Precision Livestock Farming Applications (PLF) for Grazing Animals
Abstract
:1. Introduction
2. PLF in Grazing Cattle
2.1. RFID Technologies
2.2. GPS and GIS Systems
2.3. Other Multi-Sensors PLF Applications
Applied Technology | Parameter of Interest | PLF Evaluation Parameters | Reference | |
---|---|---|---|---|
RFID | MooMonitor+ | Grazing behaviour and rumination | Accuracy: 94 and 97%, respectively | [38] |
RumiWatch | Accuracy: 96 and 98%, respectively | |||
Handheld | Movement tracking | Efficiency: >98.1% | [60] | |
Walk through device | Efficiency: 89.5–98.5% | |||
RFID and | Licking behaviour monitoring | Efficiency: 98% | [55] | |
Accelerometer | Efficiency: 89% | |||
RFID | Welfare assessment | Accuracy: 93.12% | [39] | |
Individual identification | Not provided | [41,42] | ||
Individual data documentation | [43] | |||
Disease detection | ||||
Detecting and monitoring watering behaviour and water intake | Efficiency: 100% | [52] | ||
Feed intake monitoring | Not provided | [58] | ||
Grazing activity monitoring | ||||
Individual mineral intake monitoring | [59] | |||
Feeding behaviour monitoring | ||||
Growth performance monitoring | ||||
Oestrus detection | Sensitivity: 65% and Specificity: 60% | [61] | ||
Individual identification | Not provided | [62] | ||
RFID and Cameras | Individual identification | Precision: 89% | [51] | |
Cameras | Position detection | Precision: 84.6–99.9% (depending on the distance between the cameras and the observation) | [44] | |
Methane emissions estimation | Accuracy: 97% | |||
Disease detection | Not provided | [46] | ||
Behavioural patterns classification | ||||
Mating behaviour detection | ||||
Behaviour monitoring | Efficiency: 91% | [92] | ||
Thermal cameras and infrared sensors | Body temperature monitoring | Not provided | [62] | |
Heat stress detection | ||||
Sound analysis systems | Rumination detection | Precision (R2): 87% (n = 51) | [45] | |
GPS and GIS | Behaviour monitoring | Classification Accuracy: 91.7% | [72] | |
Pasture usage monitoring | Classification Accuracy: 94.8% | [73] | ||
GPS and accelerometers | Grazing behaviour monitoring | Accuracy: 98% | [75] | |
Movement tracking | ||||
Ruminating behaviour monitoring | ||||
Resting detection | ||||
Lying behaviour detection | ||||
Feeding behaviour monitoring | ||||
GPS | Location detection | Precision: 82.8% | [74] | |
Field distribution behaviour monitoring | ||||
GPS and motion sensors | Standing detection Locomotion monitoring | Not provided | [70] | |
Grazing behaviour monitoring | ||||
Lying behaviour detection | ||||
Grazing behaviour monitoring | Precision: 94.1% | [76] | ||
Resting behaviour monitoring | ||||
Pasture preference classification | ||||
IoT system (GPS, WSN, Cloud platform) | Health status prediction | Not provided | [81] | |
GPS, temperature and movement sensors | Grazing activity monitoring | Accurate classification (R2): 81% | [77] | |
GPS, GIS and accelerometers | Individual animal location detection | Accuracy > 90% | [47] | |
Theft prevention | ||||
Feeding behaviour detection | ||||
Ruminating behaviour detection | ||||
RFID, accelerometers, automatic weight scales, automatic supplement blocks | Licking behaviour monitoring | Licking and non-licking detection accuracy: 81 and 94%, respectively | [56] | |
RFID, motion sensors, flow meter, cameras | Drinking behaviour monitoring | Flow meters accuracy: 99% | [53] | |
Water intake monitoring | ||||
Walk-over-weighing (WoW) system | Individual weight estimation | Prediction error for calves and cows: 3.2 and 3.4%, respectively | [78] | |
Supplement intake monitoring | ||||
Electronic feeder, cameras | Feed intake monitoring | True positive and true negative sensitivity: 97 and 99%, respectively | [57] | |
Feeding behaviour monitoring | ||||
Sound analysis systems | Grazing behaviour detection | Not provided | [79] | |
Foraging activity recognition | ||||
Rumination estimation | ||||
Rumination efficiency monitoring | Grazing detection accuracy in noiseless and noisy conditions: 91.4 and 90.2%, respectively | [82] | ||
Total feed efficiency monitoring | ||||
Accelerometer, gyroscope, magnometer | Lying activity monitoring | Sensitivity: 95.6% | [80] | |
Rumination detection | Specificity: 80.5% and accuracy: 87.4% | |||
IoT system, gyroscope, accelerometer, electromagnetic compass, solar panel power source | Activity monitoring | Not provided | [84] | |
Position detection | ||||
IoT system, accelerometers | Behavioural patterns classification | Accuracy: >90% and specificity (walking behaviour): 96.98% | [83] | |
CNN, image analysis | Animal detection | Accuracy ~ 100% | [85] | |
CNN, accelerometers | Feeding behaviour detection | Accuracy >98% | [86] | |
Walking behaviour detection | ||||
Drinking behaviour detection | ||||
Rumination detection | ||||
IoT system, energy wearable harvesters | Kinetic into electrical energy conversion | Not provided | [87] | |
Virtual fencing | Prevent access to certain VF protected area | Efficiency: 99.8% | [108] | |
Biotopes protection | Not provided | [99] | ||
Grazing activity control | Efficiency: 95–96% | [89,90,96,98] | ||
Not provided | [99,102,107,109] | |||
Reliability: 100% | [105] | |||
Efficiency: 100% | [106] | |||
Activity control | Efficiency: 97% | [101] | ||
Efficiency: 100% | [100,103,106] |
3. PLF in Small Ruminants
3.1. Electronic Identification (EID) Systems
3.2. On-Animal Sensors
3.3. Virtual Fencing and Flock Monitoring Using Drones, Robots and Image Analysis Techniques
3.4. Walk-Over-Weighting or Weighting Crates and Automatic Drafter
3.5. Other Milking Parlour-Related Technologies
4. PLF in Other Species
4.1. Pigs
4.2. Poultry
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- OECD-FAO (Organisation for Economic Co-operation and Development/Food and Agriculture Organization of the United Nations). Agricultural Outlook 2019-2028. Special Focus: Latin America; OECD Publishing: Rome, Italy, 2019. [Google Scholar]
- Berckmans, D. General introduction to Precision Livestock Farming. Anim. Front. 2017, 7, 6–11. [Google Scholar] [CrossRef] [Green Version]
- Andonovic, I.; Michie, C.; Cousin, P.; Janati, A.; Pham, C.; Diop, M. Precision Livestock Farming Technologies. In Proceedings of the Global Internet of Things Summit, Bilbao, Spain, 4–7 June 2018. [Google Scholar] [CrossRef]
- Tzanidakis, C.; Simitzis, P.; Arvanitis, K.; Panagakis, P. An overview of the current trends in Precision Pig Farming technologies. Livest. Sci. 2021. Livest. Sci. 2021, 249, 104530. [Google Scholar] [CrossRef]
- Funte, S.; Negesse, T.; Legesse, G.; Feed rescources and their management systems in Ethiopian highlands: The case of Umbulo Whaco watershed in Southern Ethiopia. Feed rescources and their management systems in Ethiopian highlands: The case of Umbulo Whaco watershed in Southern Ethiopia. Trop. Subtrop. Agroecosystems. 2010. Available online: https://www.revista.ccba.uady.mx/ojs/index.php/TSA/article/view/293/271 (accessed on 25 November 2022).
- Mengistu, A.; Kebede, G.; Fayissa, F.; Assefa, G. Review on major feed resources in Ethiopia: Conditions, Challenges and Opportunities. Acad. Res. J. Agric. Sci. Res. 2017, 5, 176–185. [Google Scholar] [CrossRef]
- Berckmans, D. My vision of Precision Livestock Farming in 2020. In Proceedings of the BPEX Innovation Conference, Warwickshire, UK, 24 June 2014; Available online: https://youtube.com/watch?v=jEUQytFAHwo (accessed on 25 November 2022).
- Simitzis, P.; Tzanidakis, C.; Tzamaloukas, O.; Sossidou, E. Contribution of Precision Livestock Farming systems to the improvement of welfare status and productivity of dairy animals. Dairy 2021, 3, 12–28. [Google Scholar] [CrossRef]
- Berckmans, D. Automatic on-line monitoring of animal health and welfare by precision livestock farming. In Proceedings of the European Forum Livestock Housing for the Future, Lille, France, 22–23 October 2009; pp. 155–165. Available online: http://www.rmt-batiments.org/IMG/pdf/Proceedings_Presentation-26.pdf (accessed on 25 November 2022).
- Rutter, S.M. Can precision farming technologies be applied to grazing management? In Proceedings of the XXII International Grassland Congress (Revitilizing Grasslands to Sustain Our Communities), Sydney, Australia, 15–19 September 2013; Available online: https://uknowledge.uky.edu/cgi/viewcontent.cgi?article=1265&context=igc (accessed on 25 November 2022).
- Finch, H.J.S.; Samuel, A.M.; Lane, G.P.F. 10 – Precision farming. In Lockhart & Wiseman’s Crop Husbandry Including Grassland, 9th ed.Finch, H.J.S., Samuel, A.M., Lane, G.P.F., Eds.; Woodhead Publishing Series in Food Science, Technology and Nutrition; Woodhead Publishing, Elsevier Ltd.: Sawston, UK, 2014; pp. 235–244. [Google Scholar] [CrossRef]
- Eastwood, C.; Dela Rue, B. Precision grazing management--understanding farmer uptake of grazing software. In Proceedings of the 1st Asian-Australian Conference on Precision Pastures and Livestock Farming, Hamilton, New Zealand, 30 October 2017; Available online: https://www.researchgate.net/publication/320719758_Precision_grazing_management_-_Understanding_farmer_uptake_of_grazing_software (accessed on 25 November 2022).
- Morgan-Davies, C.; Kyle, J.; Boman, I.A.; Wishart, H.; McLaren, A.; Fair, S.; Creighton, P. A comparison of farm labour, profitability, and carbon footprint of different management strategies in Northern European grassland sheep systems. Agric. Syst. 2021, 191, 103155. [Google Scholar] [CrossRef]
- Murphy, D.J.; Murphy, M.D.; O’Brien, B.; O’Donovan, M. A review of precision technologies for optimizing pasture measurement on Irish grassland. Agriculture 2021, 11(7), 600. [Google Scholar] [CrossRef]
- FAO (food and Agriculture Organization). Livestock on grazing lands. 2013. Available online: https://www.fao.org/3/x5304e/x5304e03.htm (accessed on 25 November 2022).
- De Oliveira, E.R.; Silva, J.R.; Baumann, L.R.F.; Miziara, F.; Ferreira, L.G.; de Oliveira Merelles, L.R. Technology and degradation of pastures in livestock in the Brazilian Cerrado. Soc. Nat. 2020, 32, 585–596. [Google Scholar] [CrossRef]
- Temple, D.; Courboulav, V.; Manteca, X.; Velarde, A.; Dalmau, A. The welfare of growing pigs in five different production systems: Assessment of feeding and housing. Animals 2012, 6(4), 656–667. [Google Scholar] [CrossRef]
- Statham, P.; Green, L.; Bichard, M.; Mendl, M. Predicting tail biting from behavior of pigs prior to outbreaks. Appl. Anim. Behav. Sci. 2009, 121, 157–164. [Google Scholar] [CrossRef] [Green Version]
- Vranken, E.; Berckmans, D. Precision Livestock Farming for pigs. Anim. Front. 2017. 7, 32–37. [CrossRef] [Green Version]
- Smouse, E.P.; Focardi, S.; Moorcroft, R.P.; Kie, G.J.; Forester, D.J.; Morales, M.J. Stochastic modelling of animal movement. Philos. Trans. R. Soc. B: Biol. Sci. 2010, 365, 2201–2211. [Google Scholar] [CrossRef] [Green Version]
- Eastwood, C.R.; Chapman, D.F.; Paine, M.S. Networks of practice for construction of agricultural decision support systems: Case studies of precision dairy farms in Australia. Agric. Syst. 2012, 108, 10–18. [Google Scholar] [CrossRef]
- Hanrahan, L.; Geoghegan, A.; O’Donovan, M.; Griffith, V.; Ruelle, E.; Wallace, M.; Shallo, L. PastureBase Ireland: A grassland decision support system and national database. Comput. Electron. Agric. 2017, 136, 193–201. [Google Scholar] [CrossRef]
- Kuehne, G.; Llewellyn, R.; Pannell, D.J.; Wilkinson, R.; Dolling, P.; Ouzman, J.; Ewing, M. Predicting farmer uptake of new agricultural practices: A tool for research, extension and policy. Agric. Syst. 2017, 156, 115–125. [Google Scholar] [CrossRef]
- Borman, M.M.; Louhaichi, M.; Johnson, D.E.; Krueger, W.C. Methods to measure geese impacts on grass seed production. In Seed Production Research at Oregon State University USDA-ARS Cooperating; Young, W.C., III, Ed.; Department of Crop and Soil Science EXT/CrS 121, 4/02: Corvalis, OR, USA, 2001; pp. 63–65. Available online: https://www.researchgate.net/publication/253392523_Methods_to_measure_geese_impacts_on_grass_seed_production (accessed on 25 November 2022).
- Ruiz-Garcia, L.; Lunadei, L. The role of RFID in agriculture: Application, limitations and challenges. Comput. Electron. Agric. 2011, 79, 42–50. [Google Scholar] [CrossRef] [Green Version]
- Cappai, M.G.; Rubiu, N.G.; Nieddu, G.; Bitti, M.P.L.; Pinna, W. Analysis of fieldwork activities during milk production recording in dairy ewes by means of individual ear tag (ET) alone or plus RFID based electronic identification (EID). Comput. Electron. Agric. 2018, 144, 324–328. [Google Scholar] [CrossRef]
- Alvarenga, F.A.P.; Borges, I.; Palkovicˇ, L.; Rodina, J.; Oddy, V.H.; Dobos, R.C. Using a three-axis accelerometer to identify and classify sheep behaviour at pasture. Appl. Anim. Behav. Sci. 2016, 181, 91–99. [Google Scholar] [CrossRef]
- Mansbridge, N.; Mitsch, J.; Bollard, N.; Ellis, K.A.; Miguel-Pacheco, G.; Dottorini, T.; Kaler, J. Feature selection and comparison of machine learning algorithms in classification of grazing and rumination behaviour in sheep. Sensors 2018, 18, 3532. [Google Scholar] [CrossRef] [Green Version]
- Plaza, J.; Sánchez, N.; Palacios, C.; Sánchez-García, M.; Abecia, J.A.; Criado, M.; Nieto, J. GPS, LiDAR and VNIR data to monitor the spatial behavior of grazing sheep. J. Anim. Behav. Biometeorol. 2022, 10, 2214. [Google Scholar] [CrossRef]
- Wang, K.; Xuan, C.; Wu, P.; Liu, F.; Fan, X. Feeding intake estimation in sheep based on ingestive chewing sounds. Comput. Electron. Agric. 2022, 194, 106698. [Google Scholar] [CrossRef]
- Anderson, D.M.; Estell, R.E.; Holechek, J.L.; Ivey, S.; Smith, G.B. Virtual herding for flexible livestock management - a review. Rangel. J. 2014, 36, 205–221. [Google Scholar] [CrossRef]
- Xu, B.; Wang, W.; Falzon, G.; Kwan, P.; Guo, L.; Sun, Z.; Li, C. Livestock classification and counting in quadcopter aerial images using Mask R-CNN. Int. J. Remote Sens. 2020, 41, 8121–8142. [Google Scholar] [CrossRef] [Green Version]
- Fuchs, B.; Sørheim, K.M.; Chincarini, M.; Brunberg, E.; Stubsjøen, S.M.; Bratbergsengen, K.; Hvasshovd, S.O.; Zimmermann, B.; Lande, U.S.; Grøva, L. Heart rate sensor validation and seasonal and diurnal variation of body temperature and heart rate in domestic sheep. Vet. Anim. Sci. 2019, 8, 100075. [Google Scholar] [CrossRef] [PubMed]
- Thorton, P.K. Livestock production: Recent trends, future prospects. Philos. Trans. R. S. 2010, 1554, 2853–2867. [Google Scholar] [CrossRef] [Green Version]
- Mottram, T. Animal broad invited review: Precision livestock farming for dairy cows with a focus on oestrus detection. Animals 2016, 10, 1575–1584. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Norton, T.; Chen, C.; Larsen, M.L.V.; Berckmans, D. Review: Precision livestock farming: Building ‘digital representations’ to bring the animals closer to the farmer. Animal. 2019, 13, 3009–3017. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tran, D.-N.; Nguyen, T.N.; Khanh, P.C.P.; Trana, D.-T. An IoT-based design using accelerometers in animal behavior recognition systems. IEEE Sens. J. 2021, 22, 17515–17528. [Google Scholar] [CrossRef]
- Werner, J.; Leso, L.; Umstatter, C.; Schick, M.; O’Brien, B. Evaluation of precision technologies for measuring cows’ grazing behaviour. In Proceedings of the 19th Symposium of the European Grassland Federation. Grassland Resources for Extensive Farming Systems in Marginal Lands: Major Drivers and Future Scenarios. Grassland Science in Europe, Alghero, Italy, 10 May 2017; Volume 22, pp. 82–84. Available online: https://iris.unito.it/retrieve/handle/2318/1657936/383986/EGF2017-proceedingsFULL-rid.pdf#page=107 (accessed on 25 November 2022).
- Salzer, Y.; Lidor, G.; Rosenfeld, L.; Reshef, L.; Shaked, B.; Grinshpun, J.; Honig, H.H.; Kamer, H.; Balaklav, M.; Ross, M. Technical note: A nose ring sensor system to monitor dairy cow cardiovascular and respiratory metrics. J. Anim. Sci. 2022, 100, skac240. [Google Scholar] [CrossRef]
- Awad, A.I. From classical methods to animal biometrics: A review on cattle identification and tracking. Comput. Electron. Agric. 2016, 123, 423–435. [Google Scholar] [CrossRef]
- Voulodimos, A.S.; Patrikakis, C.Z.; Sideritis, A.B.; Ntafis, V.A.; Xylouri, E.M. A complete farm management system based on animal identification using RFID technology. Comput. Electron. Agric. 2010, 70(2), 380–388. [Google Scholar] [CrossRef]
- Chang, K.; Kim, Y.H.; Kim, Y.J.; Yoon, Y.J. Functional antenna integrated with relative humidity sensor using synthesized polyimide for passive RFID sensing. Electron. Lett. 2007, 43, 259–260. [Google Scholar] [CrossRef]
- Vlad, M.A.; Parvulet, R.A.; Vlad, M.S. A survey of livestock identification systems. In Proceedings of the 13th WSEAS International Conference on Automation and Information, Iasi, Romania, 13–15 June 2012; WESEAS Press: Athens, Greece; pp. 165–170. [Google Scholar]
- Coates, T.W. Applications of the Eddy-Covariance Micrometeorological Technique for Estimating Methane Emissions from Grazing Cattle. Ph.D. Thesis, University of Melbourne, Melbourne, Australia, 2017. Available online: https://rest.neptune-prod.its.unimelb.edu.au/server/api/core/bitstreams/19e2ab89-258b-5d51-be85-bd84ce70eed7/content (accessed on 6 December 2022).
- Schirmann, K.; von Keyserlingk, M.A.G.; Weary, D.M.; Veira, D.M.; Heuwieser, W. Technical note: Validation of a system for monitoring rumination in dairy cows. J. Dairy Sci. 2009, 92, 6052–6055. [Google Scholar] [CrossRef] [Green Version]
- Singh, R.P. Applying machine learning in video monitoring of cattle. Int. J. Adv. Res. Ideas Innov. Tech. 2018, 4, 1242–1244. Available online: https://www.ijariit.com/manuscripts/v4i3/V4I3-1574.pdf?152fd8&152fd8 (accessed on 25 November 2022).
- Kononoff, P.J.; Lehman, H.A.; Heinrichs, A.J. Technical Note – A comparison of methods used to measure eating and ruminating activity in confined dairy cattle. J. Dairy Sci. 2002, 85, 1801–1803. [Google Scholar] [CrossRef] [Green Version]
- Aquilani, C.; Confessore, A.; Bozzi, R.; Sirtori, F.; Pugliese, C. Review: Precision Livestock Farming technologies in pasture-based livestock systems. Animals 2022, 16, 100429. [Google Scholar] [CrossRef]
- Bhargava, K.; Ivanov, S.; Donelly, W.; Kulatunga, C. Using edge analytics to improve data collection in Precision Dairy Farming. In Proceedings of the 41st IEEE Conference on Local Computer Networks Workshops, Dubai, United Arab Emirates, 7–10 November 2016. [Google Scholar] [CrossRef]
- Samad, A.; Murdeshwar, P.; Hameed, Z. High-credibility RFID-based animal data recording system suitable for small-holding rural dairy farmers. Comput. Electron. Agric. 2010, 72, 213–218. [Google Scholar] [CrossRef]
- Pretto, A.; Savio, G.; Gottardo, F.; Uccheddu, F.; Concheri, G. A novel low-cost visual ear tag based identification system for precision beef cattle livestock farming. Inf. Process. Agric. 2022, In Press. [Google Scholar] [CrossRef]
- Williams, L.R.; Fox, D.R.; Bishop-Hurley, G.J.; Swain, D.L. Use of radio frequency identification (RFID) technology to record grazing beef cattle water point of use. Comput. Electron. Agric. 2019, 156, 193–202. [Google Scholar] [CrossRef]
- Williams, L.R.; Moore, S.T.; Bishop-Hurley, G.J.; Swain, D.L. A sensor-based solution to monitor grazing cattle drinking behaviour and water intake. Comput. Electron. Agric. 2020, 168, 105141. [Google Scholar] [CrossRef]
- O’Connor, L.; Moore, S.; Bishop-Hurley, G.J.; Swain, D.L. A sensor-based solution to monitor grazing cattle drinking behaviour and water intake. CQUniversity. J. Cont 2020, 21, 21. Available online: https://hdl.handle.net.10779/cqu.19450640.v1.
- Simanungkalit, G.; Barwick, J.; Coaley, F.; Dawson, B.; Dobos, R.; Hegarty, R. Use of an ear-tag accelerometer and radio-frequency (RFID) system for monitoring the licking behaviour in grazing cattle. Appl. Anim. Behav. Sci. 2021, 244, 105491. [Google Scholar] [CrossRef]
- Simanungkalit, G.; Clay, J.; Barwick, J.; Cowley, F.; Dawson, B.; Dobos, R.; Hegarty, R. Validation of automatic systems for monitoring licking behaviour in Angus and Brahman cattle. Appl. Anim. Behav. Sci. 2022, 247, 105543. [Google Scholar] [CrossRef]
- Durst, L.; Harvey, K.M.; Yankey, K.C.; Whipple, L.M.; Russell, J.R.; Cooke, R.F. Validation of a portable, self-contained individual feeding unit for monitoring supplement intake of grazing cattle. Appl. Anim. Sci. 2022, 38, 150–156. [Google Scholar] [CrossRef]
- Knight, C.W.; Bailey, D.W.; Faulkner, D.; Schafer, D.W. Intake and grazing activity of manure range cows on Arizona rangelands. In Proceedings of the Western Section, American Society of Animal Science, Rio Dosa, NM, USA, 12–16 July 2015; 66, pp. 222–224. Available online: https://www.researchgate.net/profile/Colt-Knight/publication/305767192_Intake_and_grazing_activity_of_mature_range_cows_on_Arizona_rangelands/links/5bc9d585299bf17a1c5ff446/Intake-and-grazing-activity-of-mature-range-cows-on-Arizona-rangelands.pdf (accessed on 25 November 2022).
- McCarthy, K.L.; Undi, M.; Becker, S.; Dahlen, C.R. Utilizing an electronic feeder to measure individual mineral intake, feeding behaviour, and growth performance of cow-calf pairs grazing naïve range. Tradit. Anim. Sci. 2021, 5, txab007. [Google Scholar] [CrossRef] [PubMed]
- Kellom, A.; Paterson, J.A.; Clark, R.; Duffey, L. Readability and retention rates of radio frequency identification (RFID) ear tags when tracking the movement of calves using three scanning methods. ASAS. 2006. ASAS 2006, 57, 156–159. Available online: https://www.asas.org/docs/western-section/2006-western-section-proceedings.pdf?sfvrsn=0&sfvrsn=0#page=158 (accessed on 6 December 2022).
- Cobert, N.J.; Patison, K.P.; Menzies, D.J.; Swain, D.L. Using temporal associations to determine postpartum oestrus in tropical beef cows. Anim. Prod Sci. 2018, 58, 1465–1469. [Google Scholar] [CrossRef]
- Osei-Amponsah, R.; Dunshea, F.R.; Leury, B.J.; Cheng, L.; Cullen, B.; Joy, A.; Abhijith, A.; Zhang, M.H.; Chauhan, S.S. Heat stress impacts on lactating cows grazing Australian Summer pastures on an automatic robotic dairy. Animals 2020, 10, 869. [Google Scholar] [CrossRef]
- Wardrope, D. Problems with the use of ear tags in cattle. Vet. Rec. 1995, 137, 675. [Google Scholar]
- Owens, M.K.; Launchbaugh, K.I.; Holloway, J.W. Pasture characteristics affecting spatial distribution of utilization by cattle in mixed brush communities. J. Range Manag. 1991, 44, 118–123. [Google Scholar] [CrossRef]
- Hart, R.H.; Bissio, J.; Samuel, M.J.; Waggoner, J.W., Jr. Grazing systems, pasture size, and cattle grazing behaviour distribution and gains. J. Range Manag. 1993, 46, 81–87. [Google Scholar] [CrossRef]
- Dumont, B.; Carrère, P.; D’ Hour, P. Foraging in patchy grasslands: Diet selection by sheep and cattle is affected by the abundance and special distribution of preferred species. Anim. Res. 2002, 51, 367–381. [Google Scholar] [CrossRef] [Green Version]
- Putfarken, D.; Dengler, J.; Lehmann, S.; Härdtle, W. Site use of grazing cattle and sheep in large-scale pasture landscape: A GPS/GIS assessment. Appl. Anim. Behav. Sci. 2008, 111, 54–67. [Google Scholar] [CrossRef] [Green Version]
- Bailey, D.W.; Trotter, M.G.; Knight, C.W.; Thomas, M.G. Use of GPS tracking collars and accelerometers for rangeland livestock production research. Transl. Anim. Sci. 2018, 2, 81–88. [Google Scholar] [CrossRef]
- Hulbert, I.A.R.; Wyllie, J.T.B.; Waterhouse, A.; French, J.; McNulty, D. A note on the circadian rhythm and feeding behaviour of sheep fitted with lightweight GPS collar. Appl. Anim. Behav. Sci. 1998, 60, 359–364. [Google Scholar] [CrossRef]
- Brosh, A.; Henkin, Z.; Ungar, E.D.; Dolev, A.; Orlov, A.; Yehuda, Y.; Aharoni, Y. Energy cost of cows’ grazing activity: Use of the heart rate method and the Global Psitioning System for direct field estimation. J. Anim. Sci. 2006, 84, 1951–1967. [Google Scholar] [CrossRef] [Green Version]
- Finck, P.; Riecken, U.; Schröder, E. Pasture landscapes and nature conservation-new strategies for the prevention of open landscapes in Europe. In Pasture Landscapes and Nature Conservation; Redecker, B., Härdtle, W., Finck, P., Riecken, U., Schröder, E., Eds.; Springer: Berlin/Heidelberg, Germany, 2002; pp. 1–12. [Google Scholar] [CrossRef]
- Turner, L.W.; Udal, M.C.; Larson, B.T.; Shearer, S.A. Monitoring cattle behavior and pasture use with GPS and GIS. Can. J. Anim. Sci. 2000, 80, 405–413. [Google Scholar] [CrossRef]
- Turner, L.W.; Anderson, M.; Larson, B.T.; Udal, M.C. Global Positioning Systems (GPS) and grazing behavior in cattle. In Proceedings of the 6th International Symposium on Livestock Environment, Louisville, KY, USA, 21–23 May 2001; pp. 640–650. Available online: https://elibrary.asabe.org/pdfviewer.asp?param1=s:/8y9u8/q8qu/tq9q/5tv/H/y1u8IGGH/MKG-MLG.5tv¶m2=L/HK/IGII¶m3=HLI.N.ILL.IKI¶m4=7127 (accessed on 25 November 2022).
- Hassan-Vásquez, J.; Maroto-Molina, F.; Guerrero-Ginel, J.E. GPS tracking to monitor the spatiotemporal dynamics of cattle behavior and their relationship with feces distribution. Animals 2022, 12, 2383. [Google Scholar] [CrossRef]
- Riaboff, L.; Couvreur, S.; Madouasse, A.; Roig-Pons, M.; Aubin, S.; Massabie, P.; Chauvin, A.; Bédère, N.; Plantier, G. Use of predicted behaviour from accelerometer data combined with GPS data to explore relationship between dairy cow behavior and pasture characteristics. Sensors 2020, 20, 4741. [Google Scholar] [CrossRef]
- Spedener, M.; Tofastrud, M.; Devineau, O.; Zimmermann, B. Microhabitat selection of free-ranging beef cattle in south-boreal forest. Appl. Anim. Behav. Sci. 2019, 213, 33–39. [Google Scholar] [CrossRef]
- Larson-Praplan, S.; George, M.R.; Buckhouse, J.C.; Laca, E.A. Spatial and temporal domains of scale of grazing cattle. Anim. Prod Sci. 2015, 55, 284. [Google Scholar] [CrossRef]
- Simanungkalit, G.; Hegarty, R.S.; Cowley, F.C.; McPhee, M.J. Evaluation of remote monitoring units for estimating body weight and supplement intake of grazing cattle. Animals 2020, 14, S332–S340. [Google Scholar] [CrossRef] [PubMed]
- Chelotti, J.O.; Vanrell, S.R.; Rau, L.S.M.; Galli, J.R.; Planisich, A.M.; Utsumi, S.A.; Milone, D.H.; Giovanini, L.L.; Rufiner, H.L. An online method for estimating grazing and rumination bouts using acoustic signals in grazing cattle. Comput. Electron. Agric. 2020, 173, 105443. [Google Scholar] [CrossRef]
- Schmeling, L.; Elmamooz, G.; Hoang, P.T.; Kozar, A.; Nicklas, D.; Sünkel, M.; Thurner, S.; Rauch, E. Training and validating a machine learning model for the sensor-based monitoring of lying behavior in dairy cows on pasture and in the barn. Animals 2021, 11, 2660. [Google Scholar] [CrossRef] [PubMed]
- Park, J.K.; Park, E.Y. Monitoring method of movement of grazing cows using cloud-based system. ECTI--CIT 2021, 15, 24–33. [Google Scholar] [CrossRef]
- Martinez-Rau, L.S.; Weißbrich, M.; Payá-Vayá, G. A 4μW low-power audio processor system for real-time jaw movements recognition in grazing cattle. J. Signal Process. Syst. 2022, 1–18. [Google Scholar] [CrossRef]
- Wang, J.; He, Z.; Ji, J.; Zhao, K.; Zhang, H. IoT-based measurement system for classifying cow behavior from tri-axial accelerometer. Anim. Prod. 2019, 49, 6. [Google Scholar] [CrossRef]
- Natori, T.; Ariyama, N.; Tsuichihara, S.; Takemura, H. Study of activity collecting system for grazing cattle. In Proceedings of the 34th International Technical Conference on Circuits/Systems, Computers and Communications (ITC-CSCC), JeJu, Republic of Korea, 23–26 June 2019; pp. 1–4. [Google Scholar] [CrossRef]
- Barbedo, J.G.A.; Koenigkan, L.V.; Santos, T.T.; Santos, P.M. A study on the detection of cattle in UAV images using deep learning. Sensors 2019, 19, 5436. [Google Scholar] [CrossRef] [Green Version]
- Li, C.; Tokgoz, K.K.; Okumura, A.; Bartels, J.; Toda, K.; Matsushima, H.; Ohashi, T.; Takeda, K.-I.; Ito, H. A data augmentation method for cow behavior estimation systems using 3-axis acceleration data and Neural Network technology. IEICE T. Fund. Electr. 2021, E105-A, 655–663. [Google Scholar] [CrossRef]
- Blažević, D.; Philipp, S.; Ruuskanen, J.; Dizdarević, J.; Niiranen, R.; Rasilo, P.; Jukan, A. A farm animal kinetic energy harvesting device for IoT applications. In Proceedings of the International Society for Optics and Photonics (SPIE), Energy Harvesting and Storage: Materials, Devices and Applications XII. SPIE Defense + Commercial Sensing, Orlando, FL, USA,1209005., 30 May 2022; 12090, p. 1209005. [Google Scholar] [CrossRef]
- Campbell, D.L.M.; Lea, J.M.; Farrer, W.J.; Haynes, S.J.; Lee, C. Tech-Savvy beef cattle? How heifers respond to moving virtual fence lines. Animals 2017, 7, 72. [Google Scholar] [CrossRef] [Green Version]
- Campbell, D.L.M.; Haynes, S.J.; Lea, J.M.; Farrer, W.J.; Lee, C. Temporary exclusion of cattle from a riparian zone using virtual fencing technology. Animals 2018, 9, 5. [Google Scholar] [CrossRef] [Green Version]
- Campbell, D.L.M.; Lea, J.M.; Keshavarzi, H.; Lee, C. Virtual fencing is comparable to electric tape fencing for cattle behavior and welfare. Front. Vet. Sci. 2019, 6, 445. [Google Scholar] [CrossRef] [Green Version]
- Lomax, S.; Colusso, P.; Clark, C.E.F. Does virtual fencing work for grazing dairy cattle? Animals 2019, 9, 429. [Google Scholar] [CrossRef] [Green Version]
- Verdon, M.; Langworthy, A.; Rawnsley, R. Virtual fencing technology to intensively graze lactating dairy cattle. II: Effects on cow welfare and behavior. J. Dairy Sci. 2021, 104, 7084–7094. [Google Scholar] [CrossRef]
- Butler, Z.; Corke, P.; Peterson, R.; Rus, D. From robots to animals: Virtual fences for controlling cattle. Int. J. Robot. Res. 2006, 25, 5–6. [Google Scholar] [CrossRef]
- Colusso, P. Evaluating virtual fence technology for grazing dairy cows. Ph.D. Thesis, University of Sydney, Camperdown, NSW, Australia, 2022. [Google Scholar]
- Monod, M.O.; Faure, P.; Moiroux, L.; Rameau, P. Stakeless fencing for mountain pastures. In Proceedings of the 4th European Conference on Precision Livestock Farming, Wageningen, The Netherlands, 6–8 July 2009; Wageningen Academic Publishers: Wageningen, The Netherlands; pp. 175–181. Available online: https://www.wageningenacademic.com/doi/pdf/10.3920/978-90-8686-663-2#page=177 (accessed on 25 November 2022).
- Boyd, C.S.; O’Connor, R.; Ranches, J.; Bohnert, D.W.; Bates, J.D.; Johnson, D.D.; Davies, K.W.; Parker, T.; Doherty, K. Virtual fencing effectively excludes cattle from burned sagebrush steppe. Rangel. Ecol. Manag. 2022, 81, 55–62. [Google Scholar] [CrossRef]
- Anderson, D.M. Virtual fencing – A prescription range animal management tool for the 21st Century. In Proceedings of the International Conference Held at the Macaulay Land Use Research Institute, Aberdeen, UK, 12–13 March 2001; pp. 85–94. Available online: https://macaulay.webarchive.hutton.ac.uk/gps/gps_abstract_2001.pdf#page=91 (accessed on 25 November 2022).
- Bishop-Hurley, G.J.; Swain, D.L.; Anderson, D.M.; Sikka, P.; Crossman, C.; Corke, P. Virtual fencing applications: Implementing and testing an automated cattle control system. Comput. Electron. Agric. 2007, 56, 14–22. [Google Scholar] [CrossRef]
- Monod, M.O.; Faure, P.; Moiroux, L.; Rameau, P. A virtual fence for animals management in grazelands. In Proceedings of the MELECON 2008 – The 14th IEEE Mediterranean Electrotechnical Conference, Ajaccio, France, 5–7 May 2008; pp. 337–342. [Google Scholar] [CrossRef]
- Lee, C.; Henshall, J.M.; Wark, T.J.; Crossman, C.C.; Reed, M.T.; Brewer, H.G.; O’Grady, J.; Fisher, A.D. Associate learning by cattle to enable effective and ethical virtual fences. . 2009. Appl. Anim. Behav. Sci. 2009, 119, 15–22. [Google Scholar] [CrossRef]
- Ruiz-Mirazo, J.; Bishop-Hurley, G.J.; Swain, D.L. Automated animal control: Can discontinuous monitoring and aversive stimulation modify cattle grazing behavior? Rangel. Ecol. Manag. 2011, 64, 240–248. [Google Scholar] [CrossRef]
- Markus, S.B.; Bailey, D.W.; Jensen, D. Comparison of electric fence and a simulated fenceless control system on cattle movements. Livest. Sci. 2014, 170, 203–209. [Google Scholar] [CrossRef]
- Umstatter, C.; Morgan-Davies, J.; Waterhouse, T. Cattle responses to a type of virtual fence. Rangel. Ecol. Manag. 2015, 68, 100–107. [Google Scholar] [CrossRef]
- Bhattacharya, T.; Karmakar, C.; Wilkin, T.; Loke, S. Behaviour-based intelligent power management of the eShepherd virtual fencing collar for cattle. In Proceedings of the 2018 ACM International Joint Conference and 2018 International Symposium on Pervasive and Ubiquitous Computing and Wearable Computers, Singapore, 8–12 October 2018; pp. 13–16. [Google Scholar] [CrossRef]
- Brier, D.; Eastwood, C.R.; Dela Rue, B.T.; Viehland, D.W. Foresighting for responsible innovation using a Delphi approach: A case study of virtual fencing innovation in cattle farming. J. Agric. Environ. Ethics. 2020, 33, 549–569. [Google Scholar] [CrossRef]
- Keshavarzi, H.; Lee, C.; Lea, J.M.; Campbell, D.L.M. Virtual fence responses are socially facilitated in beef cattle. Front. Vet. Sci. 2020, 7, 543158. [Google Scholar] [CrossRef] [PubMed]
- Ranches, J.; O’Connor, R.; Johnson, D.; Davies, K.; Bates, J.; Boyd, C.; Bohnert, D.W.; Parker, T. Effects of virtual fence monitored by global positioning system on beef cattle behaviour. Transl. Anim. Sci. 2021, 5, S144–S148. [Google Scholar] [CrossRef]
- Campbell, D.L.M.; Ouzman, J.; Mowat, D.; Lea, J.M.; Lee, C.; Llewellyn, R.S. Virtual fencing technology excludes beef cattle from an environmentally sensitive area. Animals 2020, 10, 1069. [Google Scholar] [CrossRef]
- Aaser, M.F.; Staahltoft, S.K.; Korsgaard, A.H.; Trige-Esbensen, A.; Alstrup, A.K.O.; Sonne, C.; Pertoldi, C.; Bruhn, D.; Frikke, J.; Linder, A.C. Is virtual fencing an effective way of enclosing cattle? Personality, herd behaviour and welfare. Animals 2022, 12, 842. [Google Scholar] [CrossRef]
- Rieple, A.; Snijders, S. The role of emotions in the choice to adopt, or resist, innovations by Irish dairy farmers. J. Bus. Res. 2018, 85, 23–31. [Google Scholar] [CrossRef] [Green Version]
- Vaintrub, M.O.; Levit, H.; Chincarini, M.; Fusaro, I.; Giammarco, M.; Vignola, G. Precision livestock farming, automats and new technologies: Possible applications in extensive dairy sheep farming. Animals 2021, 15, 100143. [Google Scholar] [CrossRef]
- Hentz, F.; Umstatter, C.; Gilaverte, S.; Prado, O.R.; Silva, C.J.A.; Monteiro, A.L.G. Electronic bolus design impacts on administration. J. Anim. Sci. 2014, 92, 2686–2692. [Google Scholar] [CrossRef]
- Abecia, J.; Pascual-Alonso, M.; Aguayo-Ulloa, L.; Maria, G. Comparison of several devices to measure body temperature in sheep. In Proceedings of the 7th European Conference on Precision Livestock Farming (EC-PLF 2015), Milan, Italy, 15–18 September 2015; pp. 221–229. [Google Scholar]
- Caja, G.; Carné, S.; Salama, A.A.K.; Ait-Saidi, A.; Rojas-Olivares, M.A.; Rovai, M.; Capote, J.; Castro, N.; Arguello, A.; Ayadi, M.; et al. State-of-the-art of electronic identification techniques and applications in goats. Small Rumin. Res. 2014, 121, 42–50. [Google Scholar] [CrossRef]
- di Virgilio, A.; Morales, J.M.; Lambertucci, S.A.; Shepard, E.L.C.; Wilson, R.P. Multi-dimensional Precision Livestock Farming: A potential toolbox for sustainable rangeland management. PeerJ 2018, 6, e4867. [Google Scholar] [CrossRef] [Green Version]
- Barwick, J.; Lamb, D.W.; Dobos, R.; Welch, M.; Trotter, M. Categorising sheep activity using a tri-axial accelerometer. Comput. Electron. Agric. 2018, 145, 289–297. [Google Scholar] [CrossRef]
- Beker, A.; Gipson, T.A.; Puchala, R.; Askar, A.R.; Tesfai, K.; Detweiler, G.D.; Asmare, A.; Goetsch, A.L. Energy expenditure and activity of different types of small ruminants grazing varying pastures in the summer. J. Appl. Anim. Res. 2010, 37, 1–14. [Google Scholar] [CrossRef]
- Burgunder, J.; Petrželková, K.; Modrý, D.; Kato, A.; Maclntosh, A.J.J. Fractal measurements in activity patterns: Do gastrointestinal parasites affect the complexity of sheep behaviour? Appl. Anim. Behav. Sci. 2018, 205, 44–53. [Google Scholar] [CrossRef]
- Fogarty, E.S.; Swain, D.L.; Cronin, G.; Trotter, M. Autonomous on-animal sensors in sheep research: A systematic review. Comput. Electron. Agric. 2018, 150, 245–256. [Google Scholar] [CrossRef]
- Mozo, R.; Alabart, J.L.; Rivas, E.; Folch, J. New method to automatically evaluate the sexual activity of the ram based on accelerometer records. Small Rumin. Res. 2019, 172, 16–22. [Google Scholar] [CrossRef]
- Umstatter, C.; Waterhouse, A.; Holland, J.P. An automated sensor-based method of simple behavioural classification of sheep in extensive systems. Comput. Electron. Agric. 2008, 64, 19–26. [Google Scholar] [CrossRef]
- Betteridge, K.; Hoogendoorn, C.; Costall, D.; Carter, M.; Griffiths, W. Sensors for detecting and logging spatial distribution of urine patches of grazing female sheep and cattle. Comput. Electron. Agric. 2010, 73, 66–73. [Google Scholar] [CrossRef]
- Decandia, M.; Giovanetti, V.; Molle, G.; Acciaro, M.; Mameli, M.; Cabiddu, A.; Cossu, R.; Serra, M.G.; Manca, C.; Rassu, S.P.G.; et al. The effect of different time epoch settings on the classification of sheep behaviour using tri-axial accelerometry. Comput. Electron. Agric. 2018, 154, 112–119. [Google Scholar] [CrossRef]
- Navon, S.; Mizrach, A.; Hetzroni, A.; Ungar, E.D. Automatic recognition of jaw movements in free-ranging cattle, goats and sheep, using acoustic monitoring. Biosyst. Eng. 2013, 114, 474–483. [Google Scholar] [CrossRef]
- Alvarenga, F.A.P.; Borges, I.; Oddy, V.H.; Dobos, R.C. Discrimination of biting and chewing behaviour in sheep using a tri-axial accelerometer. Comput. Electron. Agric. 2020, 168, 105051. [Google Scholar] [CrossRef]
- Alhamada, M.; Debus, N.; Lurette, A.; Bocquier, F. Validation of automated electronic oestrus detection in sheep as an alternative to visual observation. Small Rumin. Res. 2016, 134, 97–104. [Google Scholar] [CrossRef]
- Alhamada, M.; Debus, N.; Lurette, A.; Bocquier, F. Automatic oestrus detection system enables monitoring of sexual behaviour in sheep. Small Rumin. Res. 2017, 149, 105–111. [Google Scholar] [CrossRef]
- Abecia, J.A.; Maria, G.A.; Estévez-Moreno, L.X.; Miranda-De La Lama, G.C. Daily rhythms of body temperature around lambing in sheep measured non-invasively. Biol. Rhythm Res. 2020, 51, 988–993. [Google Scholar] [CrossRef]
- Jouven, M.; Leroy, H.; Ickowicz, A.; Lapeyronie, P. Can virtual fences be used to control grazing sheep? Rangel. J. 2012, 34, 111–123. [Google Scholar] [CrossRef]
- Brunberg, E.I.; Bøe, K.E.; Sørheim, K.M. Testing a new virtual fencing system on sheep. Acta Agric. Scand. A Anim. Sci. 2015, 65, 168–175. [Google Scholar] [CrossRef]
- Umstatter, C. The evolution of virtual fences: A review. Comput. Electron. Agric. 2011, 75, 10–22. [Google Scholar] [CrossRef]
- Brunberg, E.I.; Bergslid, I.K.; Bøe, K.E.; Sørheim, K.M. The ability of ewes with lambs to learn a virtual fencing system. Animals 2017, 11, 2045–2050. [Google Scholar] [CrossRef] [Green Version]
- Lee, C.; Colditz, I.G.; Campbell, D.L.M. A framework to assess the impact of new animal management technologies on welfare: A case study of virtual fencing. Front. Vet. Sci. 2018, 5, 187. [Google Scholar] [CrossRef] [Green Version]
- Marini, D.; Meuleman, M.D.; Belson, S.; Rodenburg, T.B.; Llewellyn, R.; Lee, C. Developing an ethically acceptable virtual fencing system for sheep. Animals 2018, 8, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Marini, D.; Cowley, F.; Belson, S.; Lee, C. The importance of an audio cue warning in training sheep to a virtual fence and differences in learning when tested individually or in small groups. Appl. Anim. Behav. Sci. 2019, 221, 104862. [Google Scholar] [CrossRef]
- Marini, D.; Kearton, T.; Ouzman, J.; Llewellyn, R.; Belson, S.; Lee, C. Social influence on the effectiveness of virtual fencing in sheep. PeerJ 2020, 8, e10066. [Google Scholar] [CrossRef]
- Bonneau, M.; Vayssade, J.A.; Troupe, W.; Arquet, R. Outdoor animal tracking combining neural network and time-lapse cameras. Comput. Electron. Agric. 2020, 168, 105150. [Google Scholar] [CrossRef]
- Al-Thani, N.; Albuainain, A.; Alnaimi, F.; Zorba, N. Drones for sheep livestock monitoring. In Proceedings of the 2020 IEEE 20th Mediterranean Electrotechnical Conference (MELECON), Palermo, Italy, 16–18 June 2020. [Google Scholar]
- Rutter, S.M. Advanced livestock management solutions. In Advances in Sheep Welfare; Ferguson, D.M., Lee, C., Fisher, A., Eds.; Woodhead Publishing: Sawston, UK; pp. 245–261.
- Del Castillo, V.R.; Sánchez-González, L.; Campazas-Vega, A.; Strisciuglio, N. Vision-based module for herding with a sheepdog robot. Sensors 2022, 22, 5321. [Google Scholar] [CrossRef]
- Brown, D.J.; Savage, D.B.; Hinch, G.N. Repeatability and frequency of in-paddock sheep walk-over weights: Implications for individual animal management. Anim. Prod Sci. 2013, 54, 207–213. [Google Scholar] [CrossRef] [Green Version]
- González-García, E.; Alhamada, M.; Pradel, J.; Douls, S.; Parisot, S.; Bocquier, F.; Menassol, J.B.; Llach, I.; González, L.A. A mobile and automated walkover-weighing system for a close and remote monitoring of liveweight in sheep. Comput. Electron. Agric. 2018, 153, 226–238. [Google Scholar] [CrossRef]
- Brown, D.; Savage, D.; Hinch, G.; Hatcher, S. Monitoring liveweight in sheep is a valuable management strategy: A review of available technologies. Anim. Prod Sci. 2015, 55, 427–436. [Google Scholar] [CrossRef]
- Wishart, H.; Morgan-Davies, C.; Waterhouse, A. A PLF approach for allocating supplementary feed to pregnant ewes in an extensive hill sheep system. Milan, Italy, 15–18 September 2015; pp. 256–265. [Google Scholar]
- Morgan-Davies, C.; Lambe, N.; Wishart, H.; Waterhouse, T.; Kenyon, F.; McBean, D.; McCracken, D. Impacts of using a precision livestock system targeted approach in mountain flocks. Livest. Sci. 2018, 208, 67–76. [Google Scholar] [CrossRef]
- Riedel, J.L.; Casasus, I.; Bernues, A. Sheep fanning intensification and utilization of natural resources in a Mediterranean pastoral agro-ecosystem. Livest. Sci. 2007, 111, 153–163. [Google Scholar] [CrossRef]
- Alejandro, M. Automation devices in sheep and goat machine milking. Small Rumin. Res. 2016, 142, 48–50. [Google Scholar] [CrossRef]
- Caria, M.; Chessa, G.; Murgia, L.; Todde, G.; Pazzona, A. Development and test of a portable device to monitor the health status of Sarda breed sheep by the measurement of the milk electrical conductivity. Ital. J. Anim. Sci. 2016, 15, 275–282. [Google Scholar] [CrossRef] [Green Version]
- Abdelgawad, A.R.; Rovai, M.; Caja, G.; Leitner, G.; Castillo, M. Evaluating coagulation properties of milk from dairy sheep with subclinical intramammary infection using near infrared light scatter. A preliminary study. J. Food Eng. 2016, 168, 180–190. [Google Scholar] [CrossRef]
- Manuelian, C.L.; Penasa, M.; Giangolini, G.; Boselli, C.; Curro, S.; De Marchi, M. Short communication: Fourier-transform mid-infrared spectroscopy to predict coagulation and acidity traits of sheep bulk milk. J. Dairy Sci. 2019, 102, 1927–1932. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- FAO (Food and Agriculture Organization of the United Nations). Environmental Performance of Pig Supply Chains. Guidelines for Assessment. 2022. Available online: https://www.fao.org/3/bl094e/bl094e.pdf (accessed on 25 November 2022).
- Alexy, M.; Horváth, T. Tracing the local breeds in an outdoor system – A Hungarian example with Mangalica pig breed. In Tracing the Domestic Pig; Kušec, G., Kušec, I.D., Eds.; IntechOpen: London, UK, 2022; Available online: https://www.intechopen.com/online-first/79931 (accessed on 6 December 2022). [CrossRef]
- Gilsdorf, J.M.; Hygnstrom, S.E.; Vercauteren, K. Use of frightening devices in wildlife damage management. Integ. Pest Manag. Rev. 2002, 7, 29–45. [Google Scholar] [CrossRef]
- Aubé, L.; Guay, F.; Bergeron, R.; Théau, J.; Devillers, N. Foraging behaviour of gestating sows on pasture and damages to vegetation cover are influenced by restriction of concentrate feed. . 2021. Appl. Anim. Behav. Sci. 2021, 237, 105299. [Google Scholar] [CrossRef]
- Ringgenberg, N.; Bergeron, R.; Devillers, N. Validation of accelerometers to automatically record sow pastures and stepping behaviour. Appl. Anim. Behav. Sci. 2010, 128, 37–44. [Google Scholar] [CrossRef]
- Van Damme, I.; Pray, I.; Mwape, K.E.; Trevisan, C.; Coudenys, F.; Chishimba, M.; Mwelwa, C.; Vaernewyck, V.; Dorny, P.; O’Neal, S.E.; et al. Movements of free-range pigs in rural communities in Zambia: An explorative study towards future ring interventions for the control of Taenia solium. Parasites Vectors 2022, 15, 150. [Google Scholar] [CrossRef]
- Dikmen, B.Y.; Ipek, A.; Şahan, Ü.; Petek, M.; Sözcü, A. Egg production and welfare of laying hens kept in different housing systems (conventional, enriched cage, and free range). Poult. Sci. 2016, 95, 1564–1572. [Google Scholar] [CrossRef]
- Michel, V.; Berk, J.; Bozakova, N.; van der Eijk, J.; Estevez, I.; Mircheva, T.; Relic, R.; Rodenburg, T.B.; Sossidou, E.N.; Guinebretière, M. The relationships between damaging behaviours and health in laying hens. Animals 2022, 12, 986. [Google Scholar] [CrossRef]
- Rodriguez-Aurrekoetxea, A.; Estevez, I. Use of space and its impact on the welfare of laying hens in a commercial free-range system. Poult. Sci. 2016, 95, 2503–2513. [Google Scholar] [CrossRef]
- Bari, M.S.; Downing, J.A.; Dyall, T.R.; Lee, C.; Campbell, D.L.M. Relationships between rearing enrichments, range use, and an environmental stressor for free-range laying hen welfare. Front. Vet. Sci. 2020, 7, 480. [Google Scholar] [CrossRef]
- Bonnefous, C.; Collin, A.; Guilloteau, L.A.; Guesdon, V.; Filliat, C.; Réhault-Godbert, S.; Rodenburg, T.B.; Tuyttens, F.A.M.; Warin, L.; Steenfeldt, S.; et al. Welfare issues and potential solutions for laying hens in free range and organic production systems: A review based on literature and interviews. Front. Vet. Sci. 2022, 9, 952922. [Google Scholar] [CrossRef] [PubMed]
- Riber, A.B.; Casey-Trott, T.M.; Herskin, M.S. The influence of keel bone damage on welfare of laying hens. Front. Vet. Sci. 2018, 5, 6. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rodenburg, T.B.; Tuyttens, F.A.M.; de Reu, K.; Herman, L.; Zoons, J.; Sonck, B. Welfare assessment of laying hens in furnished cages and non-cage systems: An on-farm comparison. Anim. Welf. 2008, 17, 363–373. [Google Scholar] [CrossRef]
- Nicol, C.J.; Bestman, M.; Gilani, A.M.; De Haas, E.N.; De Jong, I.C.; Lambton, S.; Wagenaar, J.P.; Weeks, C.A.; Rodenburg, T.B. The prevention and control of feather pecking: Application to commercial systems. Worlds Poult. Sci. J. 2013, 69, 775–778. [Google Scholar] [CrossRef]
- Hartcher, K.M.; Jones, B. The welfare of layer hens in cage and cage-free housing systems. Worlds Poult. Sci. J. 2019, 73, 767–782. [Google Scholar] [CrossRef] [Green Version]
- Baker, J.; Greer, W. Animal Health: A layman’s guide to disease control. In Animal Health: A Layman’s Guide to Disease Control; IPP The Interstate Printers & Publishers Inc.: Danville, IL, USA, 1980. [Google Scholar]
- Roddick, S.; Kreplins, T.L.; Kobryn, H.T.; Fleming, P.A. Livestock guardian dog protection of free-range poultry from red fox. Anim. Prod Sci. 2022, 62, 1290–1302. [Google Scholar] [CrossRef]
- Rowe, E.; Dawkins, M.S.; Gebhardt-Henrich, S.G. A systematic review of Precision Livestock Farming in the poultry sector: Is technology focused on improving bird welfare? Animals 2019, 9, 614. [Google Scholar] [CrossRef] [Green Version]
- Campbell, D.L.M.; Whitten, J.M.; Slater, E.; Lee, C. Rearing enrichment differentially modified hen personality traits and reduced prediction of range use. Anim. Behav. 2021, 179, 97–109. [Google Scholar] [CrossRef]
- Montalcini, C.M.; Voelkl, B.; Gómez, Y.; Gantner, M.; Toscano, M.J. Evaluation of an active LF tracking system and data processing methods for livestock precision farming in the poultry sector. Sens. 2022, 22, 659. [Google Scholar] [CrossRef]
- Le Gall-Dadevèze, C.; Guinat, C.; Fievet, P.; Vollot, B.; Guérin, J.-L.; Cappelle, J.; Le Loc’h, G. Quantification and characterization of commensal wild birds and their interactions with domestic ducks on a free-range farm in southwest France. Sci. Rep. 2022, 12, 9764. [Google Scholar] [CrossRef]
- Scott, A.B.; Phalen, D.; Hernandez-Jover, M.; Singh, M.; Groves, P.; Toribio, J.-A.L.M.L. Wildlife presence and interactions with chickens on Australian commercial chicken farms assessed by camera traps. Avian Dis. 2018, 62, 65–72. [Google Scholar] [CrossRef] [PubMed]
- Bestman, M.; Bikker-Ouwejan, J. Predation in organic and free-range egg production. Animals 2020, 10, 177. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ferreira, V.H.B.; Barbarat, M.; Lormant, F.; Germain, K.; Brachet, M.; Løvlie, H.; Calandreau, L.; Guesdon, V. Social motivation and the use of distal, but not local, featural cues are related to ranging behavior in free-range chickens (Gallus gallus domesticus). Anim. Cogn. 2020, 23, 769–780. [Google Scholar] [CrossRef] [PubMed]
- Neethirajan, S. ChickTrack – A quantitative tracking tool for measuring chicken activity. Measurement 2022, 191, 110819. [Google Scholar] [CrossRef]
- Campbell, D.L.M.; Dyall, T.R.; Downing, J.A.; Cohen-Barnhouse, M.; Lee, C. Rearing enrichments affected ranging behavior in free-range laying hens. Front. Vet. Sci. 2020, 7, 446. [Google Scholar] [CrossRef]
- Ferreira, V.H.B.; Peuteman, B.; Lormant, F.; Valenchon, M.; Germain, K.; Brachet, M.; Leterrier, C.; Lansade, L.; Calandreau, L.; Guesdon, V. Relationship between ranging behavior and spatial memory of free-range chickens. Behav. Process. 2019, 166, 103888. [Google Scholar] [CrossRef]
- Ferreira, V.H.B.; Simoni, A.; Germain, K.; Leterrier, C.; Lansade, L.; Collin, A.; Mignon-Grasteau, S.; le Bihan-Duval, E.; Guettier, E.; Leruste, H.; et al. Working for food is related to range use in free range broiler chickens. Sci. Rep. 2021, 11, 6253. [Google Scholar] [CrossRef]
- Čakić, S.; Popović, T.; Krčo, S.; Nedić, D.; Babić, D. Developing object detection models for camera applications in smart poultry farms. In Proceedings of the IEEE International Conference on Omni-Layer Intelligent Systems (COINS), Barcelona, Spain, 1–3 August 2022; pp. 1–5. [Google Scholar] [CrossRef]
- Szabo, S.; Alexy, M. Practical aspects of weight measurement using umage processing methods in waterfowl production. Agriculture 2022, 12, 1869. [Google Scholar] [CrossRef]
- Rana, M.S.; Lee, C.; Lea, J.M.; Campbell, D.L.M. Commercial free-range laying hens’ preferences for shelters with different sunlight filtering percentages. Animals 2022, 12, 344. [Google Scholar] [CrossRef]
- De Koning, C.; Kitessa, S.M.; Barekatain, R.; Drake, K. Determination of range enrichment for improved hen welfare on commercial fixed-range free-range layer farms. Anim. Prod Sci. 2018, 59, 1336–1348. [Google Scholar] [CrossRef]
- Jin, S.; Yang, L.; Zang, H.; Xu, Y.; Chen, X.; Chen, X.; Liu, P.; Geng, Z. Influence of free-range days on growth performance, carcass traits, meat quality, lymphoid organ indices, and blood biochemistry of Wannan Yellow chickens. Poult. Sci. 2019, 98, 6602–6610. [Google Scholar] [CrossRef]
- Cerolini, S.; Vasconi, M.; Sayed, A.A.; Iaffaldano, N.; Mangiagalli, M.G.; Pastorelli, G.; Moretti, V.M.; Zaniboni, L.; Mosca, F. Free-range rearing density for male and female Milanino chickens: Carcass yield and qualitative meat traits. J. Appl. Poult. Res. 2019, 28, 1349–1358. [Google Scholar] [CrossRef]
- Sibanda, T.Z.; Walkden-Brown, S.W.; Kolakshyapati, M.; Dawson, B.; Schneider, D.; Welch, M.; Iqbal, Z.; Cohen-Barnhouse, A.; Morgan, N.K.; Boshoff, J.; et al. Flock use of the range is associated with the use of different components of a multi-tier aviary system in commecial free-range laying hens. Br. Poult. Sci. 2019, 61, 97–106. [Google Scholar] [CrossRef]
- Taylor, P.S.; Hemsworth, P.H.; Groves, P.J.; Gebhardt-Henrich, S.G.; Rault, J.L. Frequent range visits further from the shed relate positively to free-range broiler chicken welfare. Animal. 2020, 14, 138–149. [Google Scholar] [CrossRef]
- Kolakshyapati, M.; Taylor, P.S.; Hamlin, A.; Sibanda, T.Z.; de Vilela, J.S.; Ruhnke, I. Frequent visits to an outdoor range and lower areas of an aviary system is related to curiosity in commercial free-range laying hens. . 2020. Animals 2020, 10, 1706. [Google Scholar] [CrossRef]
- Sriharee, G.; Khongban, P.; Wongpipan, K. Toward IoT and data analytics for the chicken welfare using RFID technology. In Proceedings of the 19th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology (ECTI-CON). Prachuap Khiri Khan, Thailand, 6 June 2022; pp. 1–4. [Google Scholar] [CrossRef]
- Gebhardt-Henrich, S.G.; Toscano, M.J.; Fröhlich, E.K.F. Use of outdoor ranges by laying hens in different sized flocks. Appl. Anim. Behav. Sci. 2014, 155, 74–81. [Google Scholar] [CrossRef] [Green Version]
- Hartcher, K.M.; Hickey, K.A.; Hemsworth, P.H.; Cronin, G.M.; Wilkinson, S.J.; Singh, M. Relationships between range access as monitored by radio frequency identification technology, fearfulness, and plumage damage in free-range laying hens. Animals 2016, 10, 847–853. [Google Scholar] [CrossRef] [Green Version]
- Larsen, H.; Cronin, G.M.; Gebhardt-Henrich, S.G.; Smith, C.L.; Hemsworth, P.H.; Rault, J.L. Individual ranging behaviour patterns in commercial free-range layers as observed through RFID tracking. Animals 2017, 7, 1–16. [Google Scholar] [CrossRef]
- Sibanda, T.Z.; Kolakshyapati, M.; Welch, M.; Schneider, D.; Boshoff, J.; Ruhnke, I. Managing free-range laying hens-Part A: Frequent and non-frequent range users differ in laying performance but not egg quality. Animals 2020, 10, 991. [Google Scholar] [CrossRef]
- Bari, M.S.; Allen, S.S.; Mesken, J.; Cohen-Barnhouse, A.; Campbell, D.L.M. Relationship between range use and fearfulness in free-range hens from different rearing enrichments. Animals 2021, 11, 300. [Google Scholar] [CrossRef]
- Taylor, P.S.; Hemsworth, P.H.; Groves, P.J.; Gebhardt-Henrich, S.G.; Rault, J.L. Ranging behavior relates to welfare indicators pre- and post- range access in commercial free-range broilers. Poult. Sci. 2018, 97(6), 1861–1871. [Google Scholar] [CrossRef] [PubMed]
- Campbell, D.L.M.; Horton, B.J.; Hinch, G.N. Using radio-frequency identification technology to measure synchronised ranging of free-range laying hens. Animals 2018, 8, 210. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Göransson, L.; Gunnarsson, S.; Wallenbeck, A.; Yngvesson, J. Behaviour in slower-growing broilers and free-range access on organic farms in Sweden. Animals 2021, 11, 2967. [Google Scholar] [CrossRef] [PubMed]
- Campbell, D.L.M.; Hinch, G.N.; Dowing, J.A.; Lee, C. Early enrichment in free-range laying hens: Effects ranging behaviour, welfare and response to stressors. Animals 2017, 12, 575–584. [Google Scholar] [CrossRef] [Green Version]
- Sibanda, T.Z.; O’Shea, C.J.; de Vilela, J.S.; Kolakshyapati, M.; Welch, M.; Scneider, D.; Courtice, J.; Ruhnke, I. Managing free-range laying hens-Part B: Ealry range users have more pathology findings at the end of lay but have a significantly higher chance of survival – An indicative study. Animals 2020, 10, 1911. [Google Scholar] [CrossRef]
- Kolakshyapati, M.; Flavel, R.J.; Schneider, D.; Welch, M.C.; Ruhnke, I. Various bone parameters are positively correlated with hen body weight while range access has no beneficial effect on tibia health of free-range layers. Poult. Sci. 2019, 98, 6241–6250. [Google Scholar] [CrossRef]
- Park, J.K.; Park, E.Y. Real-time monitoring system for tracking and identification of poultry based on RFID. MSEA. 2022. MSEA 2022, 71, 446. [Google Scholar]
- Zhang, F.; Hu, Y.; Chen, L.; Guo, L.; Dua, W.; Wang, L. Monitoring behavior of poultry based on RFID radio frequency network. Int. J. Agric. Biol. 2016, 9, 139–147. [Google Scholar] [CrossRef]
- Ruhnke, I.; Normant, C.; Campbell, D.L.M.; Iqbal, Z.; Lee, C.; Hinch, G.N.; Roberts, J. Impact of on-range choice feeding with black soldier fly larvae (Hermetia illucens) on flock performance, egg quality, and range use of free-range laying hens. Anim. Nutr. 2018, 4, 452–460. [Google Scholar] [CrossRef]
- Sibanda, T.Z.; Welch, M.; Schneider, D.; Kolakshyapati, M.; Ruhnke, I. Characterising free-range layer flocks using unsupervised cluster analysis. Animals 2020, 10, 855. [Google Scholar] [CrossRef]
- Buijs, S.; Nicol, C.J.; Booth, F.; Richards, G.; Tarlton, J.F. Light-based monitoring devices to assess range use by laying hens. Animals 2020, 14, 814–823. [Google Scholar] [CrossRef]
- Hedman, H.D.; Zhang, L.; Trueba, G.; Rivera, D.L.V.; Herrera, R.A.Z.; Barrazueta, J.J.V.; Rodriguez, G.I.G.; Butt, B.; Foufopoulos, J.; Berrocal, V.J.; et al. Spatial exposure of agricultural antimicrobial resistance in relation to free-ranging domestic chicken movement patterns among agricultural communities in Ecuador. Am. J. Trop. Med. 2020, 103, 1803–1809. [Google Scholar] [CrossRef]
- Stadig, L.M.; Ampe, B.; Rodenburg, T.B.; Reubens, B.; Maselyne, J.; Zhuang, S.; Criel, J.; Tuyttens, F.A.M. An automated positioning system for monitoring chickens’ location: Accuracy and resistration success in a free-range area. Appl. Anim. Behav. Sci. 2018, 201, 31–39. [Google Scholar] [CrossRef]
- Chang, C.-L.; Xie, B.-X.; Wang, C.H. Visual guidance and egg collection scheme for a smart poultry robot for free-range farms. Sensors 2020, 20, 6624. [Google Scholar] [CrossRef]
- Li, G.; Hui, X.; Zhao, Y.; Zhai, W.; Purswell, J.L.; Porter, Z.; Poudel, S.; Jia, L.; Zhang, B.; Chesser, G.D. Effects of groud robot manipulation on hen floor egg reduction, production performance, stress response, bone quality, and behaviour. PLoS ONE 2022, 17, e0267568. [Google Scholar] [CrossRef]
- Liang, X.; Kou, D.; Wen, L. An improved Chicken swarm optimization algorithm and its application in robot path planning. IEEE Access 2020, 8, 49543–49550. [Google Scholar] [CrossRef]
- Liu, H.-W.; Chen, C.-H.; Tsai, Y.-C.; Hsieh, K.-W.; Lin, H.-T. Identifying images of dead chickens with a chicken removal system integrated with deep learning algorithm. Sensors 2021, 21, 3579. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tzanidakis, C.; Tzamaloukas, O.; Simitzis, P.; Panagakis, P. Precision Livestock Farming Applications (PLF) for Grazing Animals. Agriculture 2023, 13, 288. https://doi.org/10.3390/agriculture13020288
Tzanidakis C, Tzamaloukas O, Simitzis P, Panagakis P. Precision Livestock Farming Applications (PLF) for Grazing Animals. Agriculture. 2023; 13(2):288. https://doi.org/10.3390/agriculture13020288
Chicago/Turabian StyleTzanidakis, Christos, Ouranios Tzamaloukas, Panagiotis Simitzis, and Panagiotis Panagakis. 2023. "Precision Livestock Farming Applications (PLF) for Grazing Animals" Agriculture 13, no. 2: 288. https://doi.org/10.3390/agriculture13020288