1. Introduction
The high incidence of dog-bite related rabies in India is attributed to the overwhelming presence of free-roaming dogs (FRD) [
1]. The FRD population can contain two categories of dogs: those that depend on human settlements for food and shelter, and those that are bereft of any human association and are often classified as feral dogs [
2]. The behavioural traits and demography of FRD are influenced by the socio-cultural and economic features of the human societies they are connected to [
3], and their location is influenced by the availability of food and shelter, making them potentially responsible for the spread of zoonotic diseases [
4,
5]. In particular, the territoriality and movement of FRD greatly influences rabies transmission, and its spread can be modelled on the contact rates between FRD, which in turn depends upon their grouping behaviour and home-ranges [
6].
The home-range of a free ranging animal is defined as the space it commonly uses for normal activities, such as foraging, hunting, and whelping [
7,
8]. The availability of food and shelter, and hence the home-range of an FRD, is strongly influenced by the attitudes of the human population towards them [
9]. Free roaming dogs are known to display altered social behaviour and travel further for activities such as mating [
10,
11,
12] and are also known to take isolated forays into neighbouring villages/localities due to human community or climatic events [
13], which increases the likelihood of becoming infected with rabies virus due to potential contact with a larger population of dogs or other potentially infected wildlife. Although studies on the behaviour and home-ranges of FRD have been conducted elsewhere [
4,
10,
12,
14,
15] and in urban areas in India [
11,
16,
17,
18,
19], there is a lack of such information regarding FRD in rural areas of India.
A major impediment against successful immunisation programmes against canine rabies is the failure to achieve the prerequisite vaccination coverage [
20], primarily due to difficulties in catching FRD and their frequent inaccessibility [
21,
22]. Nets have been used to capture and restrain dogs in India during mass parenteral immunisation campaigns against rabies [
23]; however, there are significant occupational risks for those involved. In spite of being expensive, Oral Rabies Vaccination (ORV) can be judiciously used in areas where poor catchability/accessibility of FRD precludes achieving 70% population immunisation coverage against rabies by parenteral inoculation [
24,
25].
The planning and implementation of successful mass vaccination campaigns against rabies requires an understanding of the demographic characteristics of the FRD population and their propensity to form social groups [
26,
27,
28]. Investigation of the determinants that promote FRD to be sighted together, along with their home-ranges, can help design effective vaccination efforts including both parenteral and oral vaccination programmes. In the present study, we explore whether mathematical interpretation of FRD grouping behaviour and home-ranges can inform decision-making of the most effective intervention or combination of interventions to adopt against rabies. This study was undertaken in urban and rural locations of western and northern India to (1) investigate the predictors of group forming behaviours of FRD; (2) evaluate the home-ranges of frequently sighted FRD and their determinants, and (3) compare and contrast the home-ranges and tendency to form groups between urban and rural FRD to make an informed decision for adopting suitable interventions against rabies in these localities.
4. Discussion
In the current study, the likelihood of sighting a dog in a group was higher in the urban study site than in the rural site. However, irrespective of the study site, FRD were sighted in groups close to a food resource, similar to that reported by Berman and Dunbar [
14] in the city of Berkeley, CA, USA. The proportion of FRD sighted in groups in urban Panchkula (73.7%) was higher than in Berkeley (17.8%) because in Panchkula, FRD were observed to group in public places, such as outside of temples and community markets where they potentially received food from visitors and had access to shelter (shaded areas), which may not have been the case in the Berkeley study. The difference in the proportion of FRD forming groups in rural and urban sites in our study is possibly due to a lack of organised garbage management in rural Shirsuphal that results in edible litter being thrown indiscriminately throughout the location, including lanes (roadways), reducing the need for dogs to congregate at specific garbage refuse points. In urban Baltimore, MD, USA, a higher proportion of FRD were sighted in groups, which was believed to be due to the presence of garbage in the alleyways [
14,
15]. In contrast, in urban Panchkula, edible waste was usually deposited at the assigned waste disposal points, such as garbage bins and dumps, although these were frequently overflowing with litter, accounting for the likely congregation of FRD at these locations.
The observations regarding the categories (gender, age, body condition, proximity to garbage, and de-sexing) likely to be sighted in groups were consistent for both rural Shirsuphal and urban Panchkula, except for the proximity to garbage points (
Table 2).
The temporal distribution of the groups across the days of the sight-resight surveys was random in rural Shirsuphal and for most of the survey tracks in urban Panchkula. However, the spatial frequency distribution of various sized groups in three of the tracks in rural Shirsuphal was not random, implying the tendency of FRD to form stable groups at these sites. A possible explanation for stable groups in rural Shirsuphal could have been the presence of lactating bitches (13%) and bitches in oestrous (6%) on these tracks [
10,
35,
41,
42], but the univariable analyses of the influence of gender over group sizes of FRD did not show any significant difference between the group forming tendency for male and female FRD (
Table 3). The FRD groupings in rural Shirsuphal can be attributed to individual preferences of the rural FRD to stay together rather than the need to form stable groups for hunting/sourcing food [
16]. This observation is supported by Boitani, Ciucci [
10], who speculated that FRD have a lower tendency to form stable social groups in locations where food is readily available. Nevertheless, it is possible that factors other than lactation and oestrous, such as level of human interaction, may be important and further studies are warranted in similar locations to identify these factors which restrict group formation for rural FRD.
In urban Panchkula, the evidence of temporally and spatially stable groups (
p = 0.01 and
p = 0.02, respectively) in the perimeter survey track in urban Panchkula is not unexpected as FRD are known to form temporary groups while transiting between their usual locations [
14], such as between adjacent sectors in this study. However, the distribution of the different sized groups also did not follow a ZTPD in the industrial (
p = 0.03 and
p = 0.01 for Part I and Part II, respectively) and administrative sectors (
p = 0.02), which suggests the presence of stable hierarchical social groups, similar to that reported in some international studies [
43,
44] and elsewhere in India [
11]. Daniels and Bekoff [
40], who similarly found that the group sizes of FRD in Mexico did not follow a ZTPD, believed that the dog-ownership practices of the resident community in the area influences the level of social organisation of FRD. The authors claimed that the dogs that were cared for by owners did not form groups with conspecifics, and thus, the pattern of their social organisation would differ depending upon their response to the amount and provision of food resources. In our study, although the dogs were not owned in rural Shirsuphal, they were provided food by the rural residents [
45], hence limiting the tendency of rural FRD to form groups.
FRD that had been neutered were less likely to be part of a group than entire FRDs (β = −0.08,
p = 0.05) (
Table 5). This finding is supported by the presence of stable groups in the industrial and administrative sectors in urban Panchkula where more dogs had not been neutered (
Section 3.1). We found that the odds of sighting a de-sexed FRD in industrial (OR 0.7,
p-value = 0.01) and administrative (OR 0.2,
p-value <0.001) survey tracks was lower compared to residential sectors. Interestingly, this finding is similar to the study in the city of Petrozavodsk, Russia, where the number of stray dogs forming groups in industrial zones was higher than in residential areas where most dogs were solitary [
42]. This was believed to be linked with the presence of secluded breeding dens and fewer instances of human interference restricting the formation of packs in these zones. Another plausible explanation of sighting fewer de-sexed FRD could be that they are harder to catch, being frequently sighted in groups. The inaccessibility for parenteral vaccination is pronounced in stable FRD groups, possibly due to their enhanced agonistic behaviour toward humans and the tendency to avoid humans when in groups [
46]. An anecdotal admission by the dog catchers of Panchkula Municipal Corporation regarding the heightened risk of dog-bites in the industrial and administrative sectors also corroborated the higher likelihood of stable social groups in these sectors.
The average home-ranges (2.8 ha and 3.7 ha for rural and urban settings, respectively) are comparable to those reported in USA, Australia, Russia, and India for urban FRD [
14,
18,
42], but were much lower than that reported in Chile (65 ha) [
47] and Aboriginal and Torres Strait Islander communities in Northern Australia (40–104 ha) [
4]. Although our study limited the inclusion of FRD to those with a high resight probability (≥0.7), most of these individuals were sighted alone. In rural Shirsuphal, dogs that were most likely sighted in a group were likely to have larger home-ranges (OR 2.3, 95% CI 1.0–95.0,
p = 0.04,
Table 7) than those mostly sighted alone. This finding, in conjunction with that of the influence of resight probability on grouping tendency (β = −1.0, SE = 0.2,
p < 0.001,
Table 4), imply that rural FRD find the resources (food, shelter) for survival within a small area and hence do not need to wander. More than half of the rural FRD (59%) for whom the home-range calculation was possible were never seen in the vicinity of garbage points, and the remaining were sighted near garbage (<20 m) only once or twice during the survey period. This strongly supports the belief that the dogs with smaller home-ranges have higher human affinity in rural Shirsuphal and thus may be more amenable for administering parenteral vaccination against rabies.
Notwithstanding the comparable home-ranges in rural and urban settings, the grouping tendency of FRD in urban Panchkula needs to be examined in relation to the resight probability. The resight probability was higher for smaller sized groups in rural Shirsuphal (β = −1.0, SE = 0.2,
p-value< 0.001), whilst in urban Panchkula resight probability increased with group size (β = 0.3, SE = 0.06,
p < 0.0001) indicating that FRD in the urban setting are likely to be sighted more when they are in groups and around a food resource (garbage) (
Table 1 and
Table 2). Even though we failed to produce a multivariable model that could investigate the influence of resight probability on home-ranges on FRD in urban Panchkula, resight probability is positively related to the tendency of urban dogs to form groups (
Table 5).
These observations can be corroborated with other findings where stray/semi-owned dogs remain in proximity to people who provide food to them, even when those people do not claim ownership of the dogs [
47,
48,
49]. Consequently, we conclude that FRD in rural Shirsuphal are more accepting of human proximity than those in urban Panchkula. Human influence over the home-ranges of FRD was also demonstrated by Ivanter and Sedova [
42] and Boitani, Ciucci [
10], who reported smaller home-ranges for dogs in areas close to humans. This finding, in conjunction with that of group-size, implies that if a photographic capture-recapture survey reveals solitary dogs with high resighting probability and small home-ranges, then more dogs will be accessible for parenteral vaccination against rabies. We speculate this may largely be true for rural India, although it is recommended that more studies are conducted to support this recommendation. In contrast, ORV should be adopted in areas where FRD are more likely to be sighted in groups. Gibson, Yale [
50] demonstrated in Goa, India that Oral Bait Handout (OBH) vaccines are a viable option for the FRD that may be accustomed to human presence but resist retraining them for vaccine inoculation. Consequently, based on our findings of urban Panchkula we also suggest that, irrespective of the measure of the home-ranges, a high resight probability of FRD is indicative of a higher proportion of groups and hence ORV should be implemented to achieve adequate herd immunity. Oral rabies vaccination has been recommended where catchability of FRD for parenteral immunisation is difficult [
51]. Although ORV has the disadvantages of high cost and the need for strict supervision, its potential use to augment parenteral inoculation to achieve 70% coverage in FRD has been advocated [
25]. Once the required number to vaccinate 70% of the total population is estimated through a reliable enumeration technique [
13], it is recommended that the data obtained through such enumeration surveys can be used to model the grouping tendencies of the FRD. Based on this grouping tendency, the most effective method(s) can be selected achieve adequate mass immunisation against canine rabies in India.
There were some limitations encountered during the current investigation. Firstly, we used GPS fixes of the FRD at pre-set survey times in the multiple sight-resight survey sessions. The use of GPS collars would have given more frequent GPS fixes and hence a better assessment of home range, although this would have been offset by a smaller sample size due to significantly higher costs associated with this methodology. However, the need for multiple survey sessions can be off-set by using GPS-collars on randomly selected FRD from different locations of the study sites to allow estimation of average home ranges. Second, only one rural village was included in this study, and more villages should be studied to improve the robustness of the findings. Third, we were unable to develop a multivariable logistic model for factors influencing the home-range of the urban FRD, and consequently data on other influences need to be collected. Finally, bias due to observer fatigue toward the end of multiple sight-resight surveys cannot be completely ruled out [
52]. In spite of these limitations, this investigation linked the behaviour of FRD and home-ranges with their accessibility for future vaccination programmes to achieve the necessary herd immunity to control canine rabies. We recommend more studies are conducted at different urban and rural locations in India to model the group-size of FRD, based upon easily measurable predictors, including home-ranges to make informed decisions on the FRD mass vaccination approach to adopt to control rabies.