Maternal Supplementation with Antioxidant Vitamins in Sheep Results in Increased Transfer to the Fetus and Improvement of Fetal Antioxidant Status and Development
Abstract
:1. Introduction
2. Materials and Methods
2.1. Animals and Experimental Procedure
2.2. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Brodsky, D.; Christou, H. Current concepts in intrauterine growth restriction. J. Intens. Care Med. 2004, 19, 307–319. [Google Scholar] [CrossRef] [PubMed]
- Nardozza, L.M.; Araujo Júnior, E.; Barbosa, M.M.; Caetano, A.C.; Lee, D.J.; Moron, A.F. Fetal growth restriction: current knowledge to the general Obs/Gyn. Arch. Gynecol. Obstet. 2012, 286, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Cetin, I.; Mando, C.; Calabrese, S. Maternal predictors of intrauterine growth restriction. Curr. Opin. Clin. Nutr. Metab. Care 2013, 16, 310–319. [Google Scholar] [CrossRef] [PubMed]
- Gonzalez-Bulnes, A.; Astiz, S.; Parraguez, V.H.; Garcia-Contreras, C.; Vazquez-Gomez, M. Empowering Translational Research in Fetal Growth Restriction: Sheep and Swine. Anim. Mod. Curr. Pharm. Biotechnol. 2016, 17, 848–855. [Google Scholar] [CrossRef]
- Charlton, V.; Johengen, M. Effects of intrauterine nutritional supplementation on fetal growth retardation. Biol. Neonate 1985, 48, 125–142. [Google Scholar] [CrossRef] [PubMed]
- Rumball, C.W.H.; Harding, J.E.; Oliver, M.H.; Bloomfield, F.H. Effects of twin pregnancy and periconceptional undernutrition on maternal metabolism, fetal growth and glucose-insulin axis function in ovine pregnancy. J. Physiol. 2008, 586, 1399–1411. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Freetly, H.C.; Leymaster, K.A. Relationship between litter birth weight and litter size in six breeds of sheep. J. Anim. Sci. 2004, 82, 612–618. [Google Scholar] [CrossRef]
- Gootwine, E.; Spencer, T.E.; Bazer, F.W. Litter-size-dependent intrauterine growth restriction in sheep. Animal 2007, 1, 547–564. [Google Scholar] [CrossRef] [Green Version]
- Gardner, D.S.; Buttery, P.J.; Daniel, Z.; Symonds, M.E. Factors affecting birth weight in sheep: Maternal environment. Reproduction 2007, 133, 297–307. [Google Scholar] [CrossRef]
- van der Linden, D.S.; Sciascia, Q.; Sales, F.; McCoard, S.A. Placental nutrient transport is affected by pregnancy rank in sheep. J. Anim. Sci. 2014, 91, 644–653. [Google Scholar] [CrossRef]
- Westgate, J.A.; Wassink, G.; Bennet, L.; Gunn, A.J. Spontaneous hypoxia in multiple pregnancies is associated with early fetal decompensation and enhanced T-wave elevation during brief repeated cord occlusion in near-term fetal sheep. Am. J. Obstet. Gynecol. 2005, 193, 1526–1533. [Google Scholar] [CrossRef] [PubMed]
- Rurak, D.; Bessette, N.W. Changes in fetal lamb arterial blood gas and acid-base status with advancing gestation. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2013, 304, R908–R916. [Google Scholar] [CrossRef] [PubMed]
- Parraguez, V.H.; Atlagich, M.; Araneda, O.; García, C.; Muñoz, A.; De los Reyes, M.; Urquieta, B. Effects of antioxidant vitamins on newborn and placental traits in gestations at high altitude: Comparative study in high and low altitude native sheep. Reprod. Fert. Dev. 2011, 23, 285–296. [Google Scholar] [CrossRef] [PubMed]
- Sales, F.; Peralta, O.A.; Narbona, E.; McCoard, S.; De los Reyes, M.; González-Bulnes, A.; Parraguez, V.H. Hypoxia and Oxidative Stress Are Associated with Reduced Fetal Growth in Twin and Undernourished Sheep Pregnancies. Animals 2018, 8, 217. [Google Scholar] [CrossRef] [PubMed]
- Gupta, P.; Narang, M.; Banerjee, B.D.; Basu, S. Oxidative stress in term small for gestational age neonates born to undernourished mothers: A case control study. BMC Pediatr. 2004, 4, 14. [Google Scholar] [CrossRef] [PubMed]
- Biri, A.; Bozkurt, N.; Turp, A.; Kavutcu, M.; Himmetoglu, O. Role of oxidative stress in intrauterine growth restriction. Gynecol. Obstet. Investig. 2007, 64, 187–192. [Google Scholar] [CrossRef] [PubMed]
- Burton, G.J.; Yung, H.W.; Cindrova-Davies, T.; Charnock-Jones, D.S. Placental endoplasmic reticulum stress and oxidative stress in the pathophysiology of unexplained intrauterine growth restriction and early onset preeclampsia. Placenta 2009, 30 (Suppl. A), S43–S48. [Google Scholar] [CrossRef] [PubMed]
- Myatt, L. Review: Reactive oxygen and nitrogen species and functional adaptation of the placenta. Placenta 2010, 31, S66–S69. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jauniaux, E.; Burton, G.J. The role of oxidative stress in placental-related diseases of pregnancy. J. Gynecol. Obstet. Biol. Reprod. (Paris) 2016, 45, 775–785. [Google Scholar] [CrossRef]
- Parraguez, V.H.; Urquieta, B.; De los Reyes, M.; González-Bulnes, A.; Astiz, S.; Muñoz, A. Steroidogenesis in sheep pregnancy with intrauterine growth retardation by high-altitude hypoxia: effects of maternal altitudinal status and antioxidant treatment. Reprod. Fert. Dev. 2013, 25, 639–645. [Google Scholar] [CrossRef]
- Jefferies, B.C. Body condition scoring and its use in management. Tasm. J. Agric. 1961, 32, 19–21. [Google Scholar]
- Richter, H.G.; Hansell, J.A.; Raut, S.; Giussani, D.A. Melatonin improves placental efficiency and birth weight and increases the placental expression of antioxidant enzymes in undernourished pregnancy. J. Pineal. Res. 2009, 46, 357–364. [Google Scholar] [CrossRef] [PubMed]
- Cofré, E.; Peralta, O.A.; Raggi, A.; De Los Reyes, M.; Sales, F.; González-Bulnes, A.; Parraguez, V.H. Ram semen deterioration by short-term exposure to high altitude is prevented by improvement of antioxidant status. Animal 2017, 12, 1007–1014. [Google Scholar] [CrossRef]
- Knight, C.A.; Dutcher, R.A.; Guerrant, N.B.; Bechtel, S. Destruction of ascorbic acid in the rumen of dairy cows. J. Dairy Sci. 1941, 24, 567–577. [Google Scholar] [CrossRef]
- Hidiroglou, M.; Batra, T.R.; Zhao, X. Comparison of vitamin C bioavailability after multiple or single oral dosing of diferente formulations in sheep. Reprod. Nutr. Dev. 1997, 37, 443–448. [Google Scholar] [CrossRef]
- Ocak, S.; Emsen, E.; Köycegiz, F.; Kutluca, M.; Önder, H. Comparison of placental traits and their relation to litter size and parity weight in sheep. J. Anim. Sci. 2009, 87, 3196–3201. [Google Scholar] [CrossRef]
- Dhakal, K.; Maltecca, C.; Cassady, J.P.; Baloche, G.; Williams, C.M.; Washburn, S.P. Calf birth weight, gestation length, calving ease, and neonatal calf mortality in Holstein, Jersey, and crossbred cows in a pasture system. J. Dairy Sci. 2013, 96, 690–698. [Google Scholar] [CrossRef] [PubMed]
- Blickstein, I. Normal and abnormal growth of multiples. Semin. Neonatol. 2002, 7, 177–185. [Google Scholar] [CrossRef]
- Meyer, K.M.; Koch, J.M.; Jayanth Ramadoss, J.; Kling, P.J.; Magness, R.R. Ovine surgical model of uterine space restriction: Interactive effects of uterine anomalies and multifetal gestations on fetal and placental growth. Biol. Reprod. 2010, 83, 799–806. [Google Scholar] [CrossRef]
- Lekatz, L.A.; Caton, J.S.; Taylor, J.B.; Reynolds, L.P.; Redmer, D.A.; Vonnahme, K.A. Maternal selenium supplementation and timing of nutrient restriction in pregnant sheep: Effects on maternal endocrine status and placental characteristics. J. Anim. Sci. 2010, 88, 955–971. [Google Scholar] [CrossRef]
- Lemley, C.O.; Meyer, A.; Camacho, L.E.; Neville, T.L.; Newman, D.J.; Caton, J.S.; Vonnahme, K.A. Melatonin supplementation alters uteroplacental hemodynamics and fetal development in an ovine model of intrauterine growth restriction. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2012, 302, R454–R467. [Google Scholar] [CrossRef] [PubMed]
- Dwyer, C.M.; Calvert, S.K.; Farish, M.; Donbavand, J.; Pickup, H.E. Breed, litter and parity effects on placental weight and placentome number, and consequences for the neonatal behaviour of the lamb. Theriogenology 2005, 63, 1092–1110. [Google Scholar] [CrossRef] [PubMed]
- Lemley, C.O.; Vonnahme, K.A. Physiology and endocrinology symposium: Alterations in uteroplacental hemodynamics during melatonin supplementation in sheep and cattle. J. Anim. Sci. 2017, 95, 2211–2221. [Google Scholar] [CrossRef] [PubMed]
- Norkus, E.P.; Bassi, J.; Rosso, P. Maternal-fetal transfer of ascorbic acid in the guinea pig. J. Nutr. 1979, 109, 2205–2212. [Google Scholar] [CrossRef] [PubMed]
- Das, S.; Powers, H.J. The effects of maternal intake and gestational age on materno-fetal transport of vitamin C in the guinea-pig. Br. J. Nutr. 1998, 80, 485–491. [Google Scholar] [CrossRef]
- Thakor, A.S.; Richter, H.G.; Kane, A.D.; Dunster, C.; Kelly, F.J.; Poston, L.; Giussani, D.A. Redox modulation of the fetal cardiovascular defense to hypoxemia. J. Physiol. 2010, 588, 4235–4247. [Google Scholar] [CrossRef]
- Thakor, A.S.; Herrera, E.A.; Serón-Ferré, M.; Giussani, D.A. Melatonin and vitamin C increase umbilical blood flow via nitric oxide-dependent mechanisms. J. Pineal. Res. 2010, 49, 399–406. [Google Scholar] [CrossRef] [PubMed]
- Mahan, D.C.; Vallet, J.L. Vitamin and mineral transfer during fetal development and the early postnatal period in pigs. J. Anim. Sci. 1997, 75, 2731–2738. [Google Scholar] [CrossRef]
- Léger, C.L.; Dumontier, C.; Fouret, G.; Boulot, P.; Descomps, B. A short-term supplementation of pregnant women before delivery does not improve significantly the vitamin E status of neonates--low efficiency of the vitamin E placental transfer. Int. J. Vitam. Nutr. Res. 1998, 68, 293–299. [Google Scholar]
- Herrera, E.; Ortega, H.; Alvino, G.; Giovannini, N.; Amusquivar, E.; Cetin, I. Relationship between plasma fatty acid profile and antioxidant vitamins during normal pregnancy. Eur. J. Clin Nutr. 2004, 58, 1231–1238. [Google Scholar] [CrossRef] [Green Version]
- Didenco, S.; Gillingham, M.B.; Go, M.D.; Leonard, S.W.; Traber, M.G.; McEvoy, C.T. Increased vitamin E intake is associated with higher alpha-tocopherol concentration in the maternal circulation but higher alpha-carboxyethyl hydroxychroman concentration in the fetal circulation. Am. J. Clin. Nutr. 2011, 93, 368–373. [Google Scholar] [CrossRef] [PubMed]
- Malone, J.I. Vitamin passage across the placenta. Clin. Perinatol. 1975, 2, 295–307. [Google Scholar] [PubMed]
- Etzl, R.P.; Vrekoussis, T.; Kuhn, C.; Schulze, S.; Pöschl, J.M.; Makrigiannakis, A.; Jeschke, U.; Rotzoll, D.E. Oxidative stress stimulates α-tocopherol transfer protein in human trophoblast tumor cells BeWo. J. Perinat. Med. 2012, 40, 373–378. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mohd Mutalip, S.S.; Ab-Rahim, S.; Rajikin, M.H. Vitamin E as an antioxidant in female reproductive health. Antioxidants 2018, 7, 22. [Google Scholar] [CrossRef] [PubMed]
- Kasimanickam, R.K.; Kasimanickam, V.R.; Rodriguez, J.S.; Pelzer, K.D.; Sponenberg, P.D.; Thatcher, C.D. Tocopherol induced angiogenesis in placental vascular network in late pregnant ewes. Reprod. Biol. Endocrinol. 2010, 8, 86. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kegley, E.B.; Ball, J.J.; Beck, P.A. Impact of mineral and vitamin status on beef cattle immune function and health. J. Anim. Sci. 2016, 94, 5401–5413. [Google Scholar] [CrossRef] [PubMed]
- Vieira-Filho, L.D.; Lara, L.S.; Silva, P.A.; Santos, F.T.J.; Luzardo, R.; Oliveira, F.S.T.; Paixão, A.D.O.; Vieyra, A. Placental malnutrition changes the regulatory network of renal Na-ATPase in adult rat progeny: Reprogramming by maternal a-tocopherol during lactation. Arch. Biochem. Biophys. 2011, 505, 91–97. [Google Scholar] [CrossRef]
- Chan, A.C. Partners in defense, vitamin E and vitamin C. Can. J. Physiol. Pharmacol. 1993, 71, 725–731. [Google Scholar] [CrossRef]
SC | SV | TC | TV | p-Value | |||
---|---|---|---|---|---|---|---|
V | R | VxR | |||||
Maternal vit. C (µg/mL) | 5.21 ± 0.69 | 8.09 ± 1.73 | 5.24 ± 0.27 | 7.60 ± 0.76 | 0.028 | ns | ns |
Maternal vit. E (µg/mL) | 3.33 ± 0.33 | 4.40 ± 0.25 | 3.18 ± 0.16 | 5.01 ± 0.39 | 0.001 | ns | ns |
Fetal Cord vit. C (µg/mL) | 2.26 ± 0.17 | 2.72 ± 0.28 | 3.26 ± 0.18 | 4.45 ± 0.19 | 0.007 | <0.001 | ns |
Fetal Cord vit. E (µg/mL) | 0.47 ± 0.03 | 0.55 ± 0.03 | 0.61 ± 0.04 | 0.72 ± 0.04 | 0.022 | <0.001 | ns |
Fetal Cord TAC (mM Trolox equiv.) | 0.43 ± 0.32 | 1.06 ± 0.16 | 0.21 ± 0.10 | 0.64 ± 0.08 | 0.006 | 0.060 | ns |
Fetal body weight (kg) | 3.81 ± 0.19 | 4.03 ± 0.21 | 2.82 ± 0.08 | 3.23 ± 0.07 | 0.023 | <0.01 | ns |
Total placentome weight (g) | 473.5 ± 26.5 | 431.4 ± 31,8 | 322.8 ± 17.8 | 307.9 ± 18.8 | ns | <0.001 | ns |
Placental efficiency | 7.70 ± 0.56 | 9.51 ± 0.45 | 9.53 ± 0.51 | 11.18 ± 0.51 | 0.007 | 0.007 | ns |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sales, F.; Peralta, O.A.; Narbona, E.; McCoard, S.; Lira, R.; De Los Reyes, M.; González-Bulnes, A.; Parraguez, V.H. Maternal Supplementation with Antioxidant Vitamins in Sheep Results in Increased Transfer to the Fetus and Improvement of Fetal Antioxidant Status and Development. Antioxidants 2019, 8, 59. https://doi.org/10.3390/antiox8030059
Sales F, Peralta OA, Narbona E, McCoard S, Lira R, De Los Reyes M, González-Bulnes A, Parraguez VH. Maternal Supplementation with Antioxidant Vitamins in Sheep Results in Increased Transfer to the Fetus and Improvement of Fetal Antioxidant Status and Development. Antioxidants. 2019; 8(3):59. https://doi.org/10.3390/antiox8030059
Chicago/Turabian StyleSales, Francisco, Oscar A. Peralta, Eileen Narbona, Sue McCoard, Raúl Lira, Mónica De Los Reyes, Antonio González-Bulnes, and Víctor H. Parraguez. 2019. "Maternal Supplementation with Antioxidant Vitamins in Sheep Results in Increased Transfer to the Fetus and Improvement of Fetal Antioxidant Status and Development" Antioxidants 8, no. 3: 59. https://doi.org/10.3390/antiox8030059
APA StyleSales, F., Peralta, O. A., Narbona, E., McCoard, S., Lira, R., De Los Reyes, M., González-Bulnes, A., & Parraguez, V. H. (2019). Maternal Supplementation with Antioxidant Vitamins in Sheep Results in Increased Transfer to the Fetus and Improvement of Fetal Antioxidant Status and Development. Antioxidants, 8(3), 59. https://doi.org/10.3390/antiox8030059