Next Issue
Volume 13, November
Previous Issue
Volume 13, September
 
 

Membranes, Volume 13, Issue 10 (October 2023) – 43 articles

Cover Story (view full-size image): In this article, we have analyzed the structurally unresolved cytoplasmic loop of the human ABCG2 multidrug transporter. This membrane protein plays a crucial role in the absorption and excretion of xeno- and endobiotics, which contributes to cancer drug resistance and the development of gout. Although atomic structure data on ABCG2 have already been published, some flexible regions have not been addressed and can only be examined by generating mutations and studying the cellular expression and mode of trafficking to specific membrane regions using molecular dynamics. We found that a naturally occurring mutation (K360del) of ABCG2 increased cellular trafficking, while other mutations of several lysines or a potential phosphorylation site had no major effect either on the processing or the function of this transporter, despite increasing the loop mobility. View this paper
  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.
Order results
Result details
Section
Select all
Export citation of selected articles as:
9 pages, 2108 KiB  
Communication
Impact of the Membrane Structure of the Stationary Phase on Steric Exclusion Chromatography (SXC) of Lentiviral Vectors
by Jennifer J. Labisch, G. Philip Wiese, Karl Pflanz and John Linkhorst
Membranes 2023, 13(10), 849; https://doi.org/10.3390/membranes13100849 - 23 Oct 2023
Viewed by 1321
Abstract
For steric exclusion chromatography (SXC), hydrophilic stationary phases are used to capture the target molecule in the presence of polyethylene glycol. The influence of the structure and pore size of the stationary phase on the process requirements are not yet well understood. To [...] Read more.
For steric exclusion chromatography (SXC), hydrophilic stationary phases are used to capture the target molecule in the presence of polyethylene glycol. The influence of the structure and pore size of the stationary phase on the process requirements are not yet well understood. To better understand the SXC process, membranes with different pore sizes that served as a stationary phase were compared for the purification of lentiviral vectors (LVs). A design of experiments (DoE) was performed to assess the combined impact of PEG concentration and membrane pore size on the purification performance. A visualization experiment showed that the LVs were captured on the first membrane layer for a pore size up to 2.2 µm, and for a pore size larger than 2.2 µm, LVs were also partly found on the second and third membrane layers. Moreover, we could observe that increasing membrane pore size requires a higher PEG concentration to achieve comparable LV recoveries. Using five membrane layers as a stationary phase was sufficient to achieve good performance, supporting the visualized capture results. In conclusion, we could show that each stationary phase has its optimal PEG buffer compositions for SXC, depending on the membrane structure and pore size. Full article
Show Figures

Figure 1

25 pages, 1859 KiB  
Review
Ongoing Progress on Pervaporation Membranes for Ethanol Separation
by Muhammad Imad and Roberto Castro-Muñoz
Membranes 2023, 13(10), 848; https://doi.org/10.3390/membranes13100848 - 23 Oct 2023
Viewed by 1988
Abstract
Ethanol, a versatile chemical extensively employed in several fields, including fuel production, food and beverage, pharmaceutical and healthcare industries, and chemical manufacturing, continues to witness expanding applications. Consequently, there is an ongoing need for cost-effective and environmentally friendly purification technologies for this organic [...] Read more.
Ethanol, a versatile chemical extensively employed in several fields, including fuel production, food and beverage, pharmaceutical and healthcare industries, and chemical manufacturing, continues to witness expanding applications. Consequently, there is an ongoing need for cost-effective and environmentally friendly purification technologies for this organic compound in both diluted (ethanol-water–) and concentrated solutions (water-ethanol–). Pervaporation (PV), as a membrane technology, has emerged as a promising solution offering significant reductions in energy and resource consumption during the production of high-purity components. This review aims to provide a panorama of the recent advancements in materials adapted into PV membranes, encompassing polymeric membranes (and possible blending), inorganic membranes, mixed-matrix membranes, and emerging two-dimensional-material membranes. Among these membrane materials, we discuss the ones providing the most relevant performance in separating ethanol from the liquid systems of water–ethanol and ethanol–water, among others. Furthermore, this review identifies the challenges and future opportunities in material design and fabrication techniques, and the establishment of structure–performance relationships. These endeavors aim to propel the development of next-generation pervaporation membranes with an enhanced separation efficiency. Full article
(This article belongs to the Special Issue Feature Papers in Membrane Analysis and Characterization)
Show Figures

Figure 1

11 pages, 1805 KiB  
Article
Effect of the Degree of Li3PO4 Vapor Dissociation on the Ionic Conductivity of LiPON Thin Films
by Alexander Kamenetskikh, Nikolay Gavrilov, Alexey Ershov and Petr Tretnikov
Membranes 2023, 13(10), 847; https://doi.org/10.3390/membranes13100847 - 23 Oct 2023
Viewed by 1468
Abstract
Thin films of solid-state lithium-ion electrolytes show promise for use in small-sized autonomous power sources for micro- and nanoelectronic elements. The high rate of vacuum-plasma synthesis (~0.5 μm/h) of lithium phosphor-oxynitride (LiPON) films with an ionic conductivity of ~2·10−6 S/cm is achieved [...] Read more.
Thin films of solid-state lithium-ion electrolytes show promise for use in small-sized autonomous power sources for micro- and nanoelectronic elements. The high rate of vacuum-plasma synthesis (~0.5 μm/h) of lithium phosphor-oxynitride (LiPON) films with an ionic conductivity of ~2·10−6 S/cm is achieved through anodic evaporation of Li3PO4 in a low-pressure arc. The microstructure and ionic conductivity of LiPON films are influenced by the proportion of free lithium in the vapor flow. This paper presents the results of a study on the plasma composition during anodic evaporation of Li3PO4 in a discharge with a self-heating hollow cathode and a crucible anode. A method is proposed for adjusting the free lithium concentration in the gas-vapor (Li3PO4 + N2/Ar) discharge plasma based on changing the frequency of collisions of electrons with Li3PO4 vapor in the anodic region of the discharge. It is demonstrated that an increase in the proportion of free lithium in the flow of deposited particles leads to an enhancement in the concentration and mobility of lithium ions in the deposited films and, subsequently, an improvement in the ionic conductivity of LiPON films. Full article
(This article belongs to the Special Issue Ion-Exchange Membranes and Processes, Fourth Edition)
Show Figures

Figure 1

14 pages, 5556 KiB  
Article
Study of the Physical, Chemical, and Structural Properties of Low- and High-Methoxyl Pectin-Based Film Matrices Including Sunflower Waxes
by Mayra C. Chalapud, Ma. de la Paz Salgado-Cruz, Erica R. Baümler, Amalia A. Carelli, Eduardo Morales-Sánchez, Georgina Calderón-Domínguez and Alitzel B. García-Hernández
Membranes 2023, 13(10), 846; https://doi.org/10.3390/membranes13100846 - 22 Oct 2023
Cited by 2 | Viewed by 1317
Abstract
The development of bio-based materials remains one of the most important alternatives to plastic materials. Although research in this field is growing, reporting various materials and methodologies, it is still necessary to increase exploration. The aim of this work was to expand and [...] Read more.
The development of bio-based materials remains one of the most important alternatives to plastic materials. Although research in this field is growing, reporting various materials and methodologies, it is still necessary to increase exploration. The aim of this work was to expand and complement previous research on the preparation and characterization of high- and low-methoxyl pectin films obtained by casting, with the addition of commercial and recovered sunflower waxes. The results showed that the addition of sunflower waxes to the pectin matrix generated some discontinuity in the aggregate, increasing the thickness and roughness of the film. However, due to their hydrophobic nature, the waxes contributed to lower vapor transmission rate values of the films. On the other hand, the low-methoxyl pectin films had a more crystalline structure, which could help to diminish water vapor permeability values, mechanical resistance and rigidity, and improve their elongation. Regarding chemical characteristics, most of the raw materials’ chemical groups were found in the resulting films, and the presence of C-H bending due to pectin gelation was observed. Finally, the compatibility and contribution of pectin and sunflower waxes to the production of the films were demonstrated, as well as the possibility of using materials from industrial waste in food packaging applications. Full article
(This article belongs to the Special Issue Recent Advances in Biodegradable and Edible Biopolymer-Based Films)
Show Figures

Figure 1

22 pages, 6995 KiB  
Article
Molecular Cloning, Expression and Transport Activity of SaNPF6.3/SaNRT1.1, a Novel Protein of the Low-Affinity Nitrate Transporter Family from the Euhalophyte Suaeda altissima (L.) Pall.
by Olga I. Nedelyaeva, Dmitrii E. Khramov, Lyudmila A. Khalilova, Alena O. Konoshenkova, Anastasia V. Ryabova, Larissa G. Popova, Vadim S. Volkov and Yurii V. Balnokin
Membranes 2023, 13(10), 845; https://doi.org/10.3390/membranes13100845 - 22 Oct 2023
Viewed by 1800
Abstract
The SaNPF6.3 gene, a putative ortholog of the dual-affinity nitrate (NO3) transporter gene AtNPF6.3/AtNRT1.1 from Arabidopsis thaliana, was cloned from the euhalophyte Suaeda altissima. The nitrate transporting activity of SaNPF6.3 was studied by heterologous expression of [...] Read more.
The SaNPF6.3 gene, a putative ortholog of the dual-affinity nitrate (NO3) transporter gene AtNPF6.3/AtNRT1.1 from Arabidopsis thaliana, was cloned from the euhalophyte Suaeda altissima. The nitrate transporting activity of SaNPF6.3 was studied by heterologous expression of the gene in the yeast Hansenula (Ogataea) polymorpha mutant strain Δynt1 lacking the original nitrate transporter. Expression of SaNPF6.3 in Δynt1 cells rescued their ability to grow on the selective medium in the presence of nitrate and absorb nitrate from this medium. Confocal laser microscopy of the yeast cells expressing the fused protein GFP-SaNPF6.3 revealed GFP (green fluorescent protein) fluorescence localized predominantly in the cytoplasm and/or vacuoles. Apparently, in the heterologous expression system used, only a relatively small fraction of the GFP-SaNPF6.3 reached the plasma membrane of yeast cells. In S. altissima plants grown in media with either low (0.5 mM) or high (15 mM) NO3; concentrations, SaNPF6.3 was expressed at various ontogenetic stages in different organs, with the highest expression levels in roots, pointing to an important role of SaNPF6.3 in nitrate uptake. SaNPF6.3 expression was induced in roots of nitrate-deprived plants in response to raising the nitrate concentration in the medium and was suppressed when the plants were transferred from sufficient nitrate to the lower concentration. When NaCl concentration in the nutrient solution was elevated, the SaNPF6.3 transcript abundance in the roots increased at the low nitrate concentration and decreased at the high one. We also determined nitrate and chloride concentrations in the xylem sap excreted by detached S. altissima roots as a function of their concentrations in the root medium. Based on a linear increase in Cl concentrations in the xylem exudate as the external Cl concentration increased and the results of SaNPF6.3 expression experiments, we hypothesize that SaNPF6.3 is involved in chloride transport along with nitrate transport in S. altissima plants. Full article
(This article belongs to the Special Issue Function and Malfunction of Ion Channels in Biological Cell Membrane)
Show Figures

Graphical abstract

17 pages, 4674 KiB  
Article
Tyrosine Amino Acid as a Foulant for the Heterogeneous Anion Exchange Membrane
by Anastasiia Kharina and Tatiana Eliseeva
Membranes 2023, 13(10), 844; https://doi.org/10.3390/membranes13100844 - 22 Oct 2023
Viewed by 1355
Abstract
The features of organic fouling have been revealed for highly basic anion exchange membranes during prolonged electrodialysis in solutions containing the aromatic amino acid tyrosine. With increased operation time when using MA-41 heterogeneous membranes in tyrosine solution, an increase in hydrophobicity and roughness [...] Read more.
The features of organic fouling have been revealed for highly basic anion exchange membranes during prolonged electrodialysis in solutions containing the aromatic amino acid tyrosine. With increased operation time when using MA-41 heterogeneous membranes in tyrosine solution, an increase in hydrophobicity and roughness characteristics of the material surface is detected. A reduction in tyrosine flux through the membrane occurs which is caused by its pores plugging and deposition of the amino acid at the membrane surface induced by tyrosine adsorption and local supersaturation of the solution in the membrane phase. The long-term contact of the anion exchange membrane with a solution of tyrosine leads to some structural changes in the anion exchange material. An accumulation of the studied amino acid with phenolic fragment and tyrosine oxidation products (DOPA, DOPA-quinone) is found and confirmed by IR- and UV-spectroscopy techniques. The organic fouling is accompanied by an increase in density and a decrease in moisture content of the studied membrane. A comparative analysis of the chemical and electrochemical cleaning results for fouled samples of the MA-41 membrane demonstrates a partial restoration of the material transport characteristics using electrochemical cleaning in the intensive current mode of electrodialysis. The best efficiency of regeneration is reached when carrying out chemical cleaning with a solution of hydrochloric acid, providing almost complete restoration of the membrane characteristics. Full article
Show Figures

Figure 1

30 pages, 8664 KiB  
Article
Productivity and Thermal Performance Enhancements of Hollow Fiber Water Gap Membrane Distillation Modules Using Helical Fiber Configuration: 3D Computational Fluid Dynamics Modeling
by Mohamed O. Elbessomy, Mahmoud B. Elsheniti, Samy M. Elsherbiny, Ahmed Rezk and Osama A. Elsamni
Membranes 2023, 13(10), 843; https://doi.org/10.3390/membranes13100843 - 22 Oct 2023
Viewed by 1243
Abstract
Although hollow fiber water gap membrane distillation (HF-WGMD) units offer certain advantages over other MD desalination systems, they still require enhancements in terms of distillate flux and productivity. Therefore, this work proposes a novel configuration by incorporating the helical turns of HF membranes [...] Read more.
Although hollow fiber water gap membrane distillation (HF-WGMD) units offer certain advantages over other MD desalination systems, they still require enhancements in terms of distillate flux and productivity. Therefore, this work proposes a novel configuration by incorporating the helical turns of HF membranes within the water gap channel of the HF-WGMD modules. A fully coupled 3D CFD model is developed and validated to simulate the multifaceted energy conservations and diffusion mechanisms that are inherent to the transport phenomena in the proposed HF-WGMD module. Single and double helical HF membrane designs with different numbers of turns are compared to the reference modules of single and double straight HF membrane designs under various operational conditions. At a feed temperature of 70 °C, a noteworthy 11.4% enhancement in the distillate flux is observed when employing 20 helical turns, compared to the single straight HF membrane module. Furthermore, the specific productivity revealed a maximum enhancement of 46.2% when using 50 helical turns. The thermal performance of the proposed HF-WGMD module shows higher energy savings of up to 35% in specific thermal energy consumption for a one-stage module. Using three stages of single helical modules can increase the gain output ratio from 0.17 for the single stage to 0.37, which represents an increase of 117.6%. These findings indicate the high potential of the proposed approach in advancing the performance of HF-WGMD systems. Full article
(This article belongs to the Special Issue Membrane-Based Technologies for Water/Wastewater Treatment)
Show Figures

Figure 1

32 pages, 6517 KiB  
Article
Review and Analysis of Heat Transfer in Spacer-Filled Channels of Membrane Distillation Systems
by Sebastian Schilling and Heike Glade
Membranes 2023, 13(10), 842; https://doi.org/10.3390/membranes13100842 - 22 Oct 2023
Viewed by 1184
Abstract
Membrane distillation (MD) is an attractive process for the concentration of seawater brines. Modelling and simulation of membrane distillation processes requires a better knowledge of the heat transfer coefficients in spacer-filled channels which are usually determined by applying empirical correlations for the Nusselt [...] Read more.
Membrane distillation (MD) is an attractive process for the concentration of seawater brines. Modelling and simulation of membrane distillation processes requires a better knowledge of the heat transfer coefficients in spacer-filled channels which are usually determined by applying empirical correlations for the Nusselt number. In this study, first, a comprehensive literature review on heat transfer correlations was conducted. It was found that the empirical correlations often used for MD simulation result in strongly varying Nusselt numbers that differ by up to an order of magnitude at low Reynolds numbers. Then, heat transfer in spacer-filled channels was investigated experimentally in a membrane distillation system using an aluminum plate instead of a flat-sheet membrane. Numerous tests were carried out with sodium chloride solutions in a wide range of salinities, between 1 g/kg and 95 g/kg, and temperatures, between 30 °C and 80 °C, yielding high heat transfer coefficients in a range of 1500 to 8300 W/(m2K) at relatively low Reynolds numbers, between 100 and 1500, clearly showing the influence of the spacers on heat transfer. A new empirical Nusselt correlation (Nu=0.158Re0.652Pr0.277) was derived which represents the experimental data with a deviation of 10% and is valid for 100<Re<1500 and 2<Pr<7. Computational fluid dynamics simulations were performed to analyze the variations of the fluid properties across the boundary layer due to temperature differences. The simulations showed only minor deviations of the heat transfer coefficients in the hot and cold fluid channels for small driving temperature differences. Full article
Show Figures

Figure 1

14 pages, 780 KiB  
Review
Toxic Effects of Penetrating Cations
by Svyatoslav Sokolov, Anna Zyrina, Sergey Akimov, Dmitry Knorre and Fedor Severin
Membranes 2023, 13(10), 841; https://doi.org/10.3390/membranes13100841 - 22 Oct 2023
Cited by 2 | Viewed by 2022
Abstract
As mitochondria are negatively charged organelles, penetrating cations are used as parts of chimeric molecules to deliver specific compounds into mitochondria. In other words, they are used as electrophilic carriers for such chemical moieties as antioxidants, dyes, etc., to transfer them inside mitochondria. [...] Read more.
As mitochondria are negatively charged organelles, penetrating cations are used as parts of chimeric molecules to deliver specific compounds into mitochondria. In other words, they are used as electrophilic carriers for such chemical moieties as antioxidants, dyes, etc., to transfer them inside mitochondria. However, unmodified penetrating cations affect different aspects of cellular physiology as well. In this review, we have attempted to summarise the data about the side effects of commonly used natural (e.g., berberine) and artificial (e.g., tetraphenylphosphonium, rhodamine, methylene blue) penetrating cations on cellular physiology. For instance, it was shown that such types of molecules can (1) facilitate proton transport across membranes; (2) react with redox groups of the respiratory chain; (3) induce DNA damage; (4) interfere with pleiotropic drug resistance; (5) disturb membrane integrity; and (6) inhibit enzymes. Also, the products of the biodegradation of penetrating cations can be toxic. As penetrating cations accumulate in mitochondria, their toxicity is mostly due to mitochondrial damage. Mitochondria from certain types of cancer cells appear to be especially sensitive to penetrating cations. Here, we discuss the molecular mechanisms of the toxic effects and the anti-cancer activity of penetrating cations. Full article
Show Figures

Figure 1

24 pages, 4509 KiB  
Review
Innovative Bioactive Nanofibrous Materials Combining Medicinal and Aromatic Plant Extracts and Electrospinning Method
by Nikoleta Stoyanova, Nasko Nachev and Mariya Spasova
Membranes 2023, 13(10), 840; https://doi.org/10.3390/membranes13100840 - 21 Oct 2023
Cited by 2 | Viewed by 1883
Abstract
Since antiquity, humans have known about plants as a medicinal cure. Recently, plant extracts are attracting more attention as a result of their natural origin and wide range of desirable features. Nanotechnology’s progress and innovations enable the production of novel materials with enhanced [...] Read more.
Since antiquity, humans have known about plants as a medicinal cure. Recently, plant extracts are attracting more attention as a result of their natural origin and wide range of desirable features. Nanotechnology’s progress and innovations enable the production of novel materials with enhanced properties for a broad range of applications. Electrospinning is a cutting-edge, flexible and economical technique that allows the creation of continuous nano- and microfibrous membranes with tunable structure, characteristics and functionalities. Electrospun fibrous materials are used in drug delivery, tissue engineering, wound healing, cosmetics, food packaging, agriculture and other fields due to their useful properties such as a large surface area to volume ratio and high porosity with small pore size. By encapsulating plant extracts in a suitable polymer matrix, electrospinning can increase the medicinal potential of these extracts, thus improving their bioavailability and maintaining the required concentration of bioactive compounds at the target site. Moreover, the created hybrid fibrous materials could possess antimicrobial, antifungal, antitumor, anti-inflammatory and antioxidant properties that make the obtained structures attractive for biomedical and pharmaceutical applications. This review summarizes the known approaches that have been applied to fabricate fibrous materials loaded with diverse plant extracts by electrospinning. Some potential applications of the extract-containing micro- and nanofibers such as wound dressings, drug delivery systems, scaffolds for tissue engineering and active food packaging systems are discussed. Full article
Show Figures

Graphical abstract

18 pages, 1327 KiB  
Review
The Latest Achievements of Liquid Membranes for Rare Earth Elements Recovery from Aqueous Solutions—A Mini Review
by Małgorzata A. Kaczorowska
Membranes 2023, 13(10), 839; https://doi.org/10.3390/membranes13100839 - 21 Oct 2023
Cited by 2 | Viewed by 1658
Abstract
The systematic increase in the use of rare earth elements (REEs) in various technologically advanced products around the world (e.g., in electronic devices), the growing amount of waste generated by the use of high-tech materials, and the limited resources of naturally occurring REE [...] Read more.
The systematic increase in the use of rare earth elements (REEs) in various technologically advanced products around the world (e.g., in electronic devices), the growing amount of waste generated by the use of high-tech materials, and the limited resources of naturally occurring REE ores resulted in an intensive search for effective and environmentally safe methods for recovering these elements. Among these methods, techniques based on the application of various types of liquid membranes (LMs) play an important role, primarily due to their high efficiency, the simplicity of membrane formation and use, the utilization of only small amounts of environmentally hazardous reagents, and the possibility of simultaneous extraction and back-extraction and reusing the membranes after regeneration. However, because both primary and secondary sources (e.g., waste) of REEs are usually complex and contain a wide variety of components, and the selectivity and efficiency of LMs depend on many factors (e.g., the composition and form of the membrane, nature of the recovered ions, composition of the feed and stripping phases, etc.), new membranes are being developed that are “tailored” to the properties of the recovered rare earth elements and to the character of the solution in which they occur. This review describes the latest achievements (since 2019) related to the recovery of a range of REEs with the use of various liquid membranes (supported liquid membranes (SLMs), emulsion liquid membranes (ELMs), and polymer inclusion membranes (PIMs)), with particular emphasis on methods that fall within the trend of eco-friendly solutions. Full article
(This article belongs to the Special Issue Membrane Systems for Metal Ion Extraction)
Show Figures

Figure 1

19 pages, 8124 KiB  
Article
Chitosan Membranes for Direct Methanol Fuel Cell Applications
by Livhuwani Modau, Rudzani Sigwadi, Touhami Mokrani and Fulufhelo Nemavhola
Membranes 2023, 13(10), 838; https://doi.org/10.3390/membranes13100838 - 20 Oct 2023
Cited by 1 | Viewed by 1340
Abstract
The purpose of this study is to identify the steps involved in fabricating silica/chitosan composite membranes and their suitability for fuel cell applications. It also intends to identify the physical characteristics of chitosan composite membranes, including their degree of water absorption, proton conductivity, [...] Read more.
The purpose of this study is to identify the steps involved in fabricating silica/chitosan composite membranes and their suitability for fuel cell applications. It also intends to identify the physical characteristics of chitosan composite membranes, including their degree of water absorption, proton conductivity, methanol permeability, and functional groups. In this investigation, composite membranes were fabricated using the solution casting method with a chitosan content of 5 g and silica dosage variations of 2% and 4% while stirring at a constant speed for 2 h. According to the findings, the analysis of composite membranes produced chitosan membranes that were successfully modified with silica. The optimum membrane was found to be 4% s-SiO2 from the Sol-gel method with the composite membrane’s optimal condition of 0.234 cm/s proton conductivity, water uptake of 56.21%, and reduced methanol permeability of 0.99 × 10−7 cm2/s in the first 30 min and 3.31 × 10−7 in the last 150 min. Maintaining lower water uptake capacity at higher silica content is still a challenge that needs to be addressed. In conclusion, the fabricated membranes showed exceptional results in terms of proton conductivity and methanol permeability. Full article
(This article belongs to the Special Issue Advanced Membranes for Fuel Cells and Redox Flow Batteries)
Show Figures

Figure 1

15 pages, 2596 KiB  
Review
A Comprehensive Analysis of the Impact of Inorganic Matter on Membrane Organic Fouling: A Mini Review
by Qiusheng Gao, Liang Duan, Yanyan Jia, Hengliang Zhang, Jianing Liu and Wei Yang
Membranes 2023, 13(10), 837; https://doi.org/10.3390/membranes13100837 - 20 Oct 2023
Cited by 2 | Viewed by 1485
Abstract
Membrane fouling is a non-negligible issue affecting the performance of membrane systems. Particularly, organic fouling is the most persistent and severe form of fouling. The complexation between inorganic and organic matter may exacerbate membrane organic fouling. This mini review systematically analyzes the role [...] Read more.
Membrane fouling is a non-negligible issue affecting the performance of membrane systems. Particularly, organic fouling is the most persistent and severe form of fouling. The complexation between inorganic and organic matter may exacerbate membrane organic fouling. This mini review systematically analyzes the role of inorganic matter in membrane organic fouling. Inorganic substances, such as metal ions and silica, can interact with organic foulants like humic acids, polysaccharides, and proteins through ionic bonding, hydrogen bonding, coordination, and van der Waals interactions. These interactions facilitate the formation of larger aggregates that exacerbate fouling, especially for reverse osmosis membranes. Molecular simulations using molecular dynamics (MD) and density functional theory (DFT) provide valuable mechanistic insights complementing fouling experiments. Polysaccharide fouling is mainly governed by transparent exopolymer particle (TEP) formations induced by inorganic ion bridging. Inorganic coagulants like aluminum and iron salts mitigate fouling for ultrafiltration but not reverse osmosis membranes. This review summarizes the effects of critical inorganic constituents on fouling by major organic foulants, providing an important reference for membrane fouling modeling and fouling control strategies. Full article
(This article belongs to the Special Issue Membrane Separation Systems: Design and Applications)
Show Figures

Figure 1

11 pages, 3809 KiB  
Article
Inhibiting Biofilm Formation via Simultaneous Application of Nitric Oxide and Quorum Quenching Bacteria
by Youkyoung Kim, Parthiban Anburajan, Hyeok Kim and Hyun-Suk Oh
Membranes 2023, 13(10), 836; https://doi.org/10.3390/membranes13100836 - 20 Oct 2023
Viewed by 1240
Abstract
Membrane biofouling is an inevitable challenge in membrane-based water treatment systems such as membrane bioreactors. Recent studies have shown that biological approaches based on bacterial signaling can effectively control biofilm formation. Quorum quenching (QQ) is known to inhibit biofilm growth by disrupting quorum [...] Read more.
Membrane biofouling is an inevitable challenge in membrane-based water treatment systems such as membrane bioreactors. Recent studies have shown that biological approaches based on bacterial signaling can effectively control biofilm formation. Quorum quenching (QQ) is known to inhibit biofilm growth by disrupting quorum sensing (QS) signaling, while nitric oxide (NO) signaling helps to disperse biofilms. In this study, batch biofilm experiments were conducted to investigate the impact of simultaneously applying NO signaling and QQ for biofilm control using Pseudomonas aeruginosa PAO1 as a model microorganism. The NO treatment involved the injection of NONOates (NO donor compounds) into mature biofilms, while QQ was implemented by immobilizing QQ bacteria (Escherichia coli TOP10-AiiO or Rhodococcus sp. BH4) in alginate or polyvinyl alcohol/alginate beads to preserve the QQ activity. When QQ beads were applied together with (Z)-1-[N-(3-aminopropyl)-N-(n-propyl) amino]diazen-1-ium-1,2-diolate (PAPA NONOate), they achieved a 39.0% to 71.3% reduction in biofilm formation, which was substantially higher compared to their individual applications (16.0% to 54.4%). These findings highlight the significant potential of combining QQ and NO technologies for effective biofilm control across a variety of processes that require enhanced biofilm inhibition. Full article
Show Figures

Figure 1

13 pages, 2824 KiB  
Article
Effect of Fusidic Acid and Some Nitrogen-Containing Derivatives on Liposomal and Mitochondrial Membranes
by Mikhail V. Dubinin, Anna I. Ilzorkina, Elena V. Salimova, Manish S. Landage, Ekaterina I. Khoroshavina, Sergey V. Gudkov, Konstantin N. Belosludtsev and Lyudmila V. Parfenova
Membranes 2023, 13(10), 835; https://doi.org/10.3390/membranes13100835 - 20 Oct 2023
Viewed by 1319
Abstract
The paper assesses the membranotropic action of the natural antibiotic fusidic acid (FA) and its derivatives. It was found that a FA analogue with ethylenediamine moiety (derivative 2), in contrast to native FA and 3,11-dioxime analogue (derivative 1), is able to increase the [...] Read more.
The paper assesses the membranotropic action of the natural antibiotic fusidic acid (FA) and its derivatives. It was found that a FA analogue with ethylenediamine moiety (derivative 2), in contrast to native FA and 3,11-dioxime analogue (derivative 1), is able to increase the mobility of the lipid bilayer in the zone of lipid headgroups, as well as to induce permeabilization of lecithin liposome membranes. A similar effect of derivative 2 is also observed in the case of rat liver mitochondrial membranes. We noted a decrease in the microviscosity of the mitochondrial membrane and nonspecific permeabilization of organelle membranes in the presence of this agent, which was accompanied by a decrease in mitochondrial Δψ and OXPHOS efficiency. This led to a reduction in mitochondrial calcium retention capacity. The derivatives also reduced the production of H2O2 by mitochondria. The paper considers the relationship between the structure of the tested compounds and the observed effects. Full article
(This article belongs to the Special Issue Function and Malfunction of Ion Channels in Biological Cell Membrane)
Show Figures

Figure 1

26 pages, 3147 KiB  
Article
Monitoring Membrane Fouling Using Fluid Dynamic Gauging: Influence of Feed Characteristics and Operating Conditions
by Kenneth Arandia, Nabin Kumar Karna, Tuve Mattsson and Hans Theliander
Membranes 2023, 13(10), 834; https://doi.org/10.3390/membranes13100834 - 19 Oct 2023
Viewed by 1084
Abstract
Recent studies on membrane fouling have made considerable progress in reducing its adverse effects. However, a lack of comprehensive studies focusing on the underlying fouling mechanisms remains. This work aims to address a part of this gap by investigating the influence of feed [...] Read more.
Recent studies on membrane fouling have made considerable progress in reducing its adverse effects. However, a lack of comprehensive studies focusing on the underlying fouling mechanisms remains. This work aims to address a part of this gap by investigating the influence of feed suspension chemistry and operating conditions on the fouling characteristics of microcrystalline cellulose. Fluid dynamic gauging (FDG) was employed to monitor the properties of fouling layers under varied conditions. FDG results revealed that the cohesive strength of fouling layers increased in the direction towards the membrane, which can be associated with the higher compressive pressures exerted on foulants deposited near the surface. At lower pHs and higher ionic strengths, reduced electrostatic repulsions between particles likely resulted in particle agglomeration, leading to the formation of thicker cakes. In addition, thicker cake layers were also observed at higher feed concentrations, higher operating transmembrane pressures, and longer filtration times. The cross-flow velocity influenced the resilience of fouling layers significantly, resulting in thinner yet stronger cake layers in the transition and turbulent flow regimes. These findings regarding the influence of feed characteristics and operating conditions on the fouling behavior can be beneficial in developing effective antifouling strategies in membrane separation processes. Full article
(This article belongs to the Special Issue New Trends in Polymeric Membranes)
Show Figures

Figure 1

19 pages, 4045 KiB  
Article
The Role of the Gravitational Field in Generating Electric Potentials in a Double-Membrane System for Concentration Polarization Conditions
by Kornelia Batko, Izabella Ślęzak-Prochazka, Weronika Sokołowska, Małgorzata Rak, Wiktoria Płonka and Andrzej Ślęzak
Membranes 2023, 13(10), 833; https://doi.org/10.3390/membranes13100833 - 17 Oct 2023
Viewed by 1037
Abstract
Electric potentials referred to as the gravielectric effect (ΨS) are generated in a double-membrane system containing identical polymer membranes set in horizontal planes and separating non-homogenous electrolyte solutions. The gravielectric effect depends on the concentration and composition of the [...] Read more.
Electric potentials referred to as the gravielectric effect (ΨS) are generated in a double-membrane system containing identical polymer membranes set in horizontal planes and separating non-homogenous electrolyte solutions. The gravielectric effect depends on the concentration and composition of the solutions and is formed due to the gravitational field breaking the symmetry of membrane complexes/concentration boundary layers formed under concentration polarization conditions. As a part of the Kedem–Katchalsky formalism, a model of ion transport was developed, containing the transport parameters of membranes and solutions and taking into account hydrodynamic (convective) instabilities. The transition from non-convective to convective or vice versa can be controlled by a dimensionless concentration polarization factor or concentration Rayleigh number. Using the original measuring set, the time dependence of the membrane potentials was investigated. For steady states, the ΨS was calculated and then the concentration characteristics of this effect were determined for aqueous solutions of NaCl and ethanol. The results obtained from the calculations based on the mathematical model of the gravitational effect are consistent with the experimental results within a 7% error range. It has been shown that a positive or negative gravielectric effect appeared when a density of the solution in the inter-membrane compartment was higher or lower than the density in the outer compartments. The values of the ΨS were in a range from 0 to 27 mV. It was found that, the lower the concentration of solutions in the outer compartments of the two-membrane system (C0), for the same values of Cm/C0, the higher the ΨS, which indicates control properties of the double-membrane system. The considered two-membrane electrochemical system is a source of electromotive force and functions as an electrochemical gravireceptor. Full article
Show Figures

Figure 1

13 pages, 3946 KiB  
Article
Specific Mass Activity and Surface Activity of Platinum Electrically Connected with CNTs in the Oxygen Reduction Reaction
by Andrey Nechitailov, Anna Krasnova and Nadezhda Glebova
Membranes 2023, 13(10), 832; https://doi.org/10.3390/membranes13100832 - 15 Oct 2023
Viewed by 1198
Abstract
This paper presents a study of the platinum activity in the ORR in a hydrogen polymer electrolyte membrane fuel cell with electrodes containing multi-walled CNTs in a wide range of compositions and conditions. The data of the comparative analysis of the platinum activity [...] Read more.
This paper presents a study of the platinum activity in the ORR in a hydrogen polymer electrolyte membrane fuel cell with electrodes containing multi-walled CNTs in a wide range of compositions and conditions. The data of the comparative analysis of the platinum activity on a fraction of Nafion in the electrode, the composition of the oxidizing agent (oxygen, air), pressure, and temperature are provided. The reasons for the dependence of the platinum surface activity on the component composition of the electrode are considered. Specific mass activity and surface activity of platinum in the ORR in MEA with the electrodes with CNTs depend on the ionomer/platinum ratio. Both dependences have a maximum at the level of the 25% Nafion fraction. The maximum appears as a result of an optimal structure formation, which ensures the fullest use of the platinum surface and minimal concentration overvoltages. Specific mass activity and surface activity of platinum for the sample with 34% CNTs at T = 60 °C and excessive pressure of p = 2 atm amount to 0.46 A/mg and 0.72 mA/cm2, respectively. Full article
(This article belongs to the Section Membrane Applications)
Show Figures

Figure 1

3 pages, 229 KiB  
Editorial
The Xenopus Oocyte: A Tool for Membrane Biology
by Agenor Limon and César Mattei
Membranes 2023, 13(10), 831; https://doi.org/10.3390/membranes13100831 - 15 Oct 2023
Viewed by 1217
Abstract
The Xenopus is a special study model in experimental research [...] Full article
(This article belongs to the Special Issue The Xenopus Oocyte: A Tool for Membrane Biology)
25 pages, 5593 KiB  
Review
A Recent Review of Electrospun Porous Carbon Nanofiber Mats for Energy Storage and Generation Applications
by Al Mamun, Mohamed Kiari and Lilia Sabantina
Membranes 2023, 13(10), 830; https://doi.org/10.3390/membranes13100830 - 13 Oct 2023
Cited by 4 | Viewed by 2213
Abstract
Electrospun porous carbon nanofiber mats have excellent properties, such as a large surface area, tunable porosity, and excellent electrical conductivity, and have attracted great attention in energy storage and power generation applications. Moreover, due to their exceptional properties, they can be used in [...] Read more.
Electrospun porous carbon nanofiber mats have excellent properties, such as a large surface area, tunable porosity, and excellent electrical conductivity, and have attracted great attention in energy storage and power generation applications. Moreover, due to their exceptional properties, they can be used in dye-sensitized solar cells (DSSCs), membrane electrodes for fuel cells, catalytic applications such as oxygen reduction reactions (ORRs), hydrogen evolution reactions (HERs), and oxygen evolution reactions (OERs), and sensing applications such as biosensors, electrochemical sensors, and chemical sensors, providing a comprehensive insight into energy storage development and applications. This study focuses on the role of electrospun porous carbon nanofiber mats in improving energy storage and generation and contributes to a better understanding of the fabrication process of electrospun porous carbon nanofiber mats. In addition, a comprehensive review of various alternative preparation methods covering a wide range from natural polymers to synthetic carbon-rich materials is provided, along with insights into the current literature. Full article
Show Figures

Figure 1

21 pages, 7485 KiB  
Article
Bilayer Heterogeneous Cation Exchange Membrane with Polyaniline Modified Homogeneous Layer: Preparation and Electrotransport Properties
by Natalia Loza, Irina Falina, Natalia Kutenko, Svetlana Shkirskaya, Julia Loza and Natalia Kononenko
Membranes 2023, 13(10), 829; https://doi.org/10.3390/membranes13100829 - 11 Oct 2023
Viewed by 1215
Abstract
A bilayer membrane based on a heterogenous cation exchange membrane with a homogeneous cation exchange layer and a polyaniline on its surface is prepared. The intercalation of polyaniline into the membrane with a homogeneous cation exchange layer is performed by oxidative polymerization of [...] Read more.
A bilayer membrane based on a heterogenous cation exchange membrane with a homogeneous cation exchange layer and a polyaniline on its surface is prepared. The intercalation of polyaniline into the membrane with a homogeneous cation exchange layer is performed by oxidative polymerization of aniline. The influence of the homogeneous cation exchange layer and the polyaniline on the structure, conductivity, diffusion permeability, selectivity, and current–voltage curve of the heterogeneous cation exchange membrane is established. Membrane properties are studied in the HCl, NaCl, and CaCl2 solutions. The homogeneous cation exchange layer has a negligible effect on the transport properties of the initial heterogeneous membrane. The polyaniline synthesis leads to a decrease in the macropore volume in the membrane structure, conductivity, and diffusion permeability. The counterion transport number in the bilayer membrane is significantly reduced in a solution of calcium chloride and practically does not change in sodium chloride and hydrochloric acid. In addition, the asymmetry of the diffusion permeability and shape of current–voltage curve depending on the orientation of the membrane surface to the flux of electrolyte or counterion are found. Full article
(This article belongs to the Section Membrane Applications)
Show Figures

Figure 1

15 pages, 4005 KiB  
Article
Study of the Efficiency of a Polycation Using the Diafiltration Technique in the Removal of the Antibiotic Oxytetracycline Used in Aquaculture
by Daniel A. Palacio, Pablo Oñate, Samir Esquivel, Manuel Meléndrez, Eduardo Pereira and Bernabé L. Rivas
Membranes 2023, 13(10), 828; https://doi.org/10.3390/membranes13100828 - 10 Oct 2023
Viewed by 1237
Abstract
The presence of antibiotics in aquatic systems in recent years has become a global environmental and public health concern due to the appearance of strains resistant to these antibiotics. Oxytetracycline (OXT) is a high-impact antibiotic used for both human and veterinary consumption, and [...] Read more.
The presence of antibiotics in aquatic systems in recent years has become a global environmental and public health concern due to the appearance of strains resistant to these antibiotics. Oxytetracycline (OXT) is a high-impact antibiotic used for both human and veterinary consumption, and it is the second most used antibiotic in aquaculture in Chile. Based on the above, this problem is addressed using a linear polymer whose structure is composed of aromatic rings and quaternary ammonium groups, which will help enhance the removal capacity of this antibiotic. To obtain the polycation, a radical polymerization synthesis was carried out using (4-vinylbenzyl)-trimethylammonium chloride as the monomer. The polycation was characterized via Fourier Transform Infrared spectroscopy (FTIR) and Nuclear Magnetic Resonance (NMR). The removal studies were conducted under different experimental conditions such as pH levels (3.0, 5.0, 7.0, 8.0, and 11.0), ionic strength (0.0–0.50 mg L−1 of NaCl), polymer dose (0.25–25.5 mg), variation of the antibiotic concentration (1–100 mg L−1), and evaluation of the maximum retention capacity, as well as load and discharge studies. The antibiotic retention removal was higher than 80.0%. The antibiotic removal performance is greatly affected by the effect of pH, ionic strength, molar ratio, and/or OXT concentration, as these parameters directly affect the electrostatic interactions between the polymer and the antibiotics. The diafiltration technique was shown to be highly efficient for the removal of OXT, with maximum removal capacities of 1273, 966, and 778 mg OXT g−1 polycation. In conclusion, it can be said that coupling water-soluble polymers to the diafiltration technique is an excellent low-cost way to address the problem of antibiotics in aquatic systems. Full article
Show Figures

Figure 1

27 pages, 8031 KiB  
Article
CFD-Assisted Process Optimization of an Integrated Photocatalytic Membrane System for Water Treatment
by Vimbainashe Mercy Chakachaka, Charmaine Sesethu Tshangana, Bhekie Brilliance Mamba and Adolph Anga Muleja
Membranes 2023, 13(10), 827; https://doi.org/10.3390/membranes13100827 - 9 Oct 2023
Viewed by 1397
Abstract
An integrated photocatalytic membrane system (IPMS) was developed for potential use in the remediation of naproxen using real water samples from a drinking water treatment plant. Key parameters such as time, pH, water matrix, mixing speeds, flow rate, and light intensity undeniably affected [...] Read more.
An integrated photocatalytic membrane system (IPMS) was developed for potential use in the remediation of naproxen using real water samples from a drinking water treatment plant. Key parameters such as time, pH, water matrix, mixing speeds, flow rate, and light intensity undeniably affected photocatalytic and membrane separation processes. The system optimization was based on improving irradiation to generate a more reactive species and mass transfer to increase the reaction rate. Upon optimization, IPMS achieved 99% naproxen removal efficiency. Computational fluid dynamics (CFD) simulated the flow patterns and radiation distribution inside the photocatalytic membrane reactor to improve irradiation and mass transfer during operation. The simulated flow field revealed the presence of dead zones with different velocities in the photocatalytic membrane reactor; this limited the mass transfer of reactive species in the reactor, resulting in uneven distribution of reactive radicals. The dead zones were mitigated by increasing the mixing speed, and as a result, convective mass flow improved process performance. The governing parameters (flow patterns and radiation distribution) of the simulated and experimental data were in agreement. The absorption of irradiation by the active site of the membranes improved with light intensity; at higher light intensities, the light irradiated deeper into the membrane. As such, the CoFe2O4 nanoparticles incorporated inside the membrane pores became highly activated, thus enhancing degradation. The obtained space–time yield (STY) (1.23 × 1011 mol/cm2.s) and photocatalytic space–time yield (PSTY) (4.39 × 1011 mol/W.s) showed that the developed IPMS was efficient regarding energy intensiveness and throughput for treatment of pollutants in water. Full article
(This article belongs to the Special Issue Advance in Photocatalytic Membrane Reactor (2nd Edition))
Show Figures

Figure 1

3 pages, 204 KiB  
Editorial
The Characterization of Biodegradable Films and Food Packaging
by Ismael Marcet
Membranes 2023, 13(10), 826; https://doi.org/10.3390/membranes13100826 - 8 Oct 2023
Viewed by 1209
Abstract
Every year, approximately 300 million tons of petroleum-based plastics is manufactured worldwide, and these plastics cause significant environmental issues due to their non-biodegradable nature and emission of toxic gases upon incineration [...] Full article
(This article belongs to the Special Issue Biodegradable Films Characterization and Food Packaging)
15 pages, 9787 KiB  
Article
Simulation, Fabrication and Microfiltration Using Dual Anodic Aluminum Oxide Membrane
by Faheem Qasim, Muhammad Waseem Ashraf, Shahzadi Tayyaba, Muhammad Imran Tariq and Agustín L. Herrera-May
Membranes 2023, 13(10), 825; https://doi.org/10.3390/membranes13100825 - 8 Oct 2023
Cited by 1 | Viewed by 1380
Abstract
Microfluidic devices have gained subsequent attention due to their controlled manipulation of fluid for various biomedical applications. These devices can be used to study the behavior of fluid under several micrometer ranges within the channel. The major applications are the filtration of fluid, [...] Read more.
Microfluidic devices have gained subsequent attention due to their controlled manipulation of fluid for various biomedical applications. These devices can be used to study the behavior of fluid under several micrometer ranges within the channel. The major applications are the filtration of fluid, blood filtration and bio-medical analysis. For the filtration of water, as well as other liquids, the micro-filtration based microfluidic devices are considered as potential candidates to fulfill the desired conditions and requirements. The micro pore membrane can be designed and fabricated in such a way that it maximizes the removal of impurities from fluid. The low-cost micro-filtration method has been reported to provide clean fluid for biomedical applications and other purposes. In the work, anodic-aluminum-oxide-based membranes have been fabricated with different pore sizes ranging from 70 to 500 nm. A soft computing technique like fuzzy logic has been used to estimate the filtration parameters. Then, the finite-element-based analysis system software has been used to study the fluid flow through the double membrane. Then, filtration is performed by using a dual membrane and the clogging of the membrane has been studied after different filtration cycles using characterization like a scanning electron microscope. The filtration has been done to purify the contaminated fluid which has impurities like bacteria and protozoans. The membranes have been tested after each cycle to verify the results. The decrease in permeance with respect to the increase in the velocity of the fluid and the permeate volume per unit clearly depicts the removal of containments from the fluid after four and eight cycles of filtration. The results clearly show that the filtration efficiency can be improved by increasing the number of cycles and adding a dual membrane in the micro-fluidic device. The results show the potential of dual anodic aluminum oxide membranes for the effective filtration of fluids for biomedical applications, thereby offering a promising solution to address current challenges. Full article
Show Figures

Figure 1

12 pages, 2259 KiB  
Article
Preparation of Protein A Membrane Adsorbers Using Strain-Promoted, Copper-Free Dibenzocyclooctyne (DBCO)-Azide Click Chemistry
by Joshua Osuofa and Scott M. Husson
Membranes 2023, 13(10), 824; https://doi.org/10.3390/membranes13100824 - 6 Oct 2023
Viewed by 1550
Abstract
Protein A chromatography is the preferred unit operation for purifying Fc-based proteins. Convective chromatography technologies, like membrane adsorbers, can perform the purification rapidly and improve throughput dramatically. While the literature reports the preparation of Protein A membrane adsorbers utilizing traditional coupling chemistries that [...] Read more.
Protein A chromatography is the preferred unit operation for purifying Fc-based proteins. Convective chromatography technologies, like membrane adsorbers, can perform the purification rapidly and improve throughput dramatically. While the literature reports the preparation of Protein A membrane adsorbers utilizing traditional coupling chemistries that target lysine or thiol groups on the Protein A ligand, this study demonstrates a new approach utilizing copper-free dibenzocyclooctyne (DBCO)-azide click chemistry. The synthetic pathway consists of three main steps: bioconjugation of Protein A with a DBCO-polyethylene glycol (PEG) linker, preparation of an azide-functionalized membrane surface, and click reaction of DBCO-Protein A onto the membrane surface. Using polyclonal human immunoglobulins (hIgG) as the target molecule, Protein A membranes prepared by this synthetic pathway showed a flowrate-independent dynamic binding capacity of ~10 mg/mL membrane at 10% breakthrough. Fitting of static binding capacity measurements to the Langmuir adsorption isotherm showed a maximum binding (qmax) of 27.48 ± 1.31 mg/mL and an apparent equilibrium dissociation constant (Kd) of value of 1.72 × 10−1 ± 4.03 × 10−2 mg/mL. This work represents a new application for copper-less click chemistry in the membrane chromatography space and outlines a synthetic pathway that can be followed for immobilization of other ligands. Full article
(This article belongs to the Collection Feature Papers in Membrane Chemistry)
Show Figures

Figure 1

15 pages, 8704 KiB  
Article
Differences in the Effect of Mn2+ on the Reverse Osmosis Membrane Fouling Caused by Different Types of Organic Matter: Experimental and Density Functional Theory Evidence
by Qiusheng Gao, Liang Duan, Yanyan Jia, Hengliang Zhang, Jianing Liu and Wei Yang
Membranes 2023, 13(10), 823; https://doi.org/10.3390/membranes13100823 - 5 Oct 2023
Cited by 2 | Viewed by 1186
Abstract
Landfill leachate from some sites contains a high concentration of Mn2+, which may cause reverse osmosis (RO) membrane fouling during RO treatment. In this study, the effect of Mn2+ on RO membrane fouling caused by typical organic pollutants (humic acid [...] Read more.
Landfill leachate from some sites contains a high concentration of Mn2+, which may cause reverse osmosis (RO) membrane fouling during RO treatment. In this study, the effect of Mn2+ on RO membrane fouling caused by typical organic pollutants (humic acid (HA), protein (BSA), and sodium alginate (SA)) was systematically investigated, and it was found that Mn2+ exacerbates RO membrane fouling caused by HA, SA, and HBS (mixture of HA + BSA + SA). When the Mn2+ concentration was 0.5 mM and 0.05 mM separately, the membrane fouling caused by HA and SA began to become significant. On the other hand, with for HBS fouling only, the water flux decreased significantly by about 21.7% and further decreased with an increasing Mn2+ concentration. However, Mn2+ has no direct effect on BSA. The effect degrees to which Mn2+ affected RO membrane fouling can be expressed as follows: HBS > SA > HA > BSA. The density functional theory (DFT) calculations also gave the same results. In modeling the reaction of the complexation of Mn2+ with the carboxyl group in these four types of organic matter, BSA has the highest energy (−55.7 kJ/mol), which predicts that BSA binding to Mn2+ is the most unstable compared to other organic matter. The BSA carboxylate group also has the largest bond length (2.538–2.574 Å) with Mn2+ and the weakest interaction force, which provides a theoretical basis for controlling RO membrane fouling exacerbated by Mn2+. Full article
(This article belongs to the Special Issue Membrane Separation Systems: Design and Applications)
Show Figures

Figure 1

14 pages, 2750 KiB  
Article
Expression, Function and Trafficking of the Human ABCG2 Multidrug Transporter Containing Mutations in an Unstructured Cytoplasmic Loop
by Orsolya Mózner, Boglárka Zámbó, Zsuzsa Bartos, Anna Gergely, Kata Sára Szabó, Bálint Jezsó, Ágnes Telbisz, György Várady, László Homolya, Tamás Hegedűs and Balázs Sarkadi
Membranes 2023, 13(10), 822; https://doi.org/10.3390/membranes13100822 - 4 Oct 2023
Viewed by 1432
Abstract
The human ABCG2 multidrug transporter plays a crucial role in the absorption and excretion of xeno- and endobiotics, contributes to cancer drug resistance and the development of gout. In this work, we have analyzed the effects of selected variants, residing in a structurally [...] Read more.
The human ABCG2 multidrug transporter plays a crucial role in the absorption and excretion of xeno- and endobiotics, contributes to cancer drug resistance and the development of gout. In this work, we have analyzed the effects of selected variants, residing in a structurally unresolved cytoplasmic region (a.a. 354–367) of ABCG2 on the function and trafficking of this protein. A cluster of four lysines (K357–360) and the phosphorylation of a threonine (T362) residue in this region have been previously suggested to significantly affect the cellular fate of ABCG2. Here, we report that the naturally occurring K360del variant in human cells increased ABCG2 plasma membrane expression and accelerated cellular trafficking. The variable alanine replacements of the neighboring lysines had no significant effect on transport function, and the apical localization of ABCG2 in polarized cells has not been altered by any of these mutations. Moreover, in contrast to previous reports, we found that the phosphorylation-incompetent T362A, or the phosphorylation-mimicking T362E variants in this loop had no measurable effects on the function or expression of ABCG2. Molecular dynamics simulations indicated an increased mobility of the mutant variants with no major effects on the core structure of the protein. These results may help to decipher the potential role of this unstructured region within this transporter. Full article
(This article belongs to the Collection Feature Papers in Biological Membrane Functions)
Show Figures

Figure 1

25 pages, 4209 KiB  
Article
Experimental and Simulation Study of Solar-Powered Air-Gap Membrane Distillation Technology for Water Desalination
by Mostafa AbdEl-Rady Abu-Zeid, Mohamed Bassyouni, Yasser Fouad, Toderaș Monica, Abdelfatah Marni Sandid and Yasser Elhenawy
Membranes 2023, 13(10), 821; https://doi.org/10.3390/membranes13100821 - 1 Oct 2023
Cited by 1 | Viewed by 1559
Abstract
This work aimed to investigate temperature polarization (TP) and concentration polarization (CP), which affect solar-powered air-gap membrane distillation (SP-AGMD) system performance under various operating conditions. A mathematical model for the SP-AGMD system using the experimental results was performed to calculate the temperature polarization [...] Read more.
This work aimed to investigate temperature polarization (TP) and concentration polarization (CP), which affect solar-powered air-gap membrane distillation (SP-AGMD) system performance under various operating conditions. A mathematical model for the SP-AGMD system using the experimental results was performed to calculate the temperature polarization coefficient (τ), interface temperature (Tfm), and interface concentration (Cfm) at various salt concentrations (Cf), feed temperatures (Tf), and flow rates (Mf). The system of SP-AGMD was simulated using the TRNSYS program. An evacuated tube collector (ETC) with a 2.5 m2 surface area was utilized for solar water heating. Electrical powering of cooler and circulation water pumps in the SP-AGMD system was provided using a photovoltaic system. Data were subjected to one-way analysis of variance (ANOVA) and Spearman’s correlation analysis to test the significant impact of operating conditions and polarization phenomena at p < 0.05. Statistical analysis showed that Mf induced a highly significant difference in the productivity (Pr) and heat-transfer (hf) coefficients (p < 0.001) and a significant difference in τ (p < 0.05). Great F-ratios showed that Mf is the most influential parameter. Pr was enhanced by 99% and 146%, with increasing Tf (60 °C) and Mf (12 L/h), respectively, at a stable salt concentration (Cf) of 0.5% and a cooling temperature (Tc) of 20 °C. Also, the temperature increased to 85 °C when solar radiation reached 1002 W/m2 during summer. The inlet heat temperature of AGMD increased to 73 °C, and the Pr reached 1.62 kg/(m2·h). Full article
(This article belongs to the Special Issue Membrane Distillation for Water Treatment and Recycling)
Show Figures

Figure 1

17 pages, 8373 KiB  
Article
A Comparative Study of Nafion 212 and Sulfonated Poly(Ether Ether Ketone) Membranes with Different Degrees of Sulfonation on the Performance of Iron-Chromium Redox Flow Battery
by Enrui Bai, Haotian Zhu, Chuanyu Sun, Guanchen Liu, Xiaoyin Xie, Chongyang Xu and Sheng Wu
Membranes 2023, 13(10), 820; https://doi.org/10.3390/membranes13100820 - 30 Sep 2023
Cited by 4 | Viewed by 1508
Abstract
For an iron-chromium redox flow battery (ICRFB), sulfonated poly(ether ether ketone) (SPEEK) membranes with five various degrees of sulfonation (DSs) are studied. To select the SPEEK membrane with the ideal DS for ICRFB applications, the physicochemical characteristics and single-cell performance are taken into [...] Read more.
For an iron-chromium redox flow battery (ICRFB), sulfonated poly(ether ether ketone) (SPEEK) membranes with five various degrees of sulfonation (DSs) are studied. To select the SPEEK membrane with the ideal DS for ICRFB applications, the physicochemical characteristics and single-cell performance are taken into consideration. Following all the investigations, it has been determined that the SPEEK membrane, which has a DS of 57% and a thin thickness of 25 μm, is the best option for replacing commercial Nafion 212 in ICRFB. Firstly, it exhibits a better cell performance according to energy efficiency (EE) and coulombic efficiency (CE) at the current density range between 40 mA cm−2 and 80 mA cm−2. Additionally, it has a more stable EE (79.25–81.64%) and lower discharge capacity decay rate (50%) than the Nafion 212 (EE: 76.74–81.45%, discharge capacity decay: 76%) after 50 charge–discharge cycles, which proves its better oxidation stability as well. In addition, the longer self-discharge time during the open-circuit voltage test further demonstrates that this SPEEK membrane could be employed for large-scale ICRFB applications. Full article
(This article belongs to the Section Polymeric Membranes)
Show Figures

Figure 1

Previous Issue
Next Issue
Back to TopTop