Analysis of Oxidative Stress-Related Markers in Crohn’s Disease Patients at Surgery and Correlations with Clinical Findings
Abstract
:1. Introduction
2. Methods
2.1. Study Population
2.2. Ethics Approval and Consent to Participate
2.3. Ferric Reducing Activity of Plasma (FRAP)
2.4. Advanced Oxidation Protein Product (AOPP)
2.5. Carbonyl Residues (CO)
2.6. Thiobarbituric Acid Reactive Substances (TBARS)
2.7. Advanced Glycated End-Products (AGEs)
2.8. Statistical Analyses
3. Results
3.1. Baseline Characteristics
3.2. Oxidative Damage and Antioxidant Capacity
3.3. Multiple Regression Analysis
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Molodecky, N.A.; Soon, I.N.G.S.; Rabi, D.M.; Ghali, W.A.; Ferris, M.; Chernoff, G.; Benchimol, E.I.; Panaccione, R.; Ghosh, S.; Barkema, H.W. Increasing incidence and prevalence of the Inflammatory Bowel Diseases. YGAST 2012, 142, 46–54. [Google Scholar]
- Ng, S.C.; Shi, H.Y.; Hamidi, N.; Underwood, F.E.; Tang, W.; Benchimol, E.I.; Panaccione, R.; Ghosh, S.; Wu, J.C.Y.; Chan, F.K.L.; et al. Articles worldwide incidence and prevalence of Inflammatory Bowel Disease in the 21st century: A systematic review of population-based studies. Lancet 2017, 390, 2769–2778. [Google Scholar] [CrossRef]
- Torres, J.; Mehandru, S.; Colombel, J.F.; Peyrin-Biroulet, L. Crohn’s disease. Lancet 2017, 389, 1741–1755. [Google Scholar] [CrossRef]
- Pereira, C.; Gracio, D.; Teixeira, J.P.; Magro, F. Oxidative stress and DNA damage: Implications in Inflammatory Bowel Disease. Inflamm. Bowel Dis. 2015, 21, 16–19. [Google Scholar] [CrossRef] [PubMed]
- Patlevic, P.; Vascova, J.; Svork, P., Jr.; Vasko, L.; Svork, P. Reactive oxygen species and antioxidant defense in human gastrointestinal diseases. Integr. Med. Res. 2016, 5, 250–258. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tian, T.; Wang, Z.; Zhang, J. Review article pathomechanisms of oxidative stress in Inflammatory Bowel Disease and potential antioxidant therapies. Oxid. Med. Cell Longev. 2017, 2017. [Google Scholar] [CrossRef] [PubMed]
- Heidemann, J.; Domschke, W.; Kucharzik, T.; Maaser, C. Intestinal microvascular endothelium and innate immunity in Inflammatory Bowel Disease: A second line of defense? Infect. Immun. 2006, 74, 5425–5432. [Google Scholar] [CrossRef] [PubMed]
- Rezaie, A.; Parker, R.D.; Abdollahi, M. Oxidative stress and pathogenesis of Inflammatory Bowel Disease: An epiphenomenon or the cause? Dig. Dis. Sci. 2007, 52, 2015–2021. [Google Scholar] [CrossRef]
- Ardizzone, S.; Sarzi Puttini, P.; Cassinotti, A.; Bianchi Porro, G. Extraintestinal manifestations of Inflammatory Bowel Disease. Dig. Liver Dis. 2008, 40, S253–S259. [Google Scholar] [CrossRef]
- Bourgonje, A.R.; von Martels, J.Z.H.; Bulthuis, M.L.C.; van Londen, M.; Faber, K.N.; Dijkstra, G.; van Goor, H. Crohn’s disease in clinical remission is marked by systemic oxidative stress. Front. Physiol. 2019, 10, 1–10. [Google Scholar] [CrossRef]
- Neubauer, K.; Kempinski, R.; Matusiewicz, M. Nonenzymatic serum antioxidant capacity in IBD and its association with the severity of bowel inflammation and corticosteroids treatment. Medicina 2019, 55, 88. [Google Scholar] [CrossRef] [PubMed]
- Yuksel, M.; Ates, I.; Kaplan, M.; Arikan, M.; Ozin, Y.O.; Kilic, Z.M.Y.; Topcuoglu, C.; Kayacetin, E. Is oxidative stress associated with activation and pathogenesis of Inflammatory Bowel Disease? J. Med. Biochem. 2017, 36, 341–348. [Google Scholar] [CrossRef] [PubMed]
- Benzie, I.; Strain, J. The ferric reducing ability of plasma as a measure of antioxodant. Anal. Biochem. 1996, 239, 70–76. [Google Scholar] [CrossRef] [PubMed]
- Witko-Sarsat, V.; Friedlander, M.; Capeillère-Blandin, C.; Nguyen-Khoa, T.; Nguyen, A.T.; Zingraff, J.; Jungers, P.; Descamps-Latscha, B. Advanced oxidation protein products as a novel marker of oxidative stress in uremia. Kidney Int. 1996, 49, 1304–1313. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Correa-Salde, V.; Albesa, I. Reactive oxidant species and oxidation of protein and heamoglobin as biomarkers of susceptibility to stress caused by chloramphenicol. Biomed. Pharmacother. 2009, 63, 100–104. [Google Scholar] [CrossRef] [PubMed]
- Dietrich-Muszalska, A.; Kolińska-Łukaszuk, J. Comparative effects of aripiprazole and selected antipsychotic drugs on lipid peroxidation in plasma. Psychiatry Clin. Neurosci. 2018, 72, 329–336. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cournot, M.; Burillo, E.; Saulnier, P.; Planesse, C.; Gand, E.; Rehman, M.; Rondeau, P.; Gonthier, M.; Feigerlova, E.; Meilhac, O.; et al. Circulating concentrations of redox biomarkers do not improve the prediction of adverse cardiovascular events in patients with type 2 diabetes mellitus. J. Am. Hearth Assoc. 2018, 7, e00007397. [Google Scholar] [CrossRef]
- Capeillère-Blandin, C.; Gausson, V.; Descamps-Latscha, B.; Witko-Sarsat, V. Biochemical and spectrophotometric significance of advanced oxidized protein products. Biochim. Biophys. Acta Mol. Basis Dis. 2004, 1689, 91–102. [Google Scholar] [CrossRef] [Green Version]
- Dalle-Donne, I.; Giustarini, D.; Colombo, R.; Rossi, R.; Milzani, A. Protein carbonylation in human diseases. Trends Mol. Med. 2003, 9, 169–176. [Google Scholar] [CrossRef]
- Krzystek-Korpacka, M.; Neubauer, K.; Berdowska, I.; Boehm, D.; Zielinski, B.; Petryszyn, P.; Terlecki, G.; Paradowski, L.; Gamian, A. Enhanced formation of advanced oxidation protein products in IBD. Inflamm. Bowel Dis. 2008, 14, 794–802. [Google Scholar] [CrossRef]
- Shi, J.; Sun, S.; Liao, Y.; Tang, J.; Xu, X.; Qin, B.; Qin, C.; Peng, L.; Luo, M.; Bai, L.; et al. Redox biology advanced oxidation protein products induce G1 phase arrest in intestinal epithelial cells via a RAGE/CD36-JNK-p27kip1 mediated pathway. Redox Biol. 2019, 101196. [Google Scholar] [CrossRef] [PubMed]
- Xie, F.; Sun, S.; Xu, A.; Zheng, S.; Xue, M.; Wu, P.; Zeng, J.H.; Bai, L. Advanced oxidation protein products induce intestine epithelial cell death through a redox-dependent, c-jun N-terminal kinase and poly (ADP-ribose) polymerase-1-mediated pathway. Cell Death Dis. 2014, 5, e1006. [Google Scholar] [CrossRef]
- Fasano, A. Intestinal permeability and its regulation by Zonulin: Diagnostic and therapeutic implications. Clin. Gastroenterol. Hepatol. 2012, 10, 1096–1100. [Google Scholar] [CrossRef] [PubMed]
- Libertucci, J.; Dutta, U.; Kaur, S.; Jury, J.; Rossi, L.; Fontes, M.E.; Shajib, M.S.; Khan, W.I.; Surette, M.G.; Verdu, E.F.; et al. Inflammation-related differences in mucosa-associated microbiota and intestinal barrier function in colonic Crohn’s disease. Am. J. Physiol. Liver Physiol. 2018, 315, G420–G431. [Google Scholar] [CrossRef] [PubMed]
- Sun, S.; Xie, F.; Xu, X.; Cai, Q.; Zhang, Q.; Cui, Z.; Zheng, Y.; Zhou, J. Advanced oxidation protein products induce S-phase arrest of hepatocytes via the ROS-dependent, β-catenin-CDK2-mediated pathway. Redox Biol. 2018, 14, 338–353. [Google Scholar] [CrossRef] [PubMed]
- Guo, Z.J.; Niu, H.X.; Hou, F.F.; Zhang, L.; Fu, N.; Nagai, R.; Lu, X.; Chen, B.H.; Shan, Y.X.; Tian, J.W.; et al. Advanced Oxidation Protein Products Activate Vascular Endothelial cells via a RAGE-mediated signaling pathway. Antioxid. Redox Signal. 2008, 10, 1699–1712. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.; Sun, S.; Xie, F.; Ma, J.; Tang, J.; He, S.; Bai, L. Advanced oxidation protein products induce epithelial-mesenchymal transition of intestinal epithelial cells via a PKC δ-mediated, redox-dependent signaling pathway. Antioxid Redox Signal. 2017, 27, 37–56. [Google Scholar] [CrossRef] [PubMed]
- Ciccocioppo, R.; Vanoli, A.; Klersy, C.; Imbesi, V.; Boccaccio, V.; Manca, R.; Betti, E.; Cangemi, G.C.; Strada, E.; Besio, R.; et al. Role of the advanced glycation end products receptor in Crohn’ s disease inflammation. World J. Gastroenterol. 2013, 19, 8269–8281. [Google Scholar] [CrossRef]
- Ramasamy, R.; Shekhtman, A.; Schmidt, A.M. The multiple faces of RAGE–opportunities for therapeutic intervention in aging and chronic disease. Expert Opin. Ther. Targets 2016, 20, 431–446. [Google Scholar] [CrossRef]
- Body-Malapel, M.; Djouina, M.; Waxin, C.; Langlois, A.; Gower-Rousseau, C.; Zerbib, P.; Schmidt, A.M.; Desreumaux, P.; Boulanger, E.; Vignal, C. The RAGE signaling pathway is involved in intestinal inflammation and represents a promising therapeutic target for Inflammatory Bowel Diseases. Mucosal Immunol. 2019, 12, 468–478. [Google Scholar] [CrossRef]
- McNair, E.; Qureshi, M.; Prasad, K.; Pearce, C. Atherosclerosis and the hypercholesterolemic AGE-RAGE axis. Int. J. Angiol. 2016, 25, 110–116. [Google Scholar] [PubMed]
- Prasad, K.; Hons, M. Role of advanced glycation end products and its receptors in the pathogenesis of cigarette smoke-induced cardiovascular disease. Int. J. Angiol. 2015, 24, 75–80. [Google Scholar] [PubMed]
- Uribarri, J.; Woodruff, S.; Goodman, S.; Cai, W.; Chen, X.; Pyzik, R.; Yong, A.; Striker, G.E.; Vlassara, H. Advanced glycation end products in foods and a practical guide to their reduction in the diet. J. Am. Diet Assoc. 2010, 110, 911–916. [Google Scholar] [CrossRef]
- Anderson, M.M.; Hazen, S.L.; Hsu, F.F.; Heinecke, J.W. Human neutrophils employ the myeloperoxidase–hydrogen peroxide–chloride system to convert hydroxy-amino acids into glycolaldehyde, 2-hydroxypropanal, and acrolein. A mechanism for the generation of highly reactive alpha-hydroxy and α,β-unsaturated aldehydes by phagocytes at sites of inflammation. J. Clin. Investig. 1997, 99, 424–432. [Google Scholar] [PubMed]
- Wang, Y.; Wang, W.; Yang, H.; Shao, D.; Zhao, X. Free radical biology and medicine intraperitoneal injection of 4-hydroxynonenal (4-HNE), a lipid peroxidation product, exacerbates colonic inflammation through activation of Toll-like receptor 4 signaling. Free Radic. Biol. Med. 2019, 131, 237–242. [Google Scholar] [CrossRef] [PubMed]
- Levy, E.; Rizwan, Y.; Thibault, L.; Lepage, G.; Brunet, S.; Bouthillier, L.; Seidman, E. Altered lipid profile, lipoprotein composition, and oxidant and antioxidant status in pediatric Crohn disease. Am. J. Clin. Nutr. 2000, 71, 807–815. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alzoghaibi, M.A.; Al, I.A.; Al-Jebreen, A.M. Lipid peroxides in patients with Inflammatory Bowel Disease. Saudi J. Gastroenterol. 2007, 13, 187–190. [Google Scholar] [CrossRef] [PubMed]
- Boehm, D.; Krzystek-korpacka, M.; Neubauer, K.; Matusiewicz, M.; Paradowski, L.; Gamian, A. Lipid peroxidation markers in Crohn’s disease: The associations and diagnostic value. Clin. Chem. Lab. Med. 2012, 50, 1359–1366. [Google Scholar] [CrossRef]
- Sampietro, G.M.; Cristaldi, M.; Cervato, G.; Maconi, G.; Danelli, P.; Cervellione, R.; Rovati, M.; Bianchi Porro, G.; Cestaro, B.; Taschieri, A.M. Oxidative stress, vitamin A and vitamin E behaviour in patients submitted to conservative surgery for complicated Crohn’s disease. Dig. Liver Dis. 2002, 34, 696–701. [Google Scholar] [CrossRef]
- Szczeklik, K.; Krzyściak, W.; Cibor, D.; Rodacka, R.D.; Polończyk, J.P.; Mach, T.; Owczarek, D. Markers of lipid peroxidation and antioxidant status in the serum and saliva of patients with active Crohn disease. Pol. Arch. Intern. Med. 2018, 128, 362–370. [Google Scholar]
- Reese, G.E.; Nanidis, T.; Borysiewicz, C.; Yamamoto, T.; Orchard, T.; Tekkis, P.P. The effect of smoking after surgery for Crohn’s disease: A meta-analysis of observational studies. Int. J. Colorectal Dis. 2008, 23, 1213–1221. [Google Scholar] [CrossRef]
- To, N.; Ford, A.C.; Gracie, D.J. Systematic review with meta-analysis: The effect of tobacco smoking on the natural history of ulcerative colitis. Aliment. Pharmacol. Ther. 2016, 44, 117–126. [Google Scholar] [CrossRef] [PubMed]
- Tromm, A.; May, D.; Almus, E.; Voigt, E.; Greving, I.; Schwegler, U.; Griga, T. Cutaneous manifestations in inflammatory bowel disease. Z. Gastroenterol. 2001, 39, 137–144. [Google Scholar] [CrossRef] [PubMed]
- Horaist, C.; De Parades, V.; Abramowitz, L.; Benfredj, P.; Bonnaud, G.; Bouchard, D.; Fathallah, N.; Sénéjoux, A.; Siproudhis, L.; Staumont, G.; et al. Elaboration and validation of Crohn’s disease anoperineal lesions consensual definitions. World J. Gastroenterol. 2017, 23, 5371–5378. [Google Scholar] [CrossRef] [PubMed]
- Maor, I.; Rainis, T.; Lanir, A.; Lavy, A. Oxidative stress, inflammation and neutrophil superoxide release in patients with Crohn’s disease: Distinction between active and non-active disease. Dig. Dis. Sci. 2008, 53, 2208–2214. [Google Scholar] [CrossRef] [PubMed]
- Geerling, B.J.; Badart-Smook, A.; Stockbrugger, R.W.; Brummer, R.M. Comprehensive nutritional status in patients with long-standing Crohn disease currently in remission. Am. J. Clin. Nutr. 1998, 67, 919–926. [Google Scholar] [CrossRef] [PubMed]
- Koutroubakis, I.E.; Malliaraki, N.; Dimoulios, P.D. Decreased total and corrected antioxidant capacity in patients with Inflammatory Bowel Disease. Dig. Dis. Sci. 2004, 49, 1433–1437. [Google Scholar] [CrossRef]
- Pereira, C.; Coelho, R.; Grácio, D.; Dias, C.; Silva, M.; Peixoto, A.; Lopes, P.; Costa, C.; Teixeira, J.P.; Macedo, G.; et al. DNA damage and oxidative DNA damage in Inflammatory Bowel Disease. J. Crohn’s Colitis. 2016, 10, 1316–1323. [Google Scholar] [CrossRef]
- Fazi, M.; Giudici, F.; Luceri, C.; Pronestì, M.; Tonelli, F. Long-term results and recurrence-related risk factors for Crohn disease in patients undergoing side-to-side isoperistaltic strictureplasty. JAMA Surg. 2016, 151, 452–460. [Google Scholar] [CrossRef]
- Pelin, M.; De Ludicibus, S.; Londero, M.; Spizzo, R.; Dei Rossi, S.; Martelossi, S.; Ventura, A.; Decorti, G.; Stocco, G. Thiopurine biotransformation and pharmacological effects: Contribution of oxidative stress. Curr. Drug Metab. 2016, 17, 542–549. [Google Scholar] [CrossRef]
Demographic and Clinical Characteristics | Crohn’s Patients | Controls |
---|---|---|
n | 54 | 17 |
Gender | ||
-male | 28 (51.9%) | 7 (41.2%) |
-female | 26 (48.1%) | 10 (58.8%) |
Age (years) | 42.12 ± 2.055 | 42.41 ± 3.73 |
Disease duration (years) | 12.86 ± 1.37 | |
Diagnostic delay (months) | 78.89 ± 16.32 | |
Smoke habit | ||
no | 19 (38.0%) | 8 (47.1%) |
yes | 16 (32.0%) | 5 (29.4%) |
former | 15 (30.0%) | 4 (23.5%) |
CDAI | 233.6 ± 5.66 | |
Disease location | ||
-Ileum | 28 (53.8%) | |
-Colon | 18 (34.6%) | |
-Ileo-colon | 6 (11.5%) | |
Disease behavior | ||
-Inflammatory | 4 (7.5%) | |
-Stricturing | 28 (52.8%) | |
-Fistulizing | 3 (5.7%) | |
-Stricturing and Fistulizing | 18 (34.0%) | |
Extra-intestinal disease | ||
-Skin | 7/46 (15.21%) | |
-Arthritis | 12/46 (26.1%) | |
Perianal disease yes/no | 23/28 (45.10%) | |
Recurrence | ||
-yes | 30 (57.69%) | |
-no | 22 (42.31%) | |
Multiple operations | ||
1 | 22 (42.31%) | |
2 | 15 (28.85%) | |
3 | 15 (28.85%) | |
Allergies yes/no | 19/25 (43.2%) | |
Familial IBD yes/no | 15/34 (30.6%) |
Oxidative Markers | Crohn’s Patients | Controls | |
---|---|---|---|
n | 54 | 17 | |
FRAP, µM Fe2+ | 368.2 ± 90.72 | 343.8 ± 100.30 | NS |
TBARS, µM | 4.00 ± 1.35 | 3.11 ± 0.45 | p < 0.01 |
AGEs, AU | 293.3 ± 108.80 | 216.0 ± 35.03 | p < 0.01 |
AOPP, µmol/g of proteins | 11.25 (5.02–15.15) | 1.36 (0.75–2.70) | p < 0.0001 |
CO, nmol/mg of proteins | 0.122 (0.095–0.146) | 0.074 (0.061–0.12) | p < 0.01 |
Parameter | Estimate Coefficient | p-Value |
---|---|---|
CONSTANT | 1.89611 | 0.0113 |
Disease Location | −0.63005 | 0.0185 |
First Clinical Presentation | 0.270233 | 0.0089 |
Smoking | 0.865863 | 0.0005 |
Disease Behavior | 0.383783 | 0.0275 |
Allergies | 0.997169 | 0.0001 |
Parameter | Estimate Coefficient | p-Value |
---|---|---|
CONSTANT | 0.490099 | 0.0159 |
Smoking | 0.420792 | 0.0113 |
Skin Extension | 0.782178 | 0.0245 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Luceri, C.; Bigagli, E.; Agostiniani, S.; Giudici, F.; Zambonin, D.; Scaringi, S.; Ficari, F.; Lodovici, M.; Malentacchi, C. Analysis of Oxidative Stress-Related Markers in Crohn’s Disease Patients at Surgery and Correlations with Clinical Findings. Antioxidants 2019, 8, 378. https://doi.org/10.3390/antiox8090378
Luceri C, Bigagli E, Agostiniani S, Giudici F, Zambonin D, Scaringi S, Ficari F, Lodovici M, Malentacchi C. Analysis of Oxidative Stress-Related Markers in Crohn’s Disease Patients at Surgery and Correlations with Clinical Findings. Antioxidants. 2019; 8(9):378. https://doi.org/10.3390/antiox8090378
Chicago/Turabian StyleLuceri, Cristina, Elisabetta Bigagli, Sara Agostiniani, Francesco Giudici, Daniela Zambonin, Stefano Scaringi, Ferdinando Ficari, Maura Lodovici, and Cecilia Malentacchi. 2019. "Analysis of Oxidative Stress-Related Markers in Crohn’s Disease Patients at Surgery and Correlations with Clinical Findings" Antioxidants 8, no. 9: 378. https://doi.org/10.3390/antiox8090378
APA StyleLuceri, C., Bigagli, E., Agostiniani, S., Giudici, F., Zambonin, D., Scaringi, S., Ficari, F., Lodovici, M., & Malentacchi, C. (2019). Analysis of Oxidative Stress-Related Markers in Crohn’s Disease Patients at Surgery and Correlations with Clinical Findings. Antioxidants, 8(9), 378. https://doi.org/10.3390/antiox8090378