Think Yellow and Keep Green—Role of Sulfanes from Garlic in Agriculture
Abstract
:1. Reactive Sulfur Species (RSS) of Garlic and Their Mode of Action
2. Effect of RSS on Different Agricultural Pests
2.1. Insecticidal Effects
2.2. Nematicidal, Molluscicidal, and Gastropodicidal Effects
2.3. Fungicidal Effects
3. The Generation of Green Pesticides
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Block, E. Garlic and Other Alliums, the Lore and the Science; RSC Publishing: Cambridge, UK, 2010. [Google Scholar]
- Jacob, C.; Anwar, A. Sulfides in Allium vegetables. In Chemoprevention of Cancer and DNA Damage by Dietary Factors; Knasmueller, S., DeMarini, D., Johnson, I., Gerhaeuser, C., Eds.; Wiley-VCH Verlag GmbH & Co.: Weinheim, Germany, 2009; pp. 663–684. [Google Scholar]
- Dziri, S.; Casabianca, H.; Hanchi, B.; Hosni, K. Composition of garlic essential oil (Allium sativum L.) as influenced by drying method. J. Essent. Oil Res. 2014, 26, 91–96. [Google Scholar] [CrossRef]
- Schneider, T.; Ba, L.A.; Khairan, K.; Zwergel, C.; Bach, N.D.; Bernhardt, I.; Brandt, W.; Wessjohann, L.; Diederich, M.; Jacob, C. Interactions of polysulfanes with components of red blood cells. MedChemComm. 2011, 2, 196–200. [Google Scholar] [CrossRef]
- Anwar, A.; Burkholz, T.; Scherer, C.; Abbas, M.; Lehr, C.-M.; Diederich, M.; Jacob, C.; Daum, N. Naturally occurring reactive sulfur species, their activity against Caco-2 cells, and possible modes of biochemical action. J. Sulfur. Chem. 2008, 29, 251–268. [Google Scholar] [CrossRef]
- Iciek, M.; Kowalczyk-Pachel, D.; Bilska-Wilkosz, A.; Kwiecien, I.; Gorny, M.; Wlodek, L. S-sulfhydration as a cellular redox regulation. Biosci. Rep. 2015, 36. [Google Scholar] [CrossRef] [PubMed]
- Münchberg, U.; Anwar, A.; Mecklenburg, S.; Jacob, C. Polysulfides as biologically active ingredients of garlic. Org. Biomol. Chem. 2007, 5, 1505–1518. [Google Scholar] [CrossRef] [PubMed]
- Busch, C.; Jacob, C.; Anwar, A.; Burkholz, T.; Ba, L.A.; Cerella, C.; Diederich, M.; Brandt, W.; Wessjohann, L.; Montenarh, M. Diallylpolysulfides induce growth arrest and apoptosis. Int. J. Oncol. 2010, 36, 743–749. [Google Scholar] [PubMed]
- Jacob, C.; Anwar, A.; Burkholz, T. Perspective on recent developments on sulfur-containing agents and hydrogen sulfide signaling. Planta Med. 2008, 74, 1580–1592. [Google Scholar] [CrossRef] [PubMed]
- Martins, N.; Petropoulos, S.; Ferreira, I.C.F.R. Chemical composition and bioactive compounds of garlic (Allium Sativum. L.) as affected by pre- and post-harvest conditions: A review. Food Chem. 2016, 211, 41–50. [Google Scholar] [CrossRef] [PubMed]
- Flint, H.M.; Parks, N.J.; Holmes, J.E.; Jones, J.A.; Higuera, C.M. Tests of garlic oil for the control of the silverleaf whitefly, Bemisia argentifolia bellows and perring (Homoptera: Aleyrodidae) in cotton. Southwest. Entomol. 1995, 20, 137–150. [Google Scholar]
- Vassiliou, V.A. Botanical Insecticides in Controlling Kelly’s Citrus Thrips (Thysanoptera: Thripidae) on Organic Grapefruits. J. Econ. Entomol. 2011, 104, 1979–1985. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.; Chen, S.X.; Ho, S.H. Bioactivities of methyl allyl disulfide and diallyl trisulfide from essential oil of garlic to two species of stored-product pests, Sitophilus zeamais (Coleoptera: Curculionidae) and Tribolium castaneum (Coleoptera: Tenebrionidae). J. Econ. Entomol. 2000, 93, 537–543. [Google Scholar] [CrossRef] [PubMed]
- Mikhaiel, A.A. Potential of some volatile oils in protecting packages of irradiated wheat flour against ephestia kuehniella and Tribolium castaneum. J. Stored Prod. Res. 2011, 47, 357–364. [Google Scholar] [CrossRef]
- Prowse, G.M.; Galloway, T.S.; Foggo, A. Insecticidal activity of garlic juice in two dipteran pests. Agric. For. Entomol. 2006, 8, 1–6. [Google Scholar] [CrossRef]
- Bhatnagar-Thomas, P.L.; Pal, A.K. Studies on the insecticidal activity of garlic oil. 1 differential of toxicity of the oil to Musca domestica nebula Fabr and Trogoderma granarium Everts. J. Food Sci. Technol. 1974, 11, 110–113. [Google Scholar]
- Koul, O. Biological activity of volatile di-n-propyl disulfide from seeds of neem, Azadirachta indica (Meliaceae), to two species of stored grain pests, Sitophilus oryzae (L.) and Tribolium castaneum (Herbst). J. Econ. Entomol. 2004, 97, 1142–1147. [Google Scholar] [CrossRef] [PubMed]
- Nowsad, A.; Mondal, R.; Islam, M. Effectiveness of neem, garlic and red chili against adult dermestid beetle in sun dried fish. Progress. Agric. 2009, 20, 133–142. [Google Scholar] [CrossRef]
- Park, I.K.; Choi, K.S.; Kim, D.H.; Choi, I.H.; Kim, L.S.; Bak, W.C.; Choi, J.W.; Shin, S.C. Fumigant activity of plant essential oils and components from horseradish (Armoracia rusticana), anise (Pimpinella anisum) and garlic (Allium sativum) oils against Lycoriella ingenua (Diptera: Sciaridae). Pest Manag. Sci. 2006, 62, 723–728. [Google Scholar] [CrossRef] [PubMed]
- Sharaby, A.; El-Nojiban, A. Evaluation of some plant essential oils against the black cutworm Agrotis ipsilon. Glob. J. Adv. Res. 2015, 2, 701–711. [Google Scholar]
- Kim, S.I.; Chae, S.H.; Youn, H.S.; Yeon, S.H.; Ahn, Y.J. Contact and fumigant toxicity of plant essential oils and efficacy of spray formulations containing the oils against B- and Q-biotypes of Bemisia tabaci. Pest Manag. Sci. 2011, 67, 1093–1099. [Google Scholar] [CrossRef] [PubMed]
- Zhao, N.N.; Zhang, H.; Zhang, X.C.; Luan, X.B.; Zhou, C.; Liu, Q.Z.; Shi, W.P.; Liu, Z.L. Evaluation of acute toxicity of essential oil of garlic (Allium sativum) and its selected major constituent compounds against overwintering Cacopsylla chinensis (Hemiptera: Psyllidae). J. Econ. Entomol. 2013, 102, 1349–1354. [Google Scholar] [CrossRef]
- Douri, A.; Bougdad, L.F.; Assobhei, O.; Moumni, M. Chemical composition and biological activity of Allium sativum essential oils against Callosobruchus maculatus. J. Environ. Sci. 2013, 3, 30–36. [Google Scholar] [CrossRef]
- Hincapie, C.A.; Lopez, P.G.E.; Ch, T. Comparison and characterization of garlic (Allium sativum L.) bulbs extracts and their effect on mortality and repellency of Tetranychus urticae Koch (Acari: Tetranychidae). Chil. J. Agric. Res. 2008, 68, 317–327. [Google Scholar] [CrossRef]
- Chaubey, M. Fumigant and contact toxicity of Allium sativum (Alliaceae) essential oil against Sitophilus oryzae L. (Coleoptera: Dryophthoridae). Entomol. Appl. Sci. Lett. 2016, 3, 43–48. [Google Scholar]
- Machial, C.M.; Shikano, I.; Smirle, M.; Bradbury, R.; Isman, M.B. Evaluation of the toxicity of 17 essential oils against Choristoneura rosaceana (Lepidoptera: Tortricidae) and Trichoplusia. ni (Lepidoptera: Noctuidae). Pest Manag. Sci. 2010, 66, 1116–1121. [Google Scholar] [CrossRef] [PubMed]
- Singh, S.; Singh, B.; Singh, A.P. Nematodes: A threat to sustainability of agriculture. Procedia Environ. Sci. 2015, 29, 215–216. [Google Scholar] [CrossRef]
- Mobki, M.; Safavi, S.A.; Safaralizadeh, M.H.; Panahi, O. Toxicity and repellency of garlic (Allium sativum L.) extract grown in Iran against Tribolium castaneum (Herbst) larvae and adults. Arch. Phytopathol. Plant Prot. 2014, 47, 59–68. [Google Scholar] [CrossRef]
- Rahman, G.K.M.M.; Motoyama, N. Repellent effect of garlic against stored product pests. J. Pestic. Sci. 2000, 25, 247–252. [Google Scholar] [CrossRef]
- Maheswari, M.; Revanasiddadiah, H.; Govindaiag, G. Efficacy of different plant extracts as antifeedant against mulberry mealy bug Maconellicoccus hirsutus. In Proceedings of the Black, Caspian Seas and Central Asia Silk Association (BACSA) Conference, Tashkent, Uzbekistan, 11–15 April 2007; pp. 116–120.
- Ho, S.H.; Koh, L.; Ma, Y.; Huang, Y.; Sim, K.Y. The oil of garlic, Allium sativum L. (Amaryllidaceae), as a potential grain protectant against Tribolium castaneum (Herbst) and Sitophilus zeamais Motsch. Postharvest Biol. Technol. 1996, 9, 41–48. [Google Scholar] [CrossRef]
- Yang, F.L.; Zhu, F.; Lei, C.L. Insecticidal activities of garlic substances against adults of grain moth, Sitotroga cerealella (Lepidoptera: Gelechiidae). Insect Sci. 2012, 19, 205–212. [Google Scholar] [CrossRef]
- Sukul, N.C.; Das, P.K.; De, G.C. Nematicidal action of some edible crops. Nematologica 1974, 20, 187–191. [Google Scholar] [CrossRef]
- Bebber, D.P.; Holmes, T.; Gurr, S.J. The global spread of crop pests and pathogens. Glob. Ecol. Biogeogr. 2014, 23, 1398–1407. [Google Scholar] [CrossRef] [Green Version]
- El-Nagdi, W.M.A.-E.; Youssef, M.M.A. Comparative efficacy of garlic clove and castor seed aqueous extracts against the root-knot nematode, Meloidogyne incognita infecting tomato plants. J. Plant Prot. Res. 2013, 53, 285–288. [Google Scholar] [CrossRef]
- Cetintas, R.; Yarba, M.M. Nematicidal effects of five plant essential oils on the southern root-knot nematode, Meloidogyn. incognita race 2. J. Anim. Vet. Adv. 2010, 9, 222–225. [Google Scholar]
- Martinotti, M.D.; Castellanos, S.J.; Gonzalez, R.; Camargo, A.; Fanzone, M. Nematicidal effects of extracts of garlic, grape pomace and olive mill waste, on Meloidogyne incognita, on grapevine cv Chardonnay. Rev. Fac. Cienc. Agrar. 2016, 48, 211–224. [Google Scholar]
- Danquah, W.B.; Back, M.A.; Grove, I.G.; Haydock, P.P.J. In vitro nematicidal activity of a garlic extract and salicylaldehyde on the potato cyst nematode, Globodera pallida. Nematology 2011, 13, 869–885. [Google Scholar] [CrossRef]
- Gong, B.; Bloszies, S.; Li, X.; Wei, M.; Yang, F.J.; Shi, Q.H.; Wang, X.F. Efficacy of garlic straw application against root-knot nematodes on tomato. Sci. Hortic. 2013, 161, 49–57. [Google Scholar] [CrossRef]
- Singh, V.; Singh, D. Characterization of allicin as a molluscicidal agent in Allium sativum (garlic). Biol. Agric. Hortic. 1995, 12, 119–131. [Google Scholar] [CrossRef]
- Singh, D.; Singh, V. Enzyme inhibition by allicin, the molluscicidal agent of Allium sativum L. (garlic). Phytother. Res. 1996, 10, 383–386. [Google Scholar] [CrossRef]
- Sierotzki, H.; Scalliet, G. A review of current knowledge of resistance aspects for the next-generation succinate dehydrogenase inhibitor fungicides. Phytopathology 2013, 103, 880–887. [Google Scholar] [CrossRef] [PubMed]
- Park, I.K.; Park, J.Y.; Kim, K.H.; Choi, I.H.; Choi, K.S.; Kim, C.S.; Shin, S.C. Nematicidal activity of plant essential oils and components from garlic (Allium sativum) and cinnamon (Cinnamomum verum) oils against the pine wood nematode (Bursaphelenchus xylophilus). Nematology 2005, 7, 767–774. [Google Scholar] [CrossRef]
- Yin, M.C.; Tsao, S.M. Inhibitory effect of seven Allium plants upon three Aspergillus species. Int. J. Food Microbiol. 1999, 49, 49–56. [Google Scholar] [CrossRef]
- Irkin, R.; Korukluoglu, M. Control of Aspergillus niger with garlic, onion and leek extracts. Afr. J. Biotechnol. 2007, 6, 384–387. [Google Scholar]
- Mostafa, A.A.; Al-Rahmah, A.N.; Yakout, S.M.; Abd-Alrahman, S.H. Bioactivity of garlic bulb extract compared with fungicidal treatment against tomato phytopathogenic fungi. J. Pure Appl. Microbiol. 2013, 7, 1925–1932. [Google Scholar]
- Daniel, C.K.; Lennox, C.L.; Vries, F.A. In vitro effects of garlic extracts on pathogenic fungi Botrytis cinerea, Penicillium expansum and Neofabraea alba. S. Afr. J. Sci. 2015, 111, 93–100. [Google Scholar] [CrossRef]
- Tedeschi, P.; Leis, M.; Pezzi, M.; Civolani, S.; Maietti, A.; Brandolini, V. Insecticidal activity and fungitoxicity of plant extracts and components of horseradish (Armoracia rusticana) and garlic (Allium sativum). J. Environ. Sci. Health B 2011, 46, 486–490. [Google Scholar] [PubMed]
- Isman, M.B. Botanical insecticides, deterrents, and repellents in modern agriculture and an increasingly regulated world. Entomology 2006, 51, 45–66. [Google Scholar] [CrossRef] [PubMed]
- Comission, E. Information about the Directives on European Comission. Available online: http://eur-lex.europa.eu/homepage.html (accessed on 23 September 2016).
- Isman, M.B. Botanical insecticides: For richer, for poorer. Pest Manag. Sci. 2008, 64, 8–11. [Google Scholar] [CrossRef] [PubMed]
- Jacob, C. A scent of therapy: Pharmacological implications of natural products containing redox-active sulfur atoms. Nat. Prod. Rep. 2006, 23, 851–863. [Google Scholar] [CrossRef] [PubMed]
- Cerella, C.; Scherer, C.; Cristofanon, S.; Henry, E.; Anwar, A.; Busch, C.; Montenarh, M.; Dicato, M.; Jacob, C.; Diederich, M. Cell cycle arrest in early mitosis and induction of caspase-dependent apoptosis in U937 cells by diallyltetrasulfide (Al2S4). Apoptosis 2009, 14, 641–654. [Google Scholar] [CrossRef] [PubMed]
- Blacquière, T.; Smagghe, G.; van Gestel, C.A.M.; Mommaerts, V. Neonicotinoids in bees: A review on concentrations, side-effects and risk assessment. Ecotoxicology 2012, 21, 973–992. [Google Scholar] [CrossRef] [PubMed]
- Xavier, V.M.; Message, D.; Picanço, M.C.; Chediak, M.; Júnior, P.A.S.; Ramos, R.S.; Martins, J.C. Acute toxicity and sublethal effects of botanical insecticides to honey bees. J. Insect Sci. 2015, 15, 1–6. [Google Scholar] [CrossRef]
- Iwasa, T.; Motoyama, N.; Ambrose, J.T.; Roe, R.M. Mechanism for the differential toxicity of neonicotinoid insecticides in the honey bee, Apis mellifera. Crop Prot. 2004, 23, 371–378. [Google Scholar] [CrossRef]
- Schmuck, R.; Stadler, T.; Schmidt, H.-W. Field relevance of a synergistic effect observed in the laboratory between an EBI fungicide and a chloronicotinyl insecticide in the honeybee (Apis mellifera L, Hymenoptera). Pest Manag. Sci. 2003, 59, 279–286. [Google Scholar] [CrossRef] [PubMed]
- Comission, E. Guidance Document on Botanical Active Substances Used in Plant Protection Products. Available online: https://ec.europa.eu/food/sites/food/files/plant/docs/pesticides_ppp_app-proc_guide_doss_botanicals-rev-8.pdf (accessed on 23 September 2016).
- Anwar, A.; Groom, M.; Arbach, M.; Hamilton, C.J. How to turn the chemistry of garlic into a “botanical” pesticide. In Recent Advances in Redox Active Plant and Microbial Products: From Basic Chemistry to Widespread Applications in Medicine and Agriculture; Jacob, C., Kirsch, G., Slusarenko, A., Winyard, P.G., Burkholz, T., Eds.; Springer: Dordrecht, The Netherlands, 2014; pp. 323–341. [Google Scholar]
- Comission, E. Eu Pesticide Database. Available online: http://ec.Europa.Eu/food/plant/pesticides/eu-pesticides-database/public/?Event=homepage&language=en) (accessed on 23 September 2016).
- European Food Safety Authority. Conclusion on the peer review of the pesticide risk assessment of the active substance garlic extract. EFSA J. 2012, 10, 9–14. [Google Scholar]
Insect | Effected Crops | Garlic Composition a | Life Stage | LC50 (mg/L) b | Reference |
---|---|---|---|---|---|
Agrotis ipsilon (Black cutworm) | Strawberries, rice, tobacco, cotton, sugar beet | Garlic oil | Eggs | 60 | [20] |
Larvae | 190 | [20] | |||
Pupae | 90 | [20] | |||
Bemisia tabaci (Silverleaf whitefly) | Tobacco, tomatoes, brassica, cucumber, pumpkin, cotton, melons | Garlic oil | Adults | 150 | [21] |
Cacopsylla chinensis | Pears | Garlic oil | Adults | 142 | [22] |
DAS2 | Adults | 1104 | [22] | ||
DAS3 | Adults | 640 | [22] | ||
Callosobruchus maculatus (Cowpea weevil) | Cowpea beans | Garlic oil | Adults | 0.25 | [23] |
Delium radicum (Cabbage root fly) | Brassica | Garlic extract | Eggs | 800 | [15] |
Larvae | 2.64 × 105 | [15] | |||
Adults | 1600 | [15] | |||
Heteracris littoralis (Grasshopper) | Corn, rice, cotton, vegetables | Garlic oil | First instar larvae | 670 | [24] |
Lycoriella ingénue (Sciarid fly) | Mushrooms, herbs | DAS1 | Larvae | 0.25 | [19] |
DAS2 | Larvae | 0.087 | [19] | ||
DAS3 | Larvae | 0.25 | [19] | ||
Pezothrips kellyanus (Kelly's citrus thrips) | Citrus fruits | Garlic extract | Larvae | 2.6 × 105 | [12] |
Sitophilus oryzae (rice weevil) | Rice | Garlic oil | Adults | 0.017 | [25] |
Sitophilus zeamais (Maize weevil) | Maize | DAS3 | Adults | 5.54 | [26] |
Tribolium castaneum (Red flour beetle) | Flour, cereals | DAS3 | Adults | 1.02 | [26] |
Trichoplusia ni (Cabbage looper) | Cabbage | Garlic oil | Larvae | 3300 | [27] |
Effect Type | Crops | Garlic Composition a | LC50 (mg/L) b | Reference |
---|---|---|---|---|
Nematicide | ||||
Melodigyne incognita | Carrots, parsnips, cotton, tomato | Garlic straw | 2000 | [39] |
Globodera pallida | Potato | Garlic extract | 983 | [38] |
Bursaphelenchus xylophilus | Pine | DAS3 | 3 | [43] |
Bursaphelenchus xylophilus | Pine | DAS2 | 36 | [43] |
Molluscicide | ||||
Deroceras panormitanum(Slug) | All broad leaf crops | Garlic extract | 5000 | [40,41] |
Oxyloma pfeifferi(Snail) | All broad leaf crops | Garlic extract | 5000 c | [40,41] |
Fungi | Crop | Garlic Composition a | LC50 (mg/L) b | Reference |
---|---|---|---|---|
Aspergillus flavus | Cereal grains, legumes, tree nuts | Garlic extract | 104 | [44] |
Aspergillus niger | Grapes, apricots, onion, vegetables | Garlic oil | 325 | [45] |
Botrytis cinerea | Grapes, strawberry, tomato | Garlic extract | 1.3 × 105 | [46,47] |
Fusarium oxysporum | Tomato, legume, cucurbit, banana | Garlic extract | 1.6 × 103 | [48] |
Penicillium expansum | Apples | Garlic extract | 8 × 104 | [47] |
Pythium aphanidermatum | Soybean, beets, peppers, cucurbits, cotton | Garlic extract | 4 | [48] |
Rhizoctonia solani | Soybean, sugar beet, potato, cucumber, rice | Garlic extract | 8000 | [48] |
Product | Use/Crop | Regulatory Status * | Country |
---|---|---|---|
Alsa | Repellent | -- | Netherlands |
Eagle Green Care | Nematicide/Turf, grass | Approved | UK |
ENVIRepel | Repellent | -- | Italy |
Garland | Soil amendment | -- | UK |
Garlic Barrier | Insect repellent | -- | USA |
Natualho | Repellent | -- | Brazil |
NEMguard DE | Nematicide/Carrots, parsnips | Approved | UK, Italy, Cyprus, Greece |
NEMguard Liquid | Nematicide/Tomato, peppers, cucurbits Insecticide/Cabbage root fly | Approved | UK, Italy, Ireland |
NEMguard PCN | Nematicide, Potato | Approved | UK |
Nemater | Soil amendment | -- | Netherlands |
© 2016 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (( http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Anwar, A.; Gould, E.; Tinson, R.; Groom, M.; Hamilton, C.J. Think Yellow and Keep Green—Role of Sulfanes from Garlic in Agriculture. Antioxidants 2017, 6, 3. https://doi.org/10.3390/antiox6010003
Anwar A, Gould E, Tinson R, Groom M, Hamilton CJ. Think Yellow and Keep Green—Role of Sulfanes from Garlic in Agriculture. Antioxidants. 2017; 6(1):3. https://doi.org/10.3390/antiox6010003
Chicago/Turabian StyleAnwar, Awais, Emma Gould, Ryan Tinson, Murree Groom, and Chris J. Hamilton. 2017. "Think Yellow and Keep Green—Role of Sulfanes from Garlic in Agriculture" Antioxidants 6, no. 1: 3. https://doi.org/10.3390/antiox6010003
APA StyleAnwar, A., Gould, E., Tinson, R., Groom, M., & Hamilton, C. J. (2017). Think Yellow and Keep Green—Role of Sulfanes from Garlic in Agriculture. Antioxidants, 6(1), 3. https://doi.org/10.3390/antiox6010003