Antioxidant White Grape Seed Phenolics: Pressurized Liquid Extracts from Different Varieties. Antioxidants 2015, 4, 737-749. https://doi.org/10.3390/antiox4040737
Garcia-Jares C, Vazquez A, Lamas JP, Pajaro M, Alvarez-Casas M, Lores M. Antioxidant White Grape Seed Phenolics: Pressurized Liquid Extracts from Different Varieties. Antioxidants. 2015; 4(4):737-749. https://doi.org/10.3390/antiox4040737
Chicago/Turabian StyleGarcia-Jares, Carmen, Alberto Vazquez, Juan P. Lamas, Marta Pajaro, Marta Alvarez-Casas, and Marta Lores. 2015. "Antioxidant White Grape Seed Phenolics: Pressurized Liquid Extracts from Different Varieties" Antioxidants 4, no. 4: 737-749. https://doi.org/10.3390/antiox4040737
APA StyleGarcia-Jares, C., Vazquez, A., Lamas, J. P., Pajaro, M., Alvarez-Casas, M., & Lores, M. (2015). Antioxidant White Grape Seed Phenolics: Pressurized Liquid Extracts from Different Varieties. Antioxidants, 4(4), 737-749. https://doi.org/10.3390/antiox4040737