Meat Quality in Rabbit (Oryctolagus cuniculus) and Hare (Lepus europaeus Pallas)—A Nutritional and Technological Perspective
Abstract
:1. Introduction
2. Materials and Methods
2.1. Meat
2.2. The Nutritional Assessment of Hare and Rabbit Meat
2.2.1. Chemical Properties and Energy Value of Hare and Rabbit Meat
2.2.2. Fatty Acid Content
2.2.3. Health Lipid Indices Calculation
2.3. The Technological Assessment of Hare and Rabbit Meat
2.3.1. pH Value
2.3.2. Cooking Loss
2.3.3. Water-Holding Capacity
2.4. Data Analysis
3. Results
3.1. Proximate Composition and Gross Energy Content of Meat
3.2. Fatty Acid Content
3.3. Health Lipid Indices for Hare and Rabbit Meat
3.4. The Technological Assessment of Hare and Rabbit Meat
3.4.1. pH Value
3.4.2. Cooking Loss
3.4.3. Water-Holding Capacity (%)
4. Discussion
4.1. The Nutritional Assessment of Hare and Rabbit Meat
4.1.1. Chemical Properties and Energy Value of Hare and Rabbit Meat
4.1.2. Fatty Acid Content
4.1.3. Health Lipid Indices
4.2. The Technological Assessment of Hare and Rabbit Meat
4.2.1. pH Value
4.2.2. Cooking Loss
4.2.3. Water-Holding Capacity
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Müller, J.; Evans, C.L.R.; Roberts, P.R. Entomophagy and Power. J. Insects Food Feed 2016, 2, 121–136. [Google Scholar] [CrossRef] [Green Version]
- Wu, L. Rabbit meat trade of major countries: Regional pattern and driving forces. World Rabbit Sci. 2022, 30, 69–82. [Google Scholar] [CrossRef]
- FAOSTAT. The Statistics Division of the FAO. 2020. Available online: http://www.fao.org/faostat/en/#data (accessed on 10 October 2022).
- Mancini, S.; Mattioli, S.; Nuvoloni, R.; Pedonese, F.; Dal Bosco, A.; Paci, G. Effects of Garlic Powder and Salt on Meat Quality and Microbial Loads of Rabbit Burgers. Foods 2020, 9, 1022. [Google Scholar] [CrossRef] [PubMed]
- Mancini, S.; Mattioli, S.; Nuvoloni, R.; Pedonese, F.; Dal Bosco, A.; Paci, G. Effects of garlic powder and salt additions on fatty acids profile, oxidative status, antioxidant potential and sensory properties of raw and cooked rabbit meat burgers. Meat Sci. 2020, 169, 108226. [Google Scholar] [CrossRef] [PubMed]
- Petracci, M.; Soglia, F.; Leroy, F. Rabbit meat in need of a hat-trick: From tradition to innovation (and back). Meat Sci. 2018, 146, 93–100. [Google Scholar] [CrossRef]
- Krunt, O.; Zita, L.; Kraus, A.; Bures, D.; Needham, T.; Volek, Z. The effect of housing system on rabbit growth performance, carcass traits, and meat quality characteristics of different muscles. Meat Sci. 2022, 193, 108953. [Google Scholar] [CrossRef]
- U.S. Department of Agriculture. Food Data Central Database. Available online: https://fdc.nal.usda.gov/ (accessed on 5 April 2022).
- Długaszek, M.; Kopczyński, K. Elemental Composition of Muscle Tissue of Wild Animals from Central Region of Poland. Int. J. Environ. Res. 2013, 7, 973–978. [Google Scholar]
- Dalle Zotte, A.; Szendro, Z. The role of rabbit meat as functional food. Meat Sci. 2011, 88, 319–331. [Google Scholar] [CrossRef]
- Pogány Simonová, M.; Chrastinová, L’.; Lauková, A. Enterocin 7420 and Sage in Rabbit Diet and Their Effect on Meat Mineral Content and Physico-Chemical Properties. Microorganisms 2022, 10, 1094. [Google Scholar] [CrossRef]
- Tufarelli, V.; Tateo, A.; Schiavitto, M.; Mazzei, D.; Calzaretti, G.; Laudadio, V. Evaluating productive performance, meat quality and oxidation products of Italian White breed rabbits under free-range and cage rearing system. Anim. Biosci. 2022, 35, 884–889. [Google Scholar] [CrossRef]
- Laudadio, V.; Tufarelli, V. Pea (Pisum sativum L.) seeds as an alternative dietary protein source for broilers: Influence on fatty acid composition, lipid and protein oxidation of dark and white meats. J. Am. Oil Chem. Soc. 2011, 88, 967–973. [Google Scholar] [CrossRef]
- Luo, G.; Zhu, T.; Ren, Z. METTL3 Regulated the Meat Quality of Rex Rabbits by Controlling PCK2 Expression via a YTHDF2–N6-Methyladenosine Axis. Foods 2022, 11, 1549. [Google Scholar] [CrossRef] [PubMed]
- Alves dos Santos, J.J.; Fonseca Pascoal, L.A.; Brandão Grisi, C.V.; da Costa Santos, V.; de Santana Neto, D.C.; Filho, J.J.; Ferreira Herminio, M.P.; Fabricio Dantas, A. Soybean oil and selenium yeast levels in the diet of rabbits on performance, fatty acid profile, enzyme activity and oxidative stability of meat. Livest. Sci. 2022, 263, 105021. [Google Scholar] [CrossRef]
- Pedro, D.; Saldana, E.; Lorenzo, J.M.; Pateiro, M.; Dominguez, R.; Dos Santos, A.B.; Campagnol, C.B.P. Low-sodium dry-cured rabbit leg: A novel meat product with healthier properties. Meat Sci. 2021, 173, 108372. [Google Scholar] [CrossRef]
- Szendrő, K.; Szabó-Szentgróti, E.; Szigeti, O. Consumers’ Attitude to Consumption of Rabbit Meat in Eight Countries Depending on the Production Method and Its Purchase Form. Foods 2020, 9, 654. [Google Scholar] [CrossRef]
- Trombetti, F.; Minardi, P.; Mordenti, A.L.; Badiani, A.; Ventrella, V.; Albonetti, S. The Evaluation of the Effects of Dietary Vitamin E or Selenium on Lipid Oxidation in Rabbit Hamburgers: Comparing TBARS and Hexanal SPME-GC Analyses. Foods 2022, 11, 1911. [Google Scholar] [CrossRef]
- Minardi, P.; Mordenti, A.L.; Badiani, A.; Pirini, M.; Trombetti, F.; Albonetti, S. Effect of the dietary antioxidants supplementation on rabbit performances, meat quality and oxidative stability of muscles. World Rabbit Sci. 2020, 28, 145–159. [Google Scholar] [CrossRef]
- Vizzarri, F.; Nardoia, M.; Palazzo, M. Effect of dietary Lippia citriodora extract on productive performance and meat quality parameters in hares (Lepus europaeus Pall.). Arch. Anim. Breed. 2014, 57, 20. [Google Scholar] [CrossRef] [Green Version]
- Rigo, N.; Trocino, A.; Poppi, L.; Giacomelli, M.; Grilli, G.; Piccirillo, A. Performance and mortality of farmed hares. Animal 2015, 9, 1025–1031. [Google Scholar] [CrossRef] [Green Version]
- Rødbotten, M.; Kubberød, E.; Lea, P.; Ueland, Ø. A sensory map of the meat universe. Sensory profile of meat from 15 species. Meat Sci. 2004, 68, 137–144. [Google Scholar] [CrossRef]
- Konjević, D. Hare brown (Lepus europaeus Pallas) and potential in diet of people today. Prof. Work 2007, 9, 288–291. [Google Scholar]
- Valencak, T.G.; Arnold, W.; Tataruch, F.; Ruf, T. High content of polyunsaturated fatty acids in muscle phospholipids of a fast runner, the European brown hare (Lepus europaeus). J. Comp. Physiol. B 2003, 173, 695–702. [Google Scholar] [CrossRef] [PubMed]
- Valencak, T.G.; Gamsjäger, L.; Ohrnberger, S.; Culbert, N.J.; Ruf, T. Healthy n-6/n-3 fatty acid composition from five European game meat species remains after cooking. BMC Res. Notes 2015, 8, 273. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Skrivanko, M.; Hadžiosmanović, M.; Cvrtila, Z.; Zdolec, N.; Filipović, I.; Kozačinski, L.; Florijančić, T.; Bošković, I. The hygiene and quality of hare meat (Lepus europaeus Pallas) from Eastern Croatia. Arch. Lebensm. 2008, 59, 180–184. [Google Scholar] [CrossRef]
- Mertin, D.; Slamečka, J.; Ondruška, I.; Zaujec, K.; Jurčík, R.; Gašparík, J. Comparison of meat quality between european brown hare and domestic rabbit. Slovak J. Anim. Sci. 2012, 45, 89–95. [Google Scholar]
- Strmiskova, G.; Strmiska, F. Contents of mineral substances in venison. Food/Nahrung 1992, 36, 307–308. [Google Scholar] [CrossRef]
- Papadomichelakis, G.; Zoidis, E.; Pappas, A.C.; Hadjigeorgiou, I. Seasonal variations in the fatty acid composition of Greek wild rabbit meat. Meat Sci. 2017, 134, 158–162. [Google Scholar] [CrossRef]
- Trocino, A.; Birolo, M.; Dabbou, S.; Gratta, F.; Rigo, N.; Xiccato, G. Effect of age and gender on carcass traits and meat quality of farmed brown hares. Animal 2018, 9, 1–8. [Google Scholar] [CrossRef]
- Króliczewska, B.; Miśta, D.; Korzeniowska, M.; Pecka-Kiełb, E.; Zachwieja, A. Comparative evaluation of the quality and fatty acid profile of meat from brown hares and domestic rabbits offered the same diet. Meat Sci. 2018, 145, 292–299. [Google Scholar] [CrossRef]
- AOAC International. Official Methods of Analyses, 17th ed.; Association of Official Analytical Chemists: Washington, DC, USA, 2000. [Google Scholar]
- AOAC International. Official Methods of Analyses, 18th ed.; Association of Official Analytical Chemists: Gaithersburg, MD, USA, 2005. [Google Scholar]
- FAO. Food Energy–Methods of Analysis and Conversion Factors. Food and Agriculture Organization of the United Nations, Rome, 2003. Report of a Technical Workshop. Available online: http://www.fao.org/uploads/media/FAO_2003_Food_Energy_02.pdf (accessed on 5 May 2022).
- Chen, Y.; Qiao, Y.; Xiao, Y.; Chen, H.; Zhao, L.; Huang, M.; Zhou, G. Differences in physicochemical and nutritional properties of breast and thigh meat from crossbred chickens, commercial broilers and spent hens. Asian-Australas. J. Anim. Sci. 2016, 29, 855–864. [Google Scholar] [CrossRef] [Green Version]
- Timmons, J.S.; Weiss, W.P.; Palmquist, D.L.; Harper, W.J. Relationships among dietary roasted soybeans, milk components, and spontaneous oxidized flavor of milk. J. Dairy Sci. 2001, 84, 2440–2449. [Google Scholar] [CrossRef] [PubMed]
- Ulbricht, T.L.V.; Southgate, D.A.T. Coronary heart disease: Seven dietary factors. Lancet 1991, 338, 985–992. [Google Scholar] [CrossRef] [PubMed]
- Fernandez, M.; Ordóñez, J.A.; Cambero, I.; Santos, C.; Pin, C.; De La Hoz, L. Fatty acid compositions of selected varieties of Spanish dry ham related to their nutritional implications. Food. Chem. 2007, 9, 107–112. [Google Scholar] [CrossRef]
- Struți, D.I.; Mierliță, D.; Simeanu, D.; Pop, I.M.; Socol, C.T.; Papuc, T.; Macri, A.M. The effect of dehulling lupine seeds (Lupinus albus L.) from low-alkaloid varieties on the chemical composition and fatty acids content. J. Chem. 2020, 71, 59–70. [Google Scholar] [CrossRef]
- Mierliță, D.; Pop, I.M.; Lup, F.; Simeanu, D.; Vicas, S.I.; Simeanu, C. The Fatty Acids Composition and Health Lipid Indices in the Sheep Raw Milk under a Pasture-Based Dairy System. J. Chem. 2018, 69, 160–165. [Google Scholar] [CrossRef]
- Abdel-Naeem, H.H.; Sallam, K.I.; Zaki, H.M. Effect of different cooking methods of rabbit meat on topographical changes, physicochemical characteristics, fatty acids profile, microbial quality, and sensory attributes. Meat Sci. 2021, 181, 108612. [Google Scholar] [CrossRef]
- Cullere, M.; Dalle Zotte, A. Rabbit meat production and consumption: State of knowledge and future perspectives. Meat Sci. 2018, 143, 137–146. [Google Scholar] [CrossRef]
- Pla, M.; Apolinar, R. The filter-paper press as method for measuring water holding capacity of rabbit meat. J. World Rabbit Sci. Assoc. 2000, 8, 659–662. [Google Scholar]
- Blasco, A.; Nagy, I.; Hernández, P. Genetics of growth, carcass and meat quality in rabbits. Meat Sci. 2018, 145, 178–185. [Google Scholar] [CrossRef]
- Birolo, M.; Xiccato, G.; Bordignon, F.; Dabbou, S.; Zuffellato, A.; Trocino, A. Growth Performance, Digestive Efficiency, and Meat Quality of Two Commercial Crossbred Rabbits Fed Diets Differing in Energy and Protein Levels. Animals 2022, 12, 2427. [Google Scholar] [CrossRef]
- Pla, M. A comparison of the carcass traits and meat quality of conventionally and organically produced rabbits. Livest. Sci. 2008, 115, 1–12. [Google Scholar] [CrossRef]
- Zomeño, C.; Blasco, A.; Hernández, P. Divergent selection for intramuscular fat content in rabbits. II. Correlated responses on carcass and meat quality traits. J. Anim. Sci. 2013, 91, 4532–4539. [Google Scholar] [CrossRef] [PubMed]
- Martínez-Álvaro, M.; Hernández, P.; Agha, S.; Blasco, A. Correlated responses to selection for intramuscular fat in several muscles in rabbits. Meat Sci. 2018, 139, 187–191. [Google Scholar] [CrossRef] [PubMed]
- Hernandez, P.; Cesari, V.; Blasco, A. Effect of genetic rabbit lines on lipid content, lipolytic activities and fatty acid composition of hind leg meat and perirenal fat. Meat Sci. 2008, 78, 485–491. [Google Scholar] [CrossRef] [PubMed]
- Martínez-Álvaro, M.; Hernández, P.; Blasco, A. Divergent selection on intramuscular fat in rabbits: Responses to selection and genetic parameters. J. Anim. Sci. 2016, 94, 4993–5003. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sosa-Madrid, B.S.; Varona, L.; Blasco, A.; Hernández, P.; Casto-Rebollo, C.; Ibáñez-Escriche, N. The effect of divergent selection for intramuscular fat on the domestic rabbit genome. Animal 2020, 14, 2225–2235. [Google Scholar] [CrossRef]
- Rikimaru, K.; Takahashi, H. Evaluation of the meat from Hinai-jidori chickens and broilers: Analysis of general biochemical components, free amino acids, inosine 5′-monophosphate, and fatty acids. J. Appl. Poult. Res. 2010, 19, 327–333. [Google Scholar] [CrossRef]
- Banskalieva, V.; Sahlu, T.; Goetsch, A. Fatty acid composition of goat muscles and fat depots: A review. Small Rumin. Res. 2000, 37, 255–268. [Google Scholar] [CrossRef]
- Chikwanha, O.C.; Vahmani, P.; Muchenje, V.; Gugan, M.E.R.; Mapiye, C. Nutritional enhancement of sheep meat fatty acid profile for human health and wellbeing. Food Res. Int. 2018, 104, 25–38. [Google Scholar] [CrossRef]
- Calder, P.C. Functional roles of fatty acids and their effects on human health. J. Parenter. Enter. Nutr. 2015, 39 (Suppl. S1), 18S–32S. [Google Scholar] [CrossRef]
- Miles, E.A.; Calder, P.C. Omega-6 and omega-3 polyunsaturated fatty acids and allergics diseases in infancy and childhood. Curr. Pharm. Des. 2014, 20, 946–953. [Google Scholar] [CrossRef] [PubMed]
- European Food Safety Authority. Scientific opinion on dietary reference values for fats, including saturated fatty acids, polyunsaturated fatty acids, monounsaturated fatty acids, trans fatty acids, and cholesterol. Eur. Food Saf. Auth. J. 2010, 8, 1461. [Google Scholar]
- Simopoulos, A.P. An Increase in the Omega-6/Omega-3 Fatty Acid Ratio Increases the Risk for Obesity. Nutrients 2016, 8, 128. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- World Health Organization/Food and Agriculture Organization (WHO/FAO). Expert Report: Diet, Nutrition and Prevention of Chronic Diseases. Report of a Joint WHO/FAO Expert Consultation. WHO Technical Report Series 916. 2003. Available online: http://apps.who.int/iris/bitstream/handle/10665/42665/WHO_TRS_916.pdf;jsessionid=376354A9A8120A5273B0C2103D6CCB0B?sequence=1 (accessed on 10 October 2022).
- World Health Organization/Food and Agriculture Organization (WHO/FAO). Interim Summary of Conclusions and Dietary Recommendations on Total Fat and Fatty Acids from the Joint FAO/WHO Expert Consultation on Fats and Fatty Acids in Human Nutrition; WHO: Geneva, Switzerland, 2008; pp. 10–14. Available online: https://www.foodpolitics.com/wp-content/uploads/FFA_summary_rec_conclusion.pdf (accessed on 10 October 2022).
- Capra, G.; Martínez, R.; Fradiletti, F.; Cozzano, S.; Repiso, L.; Márquez, R.; Ibáñez, F. Meat quality of rabbits reared with two different feeding strategies: With or without fresh alfalfa ad libitum. World Rabbit Sci. 2013, 21, 23–32. [Google Scholar] [CrossRef] [Green Version]
- Dal Bosco, A.; Gerencsér, Z.; Szendrő, Z.; Mugnai, C.; Cullere, M.; Kovàcs, M.; Ruggeri, S.; Mattioli, S.; Castellini, C.; Dalle Zotte, A. Effect of dietary supplementation of Spirulina (Arthrospira platensis) and Thyme (Thymus vulgaris) on rabbit meat appearance, oxidative stability and fatty acid profile during retail display. Meat Sci. 2014, 96, 114–119. [Google Scholar] [CrossRef]
- Dal Bosco, A.; Castellini, C.; Martino, M.; Mattioli, S.; Marconi, O.; Sileoni, V.; Ruggeri, S.; Tei, F.; Benincasa, P. The effect of dietary alfalfa and flax sprouts on rabbit meat antioxidant content, lipid oxidation and fatty acid composition. Meat Sci. 2015, 106, 31–37. [Google Scholar] [CrossRef]
- Attia, Y.A.; Al-Harthi, M.A.; Korish, M.M.; Shiboob, M.M. Fatty acid and cholesterol profiles and hypocholesterolemic, atherogenic, and thrombogenic indices of table eggs in the retail market. Lipids Health Dis. 2015, 14, 136. [Google Scholar] [CrossRef] [Green Version]
- Attia, Y.A.; Al-Harthi, M.A.; Korish, M.M.; Shiboob, M.M. Fatty acid and cholesterol profiles, hypocholesterolemic, atherogenic, and thrombogenic indices of broiler meat in the retail market. Lipids Health Dis. 2017, 16, 40. [Google Scholar] [CrossRef] [Green Version]
- Carrapiso, A.I.; Tejeda, J.F.; Noguera, J.L.; Ibanez-Escriche, N.; Gonzalez, E. Effect of the genetic line and oleic acid-enriched mixed diets on the subcutaneous fatty acid composition and sensory characteristics of dry-cured shoulders from Iberian pig. Meat Sci. 2020, 159, 107933. [Google Scholar] [CrossRef]
- Liu, S.; Wang, G.; Xiao, Z.; Pu, Y.; Ge, C.; Liao, G. H-NMR-based water-soluble low molecular weight compound characterization and free fatty acid composition of five kinds of Yunnan dry-cured hams. LWT 2019, 108, 174–182. [Google Scholar] [CrossRef]
- Alonso-Vale, M.I.; Cruz, M.; Bolsoni-Lopes, A.; de Sá, R.; de Andrade, P. Palmitoleic Acid (C16:1n7) Treatment Enhances Fatty Acid Oxidation and Oxygen Consumption in White Adipocytes. FASEB J. 2015, 29, 884.25. [Google Scholar] [CrossRef]
- Betz, I.R.; Qaiyumi, S.J.; Goeritzer, M.; Thiele, A.; Brix, S.; Beyhoff, N.; Grune, J.; Klopfleisch, R.; Greulich, F.; Uhlenhaut, N.H.; et al. Cardioprotective Effects of Palmitoleic Acid (C16:1n7) in a Mouse Model of Catecholamine-Induced Cardiac Damage Are Mediated by PPAR Activation. Int. J. Mol. Sci. 2021, 22, 12695. [Google Scholar] [CrossRef] [PubMed]
- Smith, S.B.; Lunt, D.K.; Smith, D.R.; Walzem, R.L. Producing high-oleic acid beef and the impact of ground beef consumption on risk factors for cardiovascular disease: A review. Meat Sci. 2020, 163, 108076. [Google Scholar] [CrossRef] [PubMed]
- Banim, P.J.R.; Luben, R.; Khaw, K.-T.; Hart, A.R. Dietary oleic acid is inversely associated with pancreatic cancer—Data from food diaries in a cohort study. Pancreatology 2018, 18, 655–660. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jagannathan, L.; Socks, E.; Balasubramanian, P.; Mcgowan, R.; Herdt, T.M.; Kianian, R.; Mohankumar, P.S. Oleic acid stimulates monoamine efflux through PPAR-α: Differential effects in diet-induced obesity. Life Sci. 2020, 255, 11786715. [Google Scholar] [CrossRef] [PubMed]
- Magtanong, L.; Ko, P.J.; To, M.; Cao, J.Y.; Forcina, G.C.; Tarangelo, A.; Ward, C.C.; Cho, K.; Patti, G.J.; Nomura, D.K.; et al. Exogenous monounsaturated fatty acids promote a ferroptosis-resistant cell state. Cell Chem. Biol. 2019, 26, 420–432. [Google Scholar] [CrossRef]
- Guillocheau, E.; Penhoat, C.; Drouin, G.; Godet, A.; Catheline, D.; Legrand, P.; Rioux, V. Current intakes of trans-palmitoleic (trans-C16:1 n-7) and trans-vaccenic (trans-C18:1 n-7) acids in France are exclusively ensured by ruminant milk and ruminant meat: A market basket investigation. Food Chem. X 2020, 5, 10008130. [Google Scholar] [CrossRef]
- Frigolet, M.E.; Gutierrez-Aguilar, R. The role of the novel Lipokine Palmitoleic acid in health and disease. Adv. Nutr. 2017, 8, 173S–181S. [Google Scholar] [CrossRef] [Green Version]
- Weber, J.; Bochi, V.C.; Ribeiro, C.P.; Victorio, A.M.; Emanuelli, T. Effect of different cooking methods on the oxidation, proximate and fatty acid composition of silver catfish (Rhamdia quelen) fillets. Food Chem. 2008, 106, 140–146. [Google Scholar] [CrossRef]
- Guedes, C.M.; Almeida, M.; Closson, M.; Garcia-Santos, S.; Lorenzo, J.M.; Domínguez, R.; Ferreira, L.; Trindade, H.; Silva, S.; Pinheiro, V. Effect of Total Replacement of Soya Bean Meal by Whole Lupine Seeds and of Gender on the Meat Quality and Fatty Acids Profile of Growing Rabbits. Foods 2022, 11, 2411. [Google Scholar] [CrossRef]
- Cullere, M.; Zotte, A.D.; Tasoniero, G.; Giaccone, V.; Szendrő, Z.; Szín, M.; Odermatt, M.; Gerencsér, Z.; Dal Bosco, A.; Matics, Z. Effect of diet and packaging system on the microbial status, pH, color and sensory traits of rabbit meat evaluated during chilled storage. Meat Sci. 2018, 141, 36–43. [Google Scholar] [CrossRef] [PubMed]
- Crovato, S.; Pinto, A.; Di Martino, G.; Mascarello, G.; Rizzoli, V.; Marcolin, S.; Ravarotto, L. Purchasing Habits, Sustainability Perceptions, and Welfare Concerns of Italian Consumers Regarding Rabbit Meat. Foods 2022, 11, 1205. [Google Scholar] [CrossRef] [PubMed]
- Bujok, J.; Miśta, D.; Wincewicz, E.; Króliczewska, B.; Dzimira, S.; Żuk, M. Atherosclerosis Development and Aortic Contractility in Hypercholesterolemic Rabbits Supplemented with Two Different Flaxseed Varieties. Foods 2021, 10, 534. [Google Scholar] [CrossRef] [PubMed]
- European Heart Network. European Cardiovascular Disease Statistics. 2017. Available online: http://www.ehnheart.org/cvdstatistics.html (accessed on 10 October 2022).
- Roth, G.A.; Huffman, M.D.; Moran, A.E.; Feigin, V.; Mensah, G.A.; Naghavi, M.; Murray, C.J. Global and regional patterns in cardiovascular mortality from 1990 to 2013. Circulation 2015, 27, 1667–1678. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barquera, S.; Pedroza-Tobías, A.; Medina, C.; Hernández-Barrera, L.; Bibbins-Domingo, K.; Lozano, R.; Moran, A.E. Global Overview of the Epidemiology of Atherosclerotic Cardiovascular Disease. Arch. Med. Res. 2015, 46, 328–338. [Google Scholar] [CrossRef]
- Wang, D.D.; Hu, F.B. Dietary Fat and Risk of Cardiovascular Disease: Recent Controversies and Advances. Annu. Rev. Nutr. 2017, 37, 423–446. [Google Scholar] [CrossRef]
- De Souza, R.J.; Mente, A.; Maroleanu, A.; Cozma, A.I.; Ha, V.; Kishibe, T.; Uleryk, E.; Budylowski, P.; Schunemann, H.; Beyene, J.; et al. Intake of saturated and trans unsaturated fatty acids and risk of all cause mortality, cardiovascular disease, and type 2 diabetes: Systematic review and meta-analysis of observational studies. BMJ 2015, 351, h3978. [Google Scholar] [CrossRef] [Green Version]
- Visioli, F.; Poli, A. Fatty Acids and Cardiovascular Risk. Evidence, Lack of Evidence, and Diligence. Nutrients 2020, 12, 3782. [Google Scholar] [CrossRef]
- Apata, E.S.; Eniolorunda, O.O.; Amao, K.E.; Okubanjo, A.O. Quality evaluation of rabbit meat as affected by different stunning methods. Int. J. Agric. Sci. 2012, 2, 054–058. [Google Scholar]
- Blasco, A.; Piles, M. Muscular pH of the rabbit. Ann. Zootech. 1990, 39, 133–136. [Google Scholar] [CrossRef] [Green Version]
- Tărnăuceanu, G.; Lazăr, R.; Boişteanu, P.C. Researches Regarding Histological Characterization of Muscles Harvested from Hares (Lepus europaeus Pallas). Lucrări Științifice-Univ. Științe Agric. Med. Vet. Ser. Zooteh. 2012, 58, 193–198. [Google Scholar]
- Tărnăuceanu, G.; Pop, C.; Boișteanu, P.C. Histologic characterization of muscles collected from rabbits Flemish Giant breed. Sci. Pap. Anim. Sci. Biotechnol. 2015, 48, 307–311. [Google Scholar]
- Lafuente, R.; López, M. Effect of electrical and mechanical stunning on bleeding, instrumental properties and sensory meat quality in rabbits. Meat Sci. 2014, 98, 247–254. [Google Scholar] [CrossRef] [PubMed]
- Simonová Pogány, M.; Chrastinová, Ľ.; Mojto, J.; Lauková, A.; Szabóová, R.; Rafay, J. Quality of Rabbit Meat and Phyto-Additives. Czech J. Food Sci. 2010, 28, 161–167. [Google Scholar] [CrossRef] [Green Version]
- Combes, S.; Postollec, G.; Cauquil, L.; Gidenne, T. Influence of cage or pen housing on carcass traits and meat quality of rabbit. Animal 2010, 4, 295–302. [Google Scholar] [CrossRef]
- Vicenti, A.; Ragni, M.; di Summa, A.; Marsico, G.; Vonghia, G. Influence of Feeds and Rearing System on the Productive Performances and the Chemical and Fatty Acid Composition of Hare Meat. Food Sci. Tech. Intern. 2003, 9, 279–284. [Google Scholar] [CrossRef]
- Hernandez, P.; Gondret, F. Rabbit meat quality and safety. In Recent Advances in Rabbit Science; ILVO: Melle, Belgium, 2006; pp. 267–290. [Google Scholar]
- Liste, G.; Villaroel, M.; Chacon, G.; Sanudo, C.; Olleta, J.L.; Garcia-Belenguer, S. Effect of lairage duration on rabbit welfare and meat quality. Meat Sci. 2009, 82, 71–76. [Google Scholar] [CrossRef]
- Tărnăuceanu, G.; Pop, C. Water holding capacity of meat from rabbits (Belgian Giant breed), Bulletin of University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca. Anim. Sci. Biotech. 2016, 73, 111–112. [Google Scholar] [CrossRef]
- Puolanne, E.; Halonen, M. Theoretical aspects of water-holding in meat. Meat Sci. 2010, 86, 151. [Google Scholar] [CrossRef]
Proximate Compound | Muscles | Species | Mean | ±SD | V% | p Value |
---|---|---|---|---|---|---|
Water (g/100 g) | SM | hare | 75.15 a | ±0.28 | 0.37 | 0.0213 |
rabbit | 74.85 b | ±1.61 | 2.15 | |||
LD | hare | 75.10 | ±0.41 | 0.55 | 0.1736 | |
rabbit | 74.97 | ±1.24 | 1.65 | |||
TB | hare | 74.76 a | ±0.25 | 0.33 | <0.001 | |
rabbit | 74.18 d | ±2.36 | 3.18 | |||
Ash (g/100 g) | SM | hare | 1.23 | ±0.01 | 0.81 | 0.4270 |
rabbit | 1.17 | ±0.01 | 0.85 | |||
LD | hare | 1.24 a | ±0.01 | 0.81 | 0.0238 | |
rabbit | 1.21 b | ±0.02 | 1.65 | |||
TB | hare | 1.26 a | ±0.02 | 1.59 | 0.0080 | |
rabbit | 1.22 c | ±0.01 | 0.82 | |||
Proteins (g/100 g) | SM | hare | 21.59 | ±0.09 | 0.42 | 0.7747 |
rabbit | 21.57 | ±0.41 | 1.90 | |||
LD | hare | 21.53 | ±0.17 | 0.79 | 0.5918 | |
rabbit | 21.62 | ±0.55 | 2.54 | |||
TB | hare | 21.45 | ±0.08 | 0.37 | 0.4706 | |
rabbit | 21.52 | ±0.13 | 0.60 | |||
Lipids (g/100 g) | SM | hare | 1.90 a | ±0.13 | 6.84 | 0.0017 |
rabbit | 2.31 c | ±0.21 | 9.09 | |||
LD | hare | 1.64 a | ±0.06 | 3.66 | 0.0019 | |
rabbit | 1.93 c | ±0.03 | 1.55 | |||
TB | hare | 2.10 a | ±0.16 | 7.62 | 0.0045 | |
rabbit | 2.57 c | ±0.12 | 4.67 | |||
Nitrogen Free Extract (g/100 g) | SM | hare | 0.13 | ±0.01 | 5.12 | 0.2617 |
rabbit | 0.10 | ±0.01 | 5.67 | |||
LD | hare | 0.49 a | ±0.02 | 3.81 | 0.0003 | |
rabbit | 0.27 d | ±0.01 | 4.61 | |||
TB | hare | 0.43 a | ±0.02 | 4.39 | 0.0019 | |
rabbit | 0.51 c | ±0.02 | 4.05 |
Muscles | Species | Mean | ±SD | V% | p Value |
---|---|---|---|---|---|
SM | hare | 109.83 a | ±6.75 | 6.15 | 0.0009 |
rabbit | 113.33 d | ±6.37 | 5.62 | ||
LD | hare | 108.62 a | ±7.85 | 7.23 | 0.0014 |
rabbit | 110.77 c | ±9.40 | 8.49 | ||
TB | hare | 112.20 a | ±5.09 | 4.54 | <0.001 |
rabbit | 117.05 d | ±4.42 | 3.78 |
Fatty Acids | Species | Semimembranosus mm. | Longissimus dorsi mm. | Triceps brachii mm. | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Mean | ±SD | V% | p Value | Mean | ±SD | V% | p Value | Mean | ±SD | V% | p Value | |||
SFA | C14:0 | hare | 5.55 a | ±0.95 | 17.12 | <0.001 | 1.91 a | ±0.35 | 18.32 | <0.001 | 0.72 a | ±0.13 | 18.06 | <0.001 |
rabbit | 45.03 d | ±8.65 | 19.21 | 31.67 d | ±3.20 | 10.10 | 66.02 d | ±1.66 | 2.51 | |||||
C15:0 | hare | 7.81 a | ±1.09 | 13.96 | 0.0016 | 9.01 a | ±1.52 | 16.87 | 0.0009 | 9.12 a | ±1.26 | 13.82 | 0.0064 | |
rabbit | 9.02 c | ±2.37 | 26.27 | 6.06 d | ±0.65 | 10.73 | 13.94 c | ±3.23 | 23.17 | |||||
C16:0 | hare | 302.47 a | ±5.60 | 1.85 | <0.001 | 329.07 | ±3.42 | 1.04 | 0.7453 | 297.04 a | ±4.25 | 1.43 | <0.001 | |
rabbit | 450.06 d | ±7.38 | 1.64 | 344.87 | ±4.31 | 1.25 | 687.94 d | ±9.01 | 1.31 | |||||
C17:0 | hare | 17.5 a | ±2.70 | 15.43 | 0.0500 | 18.98 a | ±1.14 | 6.01 | <0.001 | 21.36 a | ±1.59 | 7.44 | 0.0087 | |
rabbit | 10.97 b | ±2.42 | 22.06 | 6.93 d | ±0.56 | 8.08 | 18.31 c | ±4.24 | 23.16 | |||||
C18:0 | hare | 101.92 | ±9.57 | 9.39 | 0.2637 | 112.16 a | ±3.20 | 2.85 | 0.0038 | 114.94 a | ±1.99 | 1.73 | 0.0028 | |
rabbit | 119.88 | ±8.56 | 7.14 | 87.22 c | ±5.92 | 6.79 | 177.07 c | ±4.39 | 2.48 | |||||
MUFA | C16:1 n-7 | hare | 1.05 a | ±0.04 | 3.81 | <0.001 | 2.45 a | ±0.16 | 6.53 | <0.001 | 6.12 a | ±0.31 | 5.07 | <0.001 |
rabbit | 80.13 d | ±3.10 | 3.87 | 51.01 d | ±4.11 | 8.06 | 123.66 d | ±3.90 | 3.15 | |||||
C18:1 n-7 | hare | 24.78 | ±0.66 | 2.66 | 0.2415 | 27.01 a | ±1.10 | 4.07 | 0.0009 | 27.94 a | ±0.36 | 1.29 | 0.0025 | |
rabbit | 28.11 | ±1.38 | 4.91 | 19.22 d | ±1.63 | 8.48 | 45.88 c | ±1.11 | 2.42 | |||||
C18:1 n-9 | hare | 285.45 a | ±4.02 | 1.41 | 0.0005 | 328.4 | ±4.56 | 1.39 | 0.6478 | 347.54 a | ±6.88 | 1.98 | 0.0003 | |
rabbit | 484.12 d | ±5.03 | 1.04 | 309.17 | ±3.83 | 1.24 | 741.22 d | ±9.78 | 1.32 | |||||
PUFA | C18:2 n-6 | hare | 509.01 a | ±6.06 | 1.19 | <0.001 | 559.55 a | ±7.55 | 1.35 | <0.001 | 639.05 | ±8.18 | 1.28 | 0.2204 |
rabbit | 342.86 d | ±8.37 | 2.44 | 233.47 d | ±4.18 | 1.79 | 577.12 | ±6.29 | 1.09 | |||||
C18:3 n-3 | hare | 44.78 a | ±4.01 | 8.95 | 0.0064 | 50.37 a | ±9.46 | 18.78 | <0.001 | 58.59 | ±1.07 | 1.83 | 0.9533 | |
rabbit | 32.88 c | ±2.43 | 7.39 | 20.11 d | ±0.33 | 1.64 | 59.01 | ±1.91 | 3.24 | |||||
C20:2 n-6 | hare | 8.95 a | ±0.09 | 1.01 | <0.001 | 10.34 a | ±0.16 | 1.55 | <0.001 | 10.41 a | ±0.67 | 6.44 | <0.001 | |
rabbit | 3.98 d | ±0.68 | 17.09 | 2.91 d | ±0.18 | 6.19 | 8.29 d | ±0.25 | 3.02 | |||||
C20:3 n-6 | hare | 0.54 a | ±0.01 | 1.85 | <0.001 | 0.47 a | ±0.04 | 8.51 | <0.001 | 1.72 a | ±0.39 | 22.67 | <0.001 | |
rabbit | 3.89 d | ±0.27 | 6.94 | 4.16 d | ±0.12 | 2.88 | 3.99 d | ±0.50 | 12.53 | |||||
C20:4 n-6 | hare | 60.91 a | ±2.26 | 3.71 | <0.001 | 64.21 a | ±2.47 | 3.85 | <0.001 | 56.24 a | ±0.80 | 1.42 | 0.0206 | |
rabbit | 53.01 d | ±4.16 | 7.85 | 54.32 d | ±1.18 | 2.17 | 51.78 b | ±4.72 | 9.12 | |||||
C20:5 n-3 | hare | 2.82 a | ±0.39 | 13.83 | <0.001 | 2.75 a | ±0.04 | 1.45 | <0.001 | 2.99 a | ±0.69 | 23.08 | <0.001 | |
rabbit | 11.05 d | ±1.17 | 10.59 | 10.04 d | ±0.31 | 3.09 | 9.97 d | ±1.86 | 18.66 | |||||
C22:4 n-6 | hare | 16.77 a | ±0.39 | 2.33 | <0.001 | 16.9 a | ±0.22 | 1.30 | <0.001 | 16.5 a | ±0.26 | 1.58 | <0.001 | |
rabbit | 15.07 d | ±0.57 | 3.78 | 15.09 d | ±0.14 | 0.93 | 15.44 d | ±0.60 | 3.89 | |||||
C22:5 n-3 | hare | 20.13 a | ±1.21 | 6.01 | <0.001 | 22.54 a | ±1.51 | 6.70 | <0.001 | 13.45 a | ±1.66 | 12.34 | <0.001 | |
rabbit | 8.06 d | ±1.13 | 14.02 | 9.26 d | ±0.28 | 3.02 | 7.14 d | ±1.06 | 14.85 | |||||
C22:6 n-3 | hare | 38.53 a | ±1.93 | 5.01 | <0.001 | 42.84 a | ±0.82 | 1.91 | <0.001 | 27.38 a | ±3.01 | 10.99 | 0.0004 | |
rabbit | 22.89 d | ±2.68 | 11.71 | 24.44 d | ±0.68 | 2.78 | 21.89 d | ±2.82 | 12.88 |
Health Lipid Indices | SM | LD | TB | Average/3 Carcass Areas |
---|---|---|---|---|
Σ SFA hare | 435.25 | 471.13 | 443.18 | 449.85 |
Σ SFA rabbit | 634.96 | 476.75 | 963.28 | 691.66 |
Ʃ MUFA hare | 310.28 | 357.86 | 381.60 | 349.91 |
Σ MUFA rabbit | 592.36 | 379.4 | 910.76 | 627.51 |
Total PUFA hare | 702.44 | 769.97 | 826.33 | 766.25 |
Total PUFA rabbit | 493.69 | 373.80 | 754.63 | 540.71 |
Σ PUFA n-6 hare | 596.18 | 651.47 | 723.92 | 657.19 |
Σ PUFA n-6 rabbit | 418.81 | 309.95 | 656.62 | 461.79 |
Ʃ PUFA n-3 hare | 106.26 | 118.50 | 102.41 | 109.06 |
Σ PUFA n-3 rabbit | 74.88 | 63.85 | 98.01 | 78.91 |
EFA hare | 614.70 | 674.13 | 753.88 | 680.90 |
EFA rabbit | 428.75 | 307.90 | 687.91 | 474.85 |
DFA hare | 1114.64 | 1239.99 | 1322.87 | 1225.83 |
DFA rabbit | 1205.93 | 840.42 | 1842.46 | 1296.27 |
Σ Total fatty acids hare | 1447.97 | 1598.96 | 1651.11 | 1566.01 |
Σ Total fatty acids rabbit | 1721.01 | 1229.95 | 2628.67 | 1859.88 |
% EFA hare | 42.45 | 42.16 | 45.66 | 43.42 |
% EFA rabbit | 24.91 | 25.03 | 26.17 | 25.37 |
% DFA hare | 76.98 | 77.55 | 80.12 | 78.22 |
% DFA rabbit | 70.08 | 68.33 | 70.09 | 69.50 |
Σ n6/Σn3 hare | 5.61 | 5.50 | 7.07 | 6.06 |
Σ n6/Σn3 rabbit | 5.59 | 4.85 | 6.70 | 5.71 |
Σ PUFA/ΣSFA hare | 1.61 | 1.63 | 1.86 | 1.70 |
Σ PUFA/ΣSFA rabbit | 0.778 | 0.784 | 0.783 | 0.78 |
PI hare | 5.99 | 6.60 | 7.56 | 6.72 |
PI rabbit | 4.09 | 2.74 | 6.95 | 4.59 |
AI hare | 0.73 | 0.78 | 0.83 | 0.78 |
AI rabbit | 0.68 | 0.50 | 1.02 | 0.73 |
TI hare | 0.62 | 0.68 | 0.67 | 0.66 |
TI rabbit | 0.37 | 0.32 | 0.49 | 0.39 |
h/H hare | 3.29 | 3.40 | 4.04 | 3.58 |
h/H rabbit | 2.03 | 1.86 | 2.04 | 1.98 |
NVI hare | 1.36 | 1.42 | 1.65 | 1.48 |
NVI rabbit | 1.41 | 1.21 | 1.40 | 1.34 |
Muscles | Period | Species | Mean | ±SD | V% | p Values |
---|---|---|---|---|---|---|
Longissimus dorsi | 24 h | hare | 5.631 a | ±0.10 | 1.78 | 0.0008 |
rabbit | 5.724 d | ±0.12 | 2.10 | |||
48 h | hare | 5.665 a | ±0.11 | 1.94 | 0.0003 | |
rabbit | 5.762 d | ±0.14 | 2.43 | |||
Semimembranosus | 24 h | hare | 5.685 a | ±0.08 | 1.41 | 0.0066 |
rabbit | 5.796 c | ±0.12 | 2.07 | |||
48 h | hare | 5.769 a | ±0.11 | 1.91 | 0.0039 | |
rabbit | 5.818 c | ±0.13 | 2.23 | |||
Triceps brachii | 24 h | hare | 6.033 | ±0.08 | 1.33 | 0.2529 |
rabbit | 6.002 | ±0.15 | 2.50 | |||
48 h | hare | 6.138 a | ±0.08 | 1.30 | 0.0034 | |
rabbit | 6.087 c | ±0.08 | 1.31 |
Muscles | Species | Mean | ±SD | V% | p Values |
---|---|---|---|---|---|
Longissimus dorsi | rabbit | 31.41 a | ±2.75 | 8.76 | <0.001 |
hare | 27.52 d | ±1.31 | 4.76 | ||
Semimembranosus | rabbit | 36.2 a | ±2.25 | 6.22 | <0.001 |
hare | 31.04 d | ±1.39 | 4.48 | ||
Triceps brachii | rabbit | 30.23 a | ±2.23 | 7.38 | <0.001 |
hare | 28.64 d | ±1.24 | 4.33 |
Muscles | Species | Mean | ±SD | V% | p Values |
---|---|---|---|---|---|
Longissimus dorsi | rabbit | 7.79 a | ±0.30 | 3.85 | <0.001 |
hare | 14.58 d | ±0.60 | 4.12 | ||
Semimembranosus | rabbit | 12.17 a | ±0.80 | 6.57 | <0.001 |
hare | 18.23 d | ±1.43 | 7.84 | ||
Triceps brachii | rabbit | 8.77 a | ±0.58 | 6.61 | <0.001 |
hare | 15.73 d | ±1.26 | 8.01 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Frunză, G.; Murariu, O.C.; Ciobanu, M.-M.; Radu-Rusu, R.-M.; Simeanu, D.; Boișteanu, P.-C. Meat Quality in Rabbit (Oryctolagus cuniculus) and Hare (Lepus europaeus Pallas)—A Nutritional and Technological Perspective. Agriculture 2023, 13, 126. https://doi.org/10.3390/agriculture13010126
Frunză G, Murariu OC, Ciobanu M-M, Radu-Rusu R-M, Simeanu D, Boișteanu P-C. Meat Quality in Rabbit (Oryctolagus cuniculus) and Hare (Lepus europaeus Pallas)—A Nutritional and Technological Perspective. Agriculture. 2023; 13(1):126. https://doi.org/10.3390/agriculture13010126
Chicago/Turabian StyleFrunză, Gabriela, Otilia Cristina Murariu, Marius-Mihai Ciobanu, Răzvan-Mihail Radu-Rusu, Daniel Simeanu, and Paul-Corneliu Boișteanu. 2023. "Meat Quality in Rabbit (Oryctolagus cuniculus) and Hare (Lepus europaeus Pallas)—A Nutritional and Technological Perspective" Agriculture 13, no. 1: 126. https://doi.org/10.3390/agriculture13010126