The Effect of Physical Activity and Repeated Whole-Body Cryotherapy on the Expression of Modulators of the Inflammatory Response in Mononuclear Blood Cells among Young Men
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Study Participants
- (1)
- TR-WBC, young men with experience in endurance training (average training duration of 3.35 ± 1.83 years);
- (2)
- NTR-WBC, young men without training regimes;
- (3)
- NTR, another cohort of young untrained men, who did not participate in the WBC sessions.
2.3. Whole-Body Cryotherapy Procedure
2.4. Assessment of Body Composition
2.5. Venipuncture and Blood Collection
2.6. mRNA Expression Analysis
2.6.1. mRNA Isolation and Quality Control of RNA
2.6.2. Reverse Transcription
2.6.3. Real-Time Quantitative PCR
2.7. Statistical Analysis
3. Results
3.1. Characteristics of the Study Participants
3.1.1. Somatic Characteristics
3.1.2. Hematological and Biochemical Indices of the Participants
3.2. Selected Gene Expressions
Comparisons of Changes between the Number of WBC Sessions and Baseline Values
3.3. Comparison of Baseline Values in Non-Training and Training Groups
4. Discussion
5. Conclusions
- (1)
- Repeated exposure to WBC augments the expression of genes associated with antioxidative defense;
- (2)
- The upregulation of IL-1A and IL-6 mRNA abundance following WBC sessions possibly causes an acute inflammatory response, which normalizes with repeated treatments, indicating potential modulation of inflammatory pathways by WBC;
- (3)
- An adaptive response to WBC is comparable to the benefits derived from habitual physical exercise;
- (4)
- Despite limitations, the study underscores the potential of WBC as a therapeutic modality in sports and broader health contexts.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Skrzek, A.; Ciszek, A.; Nowicka, D.; Dębiec-Bąk, A. Evaluation of Changes in Selected Skin Parameters under the Influence of Extremely Low Temperature. Cryobiology 2019, 86, 19–24. [Google Scholar] [CrossRef] [PubMed]
- Bouzigon, R.; Grappe, F.; Ravier, G.; Dugue, B. Whole- and Partial-Body Cryostimulation/Cryotherapy: Current Technologies and Practical Applications. J. Therm. Biol. 2016, 61, 67–81. [Google Scholar] [CrossRef] [PubMed]
- Jastrząbek, R.; Straburzyńska-Lupa, A.; Rutkowski, R.; Romanowski, W. Effects of Different Local Cryotherapies on Systemic Levels of TNF-α, IL-6, and Clinical Parameters in Active Rheumatoid Arthritis. Rheumatol. Int. 2013, 33, 2053–2060. [Google Scholar] [CrossRef]
- Ziemann, E.; Olek, R.A.; Grzywacz, T.; Kaczor, J.J.; Antosiewicz, J.; Skrobot, W.; Kujach, S.; Laskowski, R. Whole-Body Cryostimulation as an Effective Way of Reducing Exercise-Induced Inflammation and Blood Cholesterol in Young Men. Eur. Cytokine Netw. 2014, 25, 14–23. [Google Scholar] [CrossRef]
- Kwiecien, S.Y.; McHugh, M.P. The Cold Truth: The Role of Cryotherapy in the Treatment of Injury and Recovery from Exercise. Eur. J. Appl. Physiol. 2021, 121, 2125–2142. [Google Scholar] [CrossRef] [PubMed]
- Slattery, K.; Bentley, D.; Coutts, A.J. The Role of Oxidative, Inflammatory and Neuroendocrinological Systems during Exercise Stress in Athletes: Implications of Antioxidant Supplementation on Physiological Adaptation during Intensified Physical Training. Sports Med. 2015, 45, 453–471. [Google Scholar] [CrossRef] [PubMed]
- Sutkowy, P.; Augustyńska, B.; Woźniak, A.; Rakowski, A. Physical Exercise Combined with Whole-Body Cryotherapy in Evaluating the Level of Lipid Peroxidation Products and Other Oxidant Stress Indicators in Kayakers. Oxid. Med. Cell Longev. 2014, 2014, 402631. [Google Scholar] [CrossRef] [PubMed]
- Mila-Kierzenkowska, C.; Jurecka, A.; Woźniak, A.; Szpinda, M.; Augustyńska, B.; Woźniak, B. The Effect of Submaximal Exercise Preceded by Single Whole-Body Cryotherapy on the Markers of Oxidative Stress and Inflammation in Blood of Volleyball Players. Oxid. Med. Cell Longev. 2013, 2013, 409567. [Google Scholar] [CrossRef] [PubMed]
- Wozniak, A.; Mila-Kierzenkowska, C.; Szpinda, M.; Chwalbinska-Moneta, J.; Augustynska, B.; Jurecka, A. Special Paper—Sports Medicine Whole-Body Cryostimulation and Oxidative Stress in Rowers: The Preliminary Results. Arch. Med. Sci. 2013, 9, 303–308. [Google Scholar] [CrossRef]
- Lubkowska, A.; Dołegowska, B.; Szyguła, Z. Whole-Body Cryostimulation-Potential Beneficial Treatment for Improving Antioxidant Capacity in Healthy Men-Significance of the Number of Sessions. PLoS ONE 2012, 7, e46352. [Google Scholar] [CrossRef]
- Szygula, Z.; Lubkowska, A.; Giemza, C.; Skrzek, A.; Bryczkowska, I.; Doełȩgowska, B. Hematological Parameters, and Hematopoietic Growth Factors: EPO and IL-3 in Response to Whole-Body Cryostimulation (WBC) in Military Academy Students. PLoS ONE 2014, 9, e93096. [Google Scholar] [CrossRef] [PubMed]
- Wojciak, G.; Szymura, J.; Szygula, Z.; Gradek, J.; Wiecek, M. The Effect of Repeated Whole-Body Cryotherapy on Sirt1 and Sirt3 Concentrations and Oxidative Status in Older and Young Men Performing Different Levels of Physical Activity. Antioxidants 2020, 10, 37. [Google Scholar] [CrossRef] [PubMed]
- Wojciak, G.; Szymura, J.; Szygula, Z.; Gradek, J.; Wiecek, M. The Effect of Repeated Whole-Body Cryotherapy on Blood Thiol Status in Men Depending on Age and Physical Activity. Med. Rehabil. 2024, 27, 40–48. [Google Scholar] [CrossRef]
- Lombardi, G.; Ziemann, E.; Banfi, G. Whole-Body Cryotherapy in Athletes: From Therapy to Stimulation. An Updated Review of the Literature. Front. Physiol. 2017, 8, 258. [Google Scholar] [CrossRef] [PubMed]
- Pawik, M.; Kowalska, J.; Rymaszewska, J. The Effectiveness of Whole-Body Cryotherapy and Physical Exercises on the Psychological Well-Being of Patients with Multiple Sclerosis: A Comparative Analysis. Adv. Clin. Exp. Med. 2019, 28, 1477–1483. [Google Scholar] [CrossRef]
- Capodaglio, P.; Cremascoli, R.; Piterà, P.; Fontana, J.M. Whole-Body Cryostimulation: A Rehabilitation Booster. J. Rehabil. Med. Clin. Commun. 2022, 5, jrmcc00086. [Google Scholar] [CrossRef] [PubMed]
- Lubkowska, A.; Szygula, Z.; Klimek, A.J.; Torii, M. Do Sessions of Cryostimulation Have Influence on White Blood Cell Count, Level of IL6 and Total Oxidative and Antioxidative Status in Healthy Men? Eur. J. Appl. Physiol. 2010, 109, 67–72. [Google Scholar] [CrossRef] [PubMed]
- Lubkowska, A.; Szyguła, Z.; Chlubek, D.; Banfi, G. The Effect of Prolonged Whole-Body Cryostimulation Treatment with Different Amounts of Sessions on Chosen pro- and Anti-Inflammatory Cytokines Levels in Healthy Men. Scand. J. Clin. Lab. Invest. 2011, 71, 419–425. [Google Scholar] [CrossRef]
- Lombardi, G.; Lanteri, P.; Porcelli, S.; Mauri, C.; Colombini, A.; Grasso, D.; Zani, V.; Bonomi, F.G.; Melegati, G.; Banfi, G. Hematological Profile and Martial Status in Rugby Players during Whole Body Cryostimulation. PLoS ONE 2013, 8, e55803. [Google Scholar] [CrossRef]
- Merksamer, P.I.; Liu, Y.; He, W.; Hirschey, M.D.; Chen, D.; Verdin, E. The Sirtuins, Oxidative Stress and Aging: An Emerging Link. Aging 2013, 5, 144–150. [Google Scholar] [CrossRef]
- Perovic, A.; Unic, A.; Dumic, J. Recreational Scuba Diving: Negative or Positive Effects of Oxidative and Cardiovascular Stress? Biochem. Med. 2014, 24, 235. [Google Scholar] [CrossRef] [PubMed]
- Faul, F.; Erdfelder, E.; Lang, A.G.; Buchner, A. G*Power 3: A Flexible Statistical Power Analysis Program for the Social, Behavioral, and Biomedical Sciences. Behav. Res. Methods 2007, 39, 175–191. [Google Scholar] [CrossRef] [PubMed]
- Livak, K.J.; Schmittgen, T.D. Analysis of Relative Gene Expression Data Using Real-Time Quantitative PCR and the 2−ΔΔCT Method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef] [PubMed]
- Buccitelli, C.; Selbach, M. MRNAs, Proteins and the Emerging Principles of Gene Expression Control. Nat. Rev. Genet. 2020, 21, 630–644. [Google Scholar] [CrossRef]
- Morisaki, T.; Lyon, K.; DeLuca, K.F.; DeLuca, J.G.; English, B.P.; Zhang, Z.; Lavis, L.D.; Grimm, J.B.; Viswanathan, S.; Looger, L.L.; et al. Real-Time Quantification of Single RNA Translation Dynamics in Living Cells. Science 2016, 352, 1425–1429. [Google Scholar] [CrossRef] [PubMed]
- Bryll, A.R.; Peterson, C.L. The Circular Logic of MRNA Homeostasis. Transcription 2023, 14, 18–26. [Google Scholar] [CrossRef] [PubMed]
- Sokabe, M.; Fraser, C.S. Toward a Kinetic Understanding of Eukaryotic Translation. Cold Spring Harb. Perspect. Biol. 2019, 11, a032706. [Google Scholar] [CrossRef]
- dos Santos Silva, M.A.; de Carvalho, T.R.; Marques Barros da Cruz, A.C.; Guedine de Jesus, L.R.; da Silva Neto, L.A.; Lima Trajano, E.T.; Bezerra, F.S. Effect of Time-Dependent Cryotherapy on Redox Balance of Quadriceps Injuries. Cryobiology 2016, 72, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Resztak, J.A.; Wei, J.; Zilioli, S.; Sendler, E.; Alazizi, A.; Mair-Meijers, H.E.; Wu, P.; Wen, X.; Slatcher, R.B.; Zhou, X.; et al. Genetic Control of the Dynamic Transcriptional Response to Immune Stimuli and Glucocorticoids at Single-Cell Resolution. Genome Res. 2023, 33, 839. [Google Scholar] [CrossRef]
- Dulian, K.; Laskowski, R.; Grzywacz, T.; Kujach, S.; Flis, D.J.; Smaruj, M.; Ziemann, E. The Whole Body Cryostimulation Modifies Irisin Concentration and Reduces Inflammation in Middle Aged, Obese Men. Cryobiology 2015, 71, 398–404. [Google Scholar] [CrossRef]
- Qu, C.; Wu, Z.; Xu, M.; Qin, F.; Dong, Y.; Wang, Z.; Zhao, J. Cryotherapy Models and Timing-Sequence Recovery of Exercise-Induced Muscle Damage in Middle- and Long-Distance Runners. J. Athl. Train. 2020, 55, 329. [Google Scholar] [CrossRef]
- Peyronnel, C.; Totoson, P.; Petitcolin, V.; Bonnefoy, F.; Guillot, X.; Saas, P.; Verhoeven, F.; Martin, H.; Demougeot, C. Effects of Local Cryotherapy on Systemic Endothelial Activation, Dysfunction, and Vascular Inflammation in Adjuvant-Induced Arthritis (AIA) Rats. Arthritis Res. Ther. 2022, 24, 97. [Google Scholar] [CrossRef] [PubMed]
- Pournot, H.; Bieuzen, F.; Louis, J.; Fillard, J.R.; Barbiche, E.; Hausswirth, C. Time-Course of Changes in Inflammatory Response after Whole-Body Cryotherapy Multi Exposures Following Severe Exercise. PLoS ONE 2011, 6, e22748. [Google Scholar] [CrossRef]
- Stanek, A.; Wielkoszyński, T.; Bartuś, S.; Cholewka, A. Whole-Body Cryostimulation Improves Inflammatory Endothelium Parameters and Decreases Oxidative Stress in Healthy Subjects. Antioxidants 2020, 9, 1308. [Google Scholar] [CrossRef]
- Varallo, G.; Piterà, P.; Fontana, J.M.; Gobbi, M.; Arreghini, M.; Giusti, E.M.; Franceschini, C.; Plazzi, G.; Castelnuovo, G.; Capodaglio, P. Is Whole-Body Cryostimulation an Effective Add-On Treatment in Individuals with Fibromyalgia and Obesity? A Randomized Controlled Clinical Trial. J. Clin. Med. 2022, 11, 4324. [Google Scholar] [CrossRef]
- Sharifi-Rad, M.; Anil Kumar, N.V.; Zucca, P.; Varoni, E.M.; Dini, L.; Panzarini, E.; Rajkovic, J.; Tsouh Fokou, P.V.; Azzini, E.; Peluso, I.; et al. Lifestyle, Oxidative Stress, and Antioxidants: Back and Forth in the Pathophysiology of Chronic Diseases. Front. Physiol. 2020, 11, 694. [Google Scholar] [CrossRef]
- Dinarello, C.A. Overview of the IL-1 Family in Innate Inflammation and Acquired Immunity. Immunol. Rev. 2018, 281, 8. [Google Scholar] [CrossRef] [PubMed]
- Alpert, T.; Herzel, L.; Neugebauer, K.M. Perfect Timing: Splicing and Transcription Rates in Living. Wiley Interdiscip. Rev. RNA 2017, 8, e1401. [Google Scholar] [CrossRef]
- Hausswirth, C.; Louis, J.; Bieuzen, F.; Pournot, H.; Fournier, J.; Filliard, J.R.; Brisswalter, J. Effects of Whole-Body Cryotherapy vs. Far-Infrared vs. Passive Modalities on Recovery from Exercise-Induced Muscle Damage in Highly-Trained Runners. PLoS ONE 2011, 6, 27749. [Google Scholar] [CrossRef]
- Wiecek, M.; Szymura, J.; Sproull, J.; Szygula, Z. Decreased Blood Asprosin in Hyperglycemic Menopausal Women as a Result of Whole-Body Cryotherapy Regardless of Metabolic Syndrome. J. Clin. Med. 2019, 8, 1428. [Google Scholar] [CrossRef]
- Stanek, A.; Cholewka, A.; Wielkoszyński, T.; Romuk, E.; Sieroń, A. Whole-Body Cryotherapy Decreases the Levels of Inflammatory, Oxidative Stress, and Atherosclerosis Plaque Markers in Male Patients with Active-Phase Ankylosing Spondylitis in the Absence of Classical Cardiovascular Risk Factors. Mediators Inflamm. 2018, 2018, 8592532. [Google Scholar] [CrossRef]
- Dziedzic, A.; Maciak, K.; Miller, E.D.; Starosta, M.; Saluk, J. Targeting Vascular Impairment, Neuroinflammation, and Oxidative Stress Dynamics with Whole-Body Cryotherapy in Multiple Sclerosis Treatment. Int. J. Mol. Sci. 2024, 25, 3858. [Google Scholar] [CrossRef]
- Zalewski, P.; Buszko, K.; Zawadka-Kunikowska, M.; Slomko, J.; Szrajda, J.; Klawe, J.J.; Tafil-Klawe, M.; Sinski, M.; Newton, J. Cardiovascular and Autonomic Responses to Whole-Body Cryostimulation in Essential Hypertension. Cryobiology 2014, 69, 249–255. [Google Scholar] [CrossRef]
- Rymaszewska, J.; Lion, K.M.; Stańczykiewicz, B.; Rymaszewska, J.E.; Trypka, E.; Pawlik-Sobecka, L.; Kokot, I.; Płaczkowska, S.; Zabłocka, A.; Szcześniak, D. The Improvement of Cognitive Deficits after Whole-Body Cryotherapy—A Randomised Controlled Trial. Exp. Gerontol. 2021, 146, 111237. [Google Scholar] [CrossRef]
- Zembron-Lacny, A.; Morawin, B.; Wawrzyniak-Gramacka, E.; Gramacki, J.; Jarmuzek, P.; Kotlega, D.; Ziemann, E. Multiple Cryotherapy Attenuates Oxi-Inflammatory Response Following Skeletal Muscle Injury. Int. J. Environ. Res. Public Health 2020, 17, 7855. [Google Scholar] [CrossRef]
- Rose, C.; Edwards, K.M.; Siegler, J.; Graham, K.; Caillaud, C. Whole-Body Cryotherapy as a Recovery Technique after Exercise: A Review of the Literature. Int. J. Sports Med. 2017, 38, 1049–1060. [Google Scholar] [CrossRef]
- Peake, J.M.; Roberts, L.A.; Figueiredo, V.C.; Egner, I.; Krog, S.; Aas, S.N.; Suzuki, K.; Markworth, J.F.; Coombes, J.S.; Cameron-Smith, D.; et al. The Effects of Cold Water Immersion and Active Recovery on Inflammation and Cell Stress Responses in Human Skeletal Muscle after Resistance Exercise. J. Physiol. C 2017, 595, 695–711. [Google Scholar] [CrossRef]
- Jurecka, A.; Woźniak, A.; Mila-Kierzenkowska, C.; Augustyńska, B.; Oleksy, Ł.; Stolarczyk, A.; Gądek, A. The Influence of Single Whole-Body Cryostimulation on Cytokine Status and Oxidative Stress Biomarkers during Exhaustive Physical Effort: A Crossover Study. Int. J. Mol. Sci. 2023, 24, 5559. [Google Scholar] [CrossRef] [PubMed]
- Figueiredo, V.C.; Roberts, L.A.; Markworth, J.F.; Barnett, M.P.G.; Coombes, J.S.; Raastad, T.; Peake, J.M.; Cameron-Smith, D. Impact of Resistance Exercise on Ribosome Biogenesis Is Acutely Regulated by Post-exercise Recovery Strategies. Physiol. Rep. 2016, 4, 12670. [Google Scholar] [CrossRef]
- Pawłowska, M.; Mila-Kierzenkowska, C.; Boraczyński, T.; Boraczyński, M.; Szewczyk-Golec, K.; Sutkowy, P.; Wesołowski, R.; Budek, M.; Woźniak, A. The Influence of Ambient Temperature Changes on the Indicators of Inflammation and Oxidative Damage in Blood after Submaximal Exercise. Antioxidants 2022, 11, 2445. [Google Scholar] [CrossRef]
- Ramos, G.V.; Pinheiro, C.M.; Messa, S.P.; Borges Delfino, G.; De Cássia Marqueti, R.; De Fátima Salvini, T.; Luiz, J.; Durigan, Q. Cryotherapy Reduces Inflammatory Response without Altering Muscle Regeneration Process and Extracellular Matrix Remodeling of Rat Muscle. Sci. Rep. 2015, 6, 18525. [Google Scholar] [CrossRef]
- Coppi, F.; Pinti, M.; Selleri, V.; Zanini, G.; D’Alisera, R.; Latessa, P.M.; Tripi, F.; Savino, G.; Cossarizza, A.; Nasi, M.; et al. Cardiovascular Effects of Whole-Body Cryotherapy in Non-Professional Athletes. Front. Cardiovasc. Med. 2022, 9, 905790. [Google Scholar] [CrossRef]
Variable | NTR | NTR-WBC | TR-WBC | p-Value |
---|---|---|---|---|
Age [years] | 22.40 ± 2.84 | 21.80 ± 1.40 | 22.63 ± 1.77 | 0.69 |
BH [cm] | 181.56 ± 9.61 | 181.05 ± 7.51 | 182.25 ± 6.23 | 0.95 |
BM [kg] | 83.49 ± 7.14 | 77.67 ± 6.96 | 78.35 ± 11.55 | 0.28 |
PBF [%] | 22.25 ± 5.68 | 16.09 ± 5.17 * | 15.60 ± 6.10 * | 0.03 |
BF [kg] | 18.66 ± 5.14 | 12.51 ± 4.23 * | 12.35 ± 6.25 * | 0.02 |
LBM [kg] | 64.83 ± 6.66 | 65.16 ± 6.69 | 66.00 ± 10.27 | 0.95 |
TBW [%] | 46.67 ± 4.80 | 46.90 ± 4.83 | 47.53 ± 7.40 | 0.95 |
SLM [kg] | 60.00 ± 6.35 | 60.59 ± 6.37 | 61.43 ± 9.69 | 0.92 |
BMI [kg/m2] | 25.47 ± 2.95 | 23.74 ± 2.20 | 23.54 ± 2.80 | 0.24 |
Variable | NTR | NTR-WBC | TR-WBC | p-Value |
---|---|---|---|---|
RBC (106/µL) | 5.12 ± 0.20 | 5.21 ± 0.28 | 4.96 ± 0.33 | 0.29 |
HGB (g/dL) | 15.66 ± 0.94 | 15.97 ± 0.70 | 14.68 ± 0.93 *$ | 0.01 |
HCT (%) | 44 ± 2.03 | 46.27 ± 2.14 *# | 43.23 ± 2.57 | 0.02 |
PLT (1000/µL) | 243.2 (177–305) | 212.0 (200–226) *# | 241.5 (226–286) | 0.04 |
LEUC (1000/µL) | 7.69 (4.49–19.72) | 7.09 (5.23–8) | 5.46 (4.9–7.13) | 0.52 |
NEUT (%) | 52.27 ± 12.89 | 49.70 ± 14.03 | 49.56 ± 13.11 | 0.86 |
LYMPH (%) | 34.49 ± 10.74 | 36.91 ± 13.18 | 35.89 ± 10.61 | 0.87 |
MONO (%) | 9.10 ± 1.79 | 9.47 ± 1.53 | 9.85 ± 2.66 | 0.58 |
EOS (%) | 3.52 (0.10–7.80) | 3.2 (2.2–4.0) | 3.3 (2.2–5.1) | 0.68 |
BASO (%) | 0.62 ± 0.34 | 0.72 ± 0.31 | 0.73 ± 0.47 | 0.72 |
Glucose (mmol/L) | 5.04 (4.46–5.57) | 4.82 (4.67–4.94) | 5.02 (4.73–5.16) | 0.35 |
CHOL (mmol/L) | 4.29 ± 0.89 | 4.19 ± 1.04 | 4.24 ± 1.03 | 0.93 |
HDL-C (mmol/L) | 1.34 ± 0.19 | 1.47 ± 0.45 | 1.61 ± 0.28 | 0.88 |
LDL-C (mmol/L) | 2.54 (1.57–3.93) | 2.34 (1.94–2.57) | 1.82 (1.66–2.71) | 0.93 |
TG (mmol/L) | 0.90 ± 0.27 | 0.87 ± 0.25 | 0.78 ± 0.24 | 0.45 |
SBP (mmHg) | 124.00 ± 5.16 | 120.50 ± 13.83 | 120.50 ± 16.24 | 0.43 |
DBP (mmHg) | 70.00 ± 6.67 | 70.50 ± 7.98 | 74.50 ± 9.56 | 0.67 |
Variable | Group | Before 1 WBC | After 1 WBC | After 12 WBC | After 24 WBC | Student’s t-Test (p-Value) | ||
---|---|---|---|---|---|---|---|---|
Mean ± SD (Relative Fold Change) | After 1 vs. Before | After 12 vs. Before | After 24 vs. Before | |||||
IL-1A | NTR | 1.37 ± 1.31 | 1.64 ± 1.55 | 1.46 ± 1.44 | 1.5 ± 1.34 | 0.68 | 0.87 | 0.82 |
NTR-WBC | 1.00 ± 0.55 | 3.78 ± 2.63 | 1.61 ± 1.4 | 1.26 ± 0.83 | 0.00 | 0.22 | 0.42 | |
TR-WBC | 1.42 ± 0.68 | 3.25 ± 0.99 | 1.19 ± 1.03 | 1.06 ± 0.63 | 0.00 | 0.6 | 0.29 | |
IL-6 | NTR | 1.3 ± 0.55 | 1.24 ± 0.48 | 1.21 ± 0.60 | 1.23 ± 0.41 | 0.81 | 0.69 | 0.76 |
NTR-WBC | 1.26 ± 0.46 | 2.16 ± 0.61 | 2.76 ± 0.76 | 2.03 ± 0.62 | 0.00 | 0.00 | 0.01 | |
TR-WBC | 1.84 ± 0.38 | 3.38 ± 0.74 | 2.49 ± 0.59 | 1.77 ± 0.64 | 0.00 | 0.02 | 0.82 | |
IL-10 | NTR | 1.41 ± 1.42 | 1.54 ± 1.55 | 1.59 ± 0.97 | 1.43 ± 1.4 | 0.85 | 0.75 | 0.97 |
NTR-WBC | 1.02 ± 0.59 | 1.67 ± 0.70 | 1.57 ± 1.12 | 1.31 ± 0.78 | 0.08 | 0.18 | 0.35 | |
TR-WBC | 1.49 ± 0.83 | 1.63 ± 1.05 | 1.65 ± 0.82 | 1.09 ± 0.66 | 0.76 | 0.7 | 0.31 | |
IFNG | NTR | 1.39 ± 1.27 | 1.18 ± 1.07 | 1.24 ± 1.74 | 1.17 ± 0.72 | 0.68 | 0.83 | 0.63 |
NTR-WBC | 1.22 ± 1.27 | 1.54 ± 0.62 | 1.88 ± 1.35 | 1.38 ± 0.5 | 0.47 | 0.27 | 0.72 | |
TR-WBC | 1.05 ± 1.02 | 2.03 ± 2.39 | 0.87 ± 0.52 | 1.29 ± 1.47 | 0.31 | 0.66 | 0.71 | |
SIRT1 | NTR | 1.19 ± 0.89 | 1.23 ± 0.95 | 1.14 ± 0.59 | 1.22 ± 0.95 | 0.92 | 0.88 | 0.94 |
NTR-WBC | 0.91 ± 0.38 | 1.55 ± 0.69 | 1.83 ± 0.88 | 1.67 ± 0.87 | 0.02 | 0.01 | 0.02 | |
TR-WBC | 1.82 ± 0.27 | 2.48 ± 0.6 | 2.55 ± 0.51 | 2.05 ± 1.03 | 0.01 | 0.00 | 0.65 | |
SIRT3 | NTR | 0.97 ± 0.34 | 1.41 ± 1 | 1.3 ± 1.08 | 1.53 ± 1.92 | 0.2 | 0.37 | 0.37 |
NTR-WBC | 1.09 ± 0.46 | 1.78 ± 1.6 | 1.79 ± 0.63 | 2.79 ± 1.75 | 0.2 | 0.00 | 0.01 | |
TR-WBC | 1.66 ± 1.05 | 2.45 ± 0.85 | 2.41 ± 1.74 | 1.87 ± 1.45 | 0.12 | 0.32 | 0.74 | |
IL-1RN | NTR | 1.26 ± 0.79 | 1.59 ± 1.05 | 1.27 ± 1.12 | 1.39 ± 1.08 | 0.44 | 0.98 | 0.76 |
NTR-WBC | 1.23 ± 0.66 | 1.44 ± 0.47 | 1.18 ± 0.37 | 1.09 ± 0.44 | 0.41 | 0.87 | 0.59 | |
TR-WBC | 1.22 ± 0.38 | 1.39 ± 0.77 | 0.99 ± 0.43 | 0.91 ± 0.36 | 0.57 | 0.28 | 0.12 | |
GSS | NTR | 1.18 ± 0.61 | 0.95 ± 0.56 | 1.16 ± 0.54 | 1.21 ± 1.07 | 0.4 | 0.96 | 0.93 |
NTR-WBC | 1.23 ± 0.78 | 1.7 ± 0.62 | 1.79 ± 1.31 | 2.29 ± 1.35 | 0.15 | 0.25 | 0.05 | |
TR-WBC | 1.52 ± 0.74 | 2.41 ± 1.31 | 2.39 ± 1.32 | 1.75 ± 0.48 | 0.12 | 0.13 | 0.48 | |
SOD2 | NTR | 1.36 ± 0.74 | 0.89 ± 0.27 | 1 ± 0.48 | 0.98 ± 0.39 | 0.24 | 0.38 | 0.38 |
NTR-WBC | 1.06 ± 0.36 | 1.31 ± 0.66 | 1.37 ± 0.65 | 1.54 ± 0.37 | 0.44 | 0.33 | 0.01 | |
TR-WBC | 1.49 ± 1.00 | 1.58 ± 1.33 | 1.55 ± 0.93 | 1.34 ± 0.59 | 0.88 | 0.9 | 0.71 | |
ICAM1 | NTR | 1.12 ± 0.6 | 1.35 ± 0.89 | 0.91 ± 0.2 | 1.12 ± 0.48 | 0.5 | 0.32 | 0.99 |
NTR-WBC | 1.29 ± 0.67 | 1.37 ± 0.83 | 0.41 ± 0.15 | 0.39 ± 0.30 | 0.82 | 0.00 | 0.00 | |
TR-WBC | 0.33 ± 0.21 | 0.45 ± 0.19 | 0.7 ± 0.17 | 0.5 ± 0.34 | 0.25 | 0.00 | 0.23 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kusmierczyk, J.; Wiecek, M.; Wojciak, G.; Mardyła, M.; Kreiner, G.; Szygula, Z.; Szymura, J. The Effect of Physical Activity and Repeated Whole-Body Cryotherapy on the Expression of Modulators of the Inflammatory Response in Mononuclear Blood Cells among Young Men. J. Clin. Med. 2024, 13, 2724. https://doi.org/10.3390/jcm13092724
Kusmierczyk J, Wiecek M, Wojciak G, Mardyła M, Kreiner G, Szygula Z, Szymura J. The Effect of Physical Activity and Repeated Whole-Body Cryotherapy on the Expression of Modulators of the Inflammatory Response in Mononuclear Blood Cells among Young Men. Journal of Clinical Medicine. 2024; 13(9):2724. https://doi.org/10.3390/jcm13092724
Chicago/Turabian StyleKusmierczyk, Justyna, Magdalena Wiecek, Gabriela Wojciak, Mateusz Mardyła, Grzegorz Kreiner, Zbigniew Szygula, and Jadwiga Szymura. 2024. "The Effect of Physical Activity and Repeated Whole-Body Cryotherapy on the Expression of Modulators of the Inflammatory Response in Mononuclear Blood Cells among Young Men" Journal of Clinical Medicine 13, no. 9: 2724. https://doi.org/10.3390/jcm13092724