Effect of Fiscal Expenditure for Supporting Agriculture on Agricultural Economic Efficiency in Central China—A Case Study of Henan Province
Abstract
:1. Introduction
1.1. Related Research on Fiscal Expenditure for Supporting Agriculture
1.2. Related Research on the Efficiency of Agricultural Circular Economy
1.3. Effect of Fiscal Expenditure for Supporting Agriculture on the Efficiency of Agricultural Circular Economy
1.4. Aim of This Study
2. Methods and Data
2.1. Measurement of the Efficiency of the Agricultural Circular Economy in Henan Province
2.2. Indices, Data Sources, and Descriptions
2.3. Measurement Results and Evaluation Analysis
3. Results and Discussion
3.1. Model Selection
3.2. Variable Selection and Data Sources
3.3. Analysis of Empirical Results
3.4. Robustness Test
4. Conclusions and Suggestions
4.1. Conclusions
4.2. Suggestions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Fan, S.; Pardey, P.G. Research, productivity and output growth in Chinese agriculture. J. Dev. Econ. 1997, 53, 115–137. [Google Scholar] [CrossRef]
- Akbar, M.; Jamil, F. Monetary and fiscal policies’ effect on agricultural growth: GMM estimation and simulation analysis. Econ. Model. 2012, 29, 1909–1920. [Google Scholar] [CrossRef]
- Schick, A. The Private R&D Investment response to federal design and technical competitions. Am. Econ. Rev. 1993, 178, 550–559. [Google Scholar]
- Barro, R. Government spending in a simple model of endogenous growth. J. Political Econ. 1990, 98, S103–S125. [Google Scholar] [CrossRef] [Green Version]
- Matsuyama, K. Agricultural productivity, comparative advantage, and economic growth. J. Econ. Theory 1992, 58, 317–334. [Google Scholar] [CrossRef] [Green Version]
- Devarajan, S.; Swaroop, V.; Zou, H.-F. The composition of public expenditure and economic growth. CEMA Work. Pap. 1996, 37, 313–344. [Google Scholar]
- Gregoriou, G.A. The Composition of Government Spending and Growth: Is Current or Capital Spending Better? Oxf. Econ. Pap. 2008, 60, 484–516. [Google Scholar]
- Repetto, R. Economic incentives for sustainable production. Ann. Reg. Sci. 1987, 21, 44–59. [Google Scholar] [CrossRef]
- Adam, S. An Inquiry into the Nature and Causes of the Wealth of Nations; University of Chicago Press: Chicago, IL, USA, 2008. [Google Scholar]
- Islard, W. Some notes on the linkage of ecologic and economic systems. Pap. Reg. Sci. 1965, 9, 85–96. [Google Scholar]
- Anersen, P.; Petersen, N.C. A procedure for ranking efficient unit in data envelopment analysis. Manag. Sci. 1993, 10, 1261–1264. [Google Scholar] [CrossRef]
- Donner, M.; Verniquet, A.; Broeze, J.; Kayser, K.; Vries, H.D. Critical success and risk factors for circular business models valorizing agricultural waste and by-products. Resour. Conserv. Recycl. 2021, 165, 105236. [Google Scholar] [CrossRef]
- Boonman, H.; Verstraten, P.; van der Weijde, A.H. Macroeconomic and environmental impacts of circular economy innovation policy. Sustain. Prod. Consum. 2023, 35, 216–288. [Google Scholar] [CrossRef]
- Rótolo, G.; Vassillo, C.; Rodriguez, A.; Magnano, L.; Vaccaro, M.M.; Civit, B.; Covacevich, M.; Arena, A.; Ulgiati, S. Perception and awareness of circular economy options within sectors related to agriculture in Argentina. J. Clean. Prod. 2022, 373, 133805. [Google Scholar] [CrossRef]
- Bellezoni, R.A.; Adeogun, A.P.; Paes, M.X.; de Oliveira, J.A.P. Tackling climate change through circular economy in cities. J. Clean. Prod. 2022, 381, 135126. [Google Scholar] [CrossRef]
- Taghipour, A.; Akkalatham, W.; Eaknarajindawat, N.; Stefanakis, A.I. The impact of government policies and steel recycling companies’ performance on sustainable management in a circular economy. Resour. Policy 2022, 77, 102663. [Google Scholar] [CrossRef]
- Domazlicky, B.R.; Weber, W.L. Does environmental protection lead to slower productivity growth in the chemical industry? Environ. Resour. Econ. 2004, 28, 301–324. [Google Scholar] [CrossRef]
- Nanere, M.; Fraser, I.; Quazi, A.; D’Souza, C. Environmentally adjusted productivity measurement: An Australian case study. J. Environ. Manag. 2007, 85, 350–362. [Google Scholar] [CrossRef] [PubMed]
- Abramovitz, M. Resource and output trends in the United States since 1870. Am. Econ. Rev. 1956, 46, 5–23. [Google Scholar]
- Solow, R.M. Technical change and the aggregate production function. Rev. Econ. Stat. 1957, 39, 312–320. [Google Scholar] [CrossRef] [Green Version]
- Aigner, D.J.; Lovell, C.A.; Schmidt, P. Formulation and estimation of stochastic frontier production function models. J. Econom. 1977, 6, 21–37. [Google Scholar] [CrossRef]
- Charnes, A.; Cooper, W.W.; Rhodes, E. Measuring the efficiency of decision making units. Eur. J. Oper. Res. 1978, 2, 429–444. [Google Scholar] [CrossRef]
- Fare, R.; Grosskopf, S.; Fukuyama, H.; Margeeitis, D. DEA and endogenous technological change. Eur. J. Oper. Res. 2011, 210, 457–458. [Google Scholar] [CrossRef]
- Walter, I.; Ugelow, J.L. Environmental policies in developing countries. Technol. Dev. Environ. Impact 1979, 8, 102–109. [Google Scholar]
- Omri, A.; Kahouli, B. Causal relationships between energy consumption, foreign direct investment and economic growth: Fresh evidence from dynamic simultaneous-equations models. Energy Policy 2014, 67, 913–922. [Google Scholar] [CrossRef] [Green Version]
- Zarsky, L. Havens, halos and spaghetti: Untangling the evidence about foreign direct investment and the environment. Foreign Direct Investig. Environ. 1999, 8, 47–74. [Google Scholar]
- Tang, C.F.; Tan, B.W. The impact of energy consumption, income and foreign direct investment on carbon dioxide emissions in Vietnam. Energy 2015, 79, 447–454. [Google Scholar] [CrossRef]
- Abdouli, M.; Hammami, S. Investigating the causality links between environmental quality, foreign direct investment and economic growth in MENA countries. Int. Bus. Rev. 2017, 26, 264–278. [Google Scholar] [CrossRef]
- Ahmed, E.M. Are the FDI inflow spillover effects on Malaysia’s economic growth input driven? Econ. Model. 2012, 29, 1498–1504. [Google Scholar] [CrossRef]
- Kukulski, J.; Ryan, M. Investment history and market orientation effects in the TFP-FDI relationship. World Econ. 2011, 34, 546–567. [Google Scholar] [CrossRef]
- Orlic, E.; Hashi, I.; Hisarciklilar, M. Cross sectoral FDI spillovers and their impact on manufacturing productivity. Int. Bus. Rev. 2018, 27, 777–796. [Google Scholar] [CrossRef]
- Daddi, T.; Giacomo, M.; Testa, F. Cluster approach and eco-innovation in four industrial clusters of Tuscany region (Italy). Environ. Econ. 2012, 3, 26–34. [Google Scholar]
- Yoon, S.; Nadvi, K. Industrial clusters and industrial ecology: Building “co-collective efficiency” in a south Korean cluster. Geoforum 2018, 90, 159–173. [Google Scholar] [CrossRef]
- Rafindadi, A.; Muye, I.M.; Kaita, R.A. The effects of FDI and energy consumption on environmental pollution in predominantly resource-based economies of the GCC. Sustain. Energy Technol. Assess. 2018, 25, 126–137. [Google Scholar] [CrossRef]
- Cai, X.; Lu, Y.; Wu, M.; Yu, L. Does environmental regulation drive away inbound foreign direct investment? Evidence from a quasi-natural experiment in China. J. Dev. Econ. 2016, 123, 73–85. [Google Scholar] [CrossRef]
- Yue, S.; Yang, Y.; Hu, Y. Does foreign direct investment affect green growth? Evidence from China’s experience. Sustainability 2016, 8, 158. [Google Scholar] [CrossRef] [Green Version]
- Jiang, L.; Zhou, H.-F.; Bai, L.; Zhou, P. Does foreign direct investment drive environmental degradation in China? An empirical study based on air quality index from a spatial perspective. J. Clean. Prod. 2018, 176, 864–872. [Google Scholar] [CrossRef]
- Kuosmanen, T. Weak disposability in nonparametric production analysis with undesirable outputs. Am. J. Agric. Econ. 2005, 87, 1077–1082. [Google Scholar] [CrossRef]
- Mobin, F.; Zillur, R.; Imran, K. Measuring consumer perception of CSR in tourism industry: Scale development and validation. J. Hosp. Tour. Manag. 2016, 27, 39–48. [Google Scholar]
- Liu, J.-Y.; Xia, Y.; Fan, Y.; Lin, S.-M.; Wu, J. Assessment of a green credit policy aimed at energy-intensive industries in China based on a financial CGE model. J. Clean. Prod. 2017, 163, 293–302. [Google Scholar] [CrossRef]
- Yuan, F.; Kevin, P. Greening Development Lending in the Americas: Trends and Determinants. Ecol. Econ. 2018, 154, 189–200. [Google Scholar] [CrossRef]
- Nele, N. Sino–EU Cooperation 2.0, Toward a Global “Green” Strategy? East Asian Community Rev. 2019, 2, 39–55. [Google Scholar]
- Luo, Y.; Wei, Q.; Ling, Q.; Huo, B. Optimal decision in a green supply chain: Bank financing or supplier financing. J. Clean. Prod. 2020, 271, 122090. [Google Scholar] [CrossRef]
- Farhad, T.; Naoyuki, Y. Sustainable solutions for green financing and investment in renewable energy projects. Energies 2020, 13, 788. [Google Scholar]
- Nada, A.; Mohamed, A.; Soliman, G. A model for evaluating green credit rating and its impact on sustainability performance. J. Clean. Prod. 2021, 280 Pt 1, 124229. [Google Scholar]
- Weber, O. Corporate sustainability and financial performance of Chinese banks. Soc. Sci. Electron. Publ. 2018, 8, 358–385. [Google Scholar] [CrossRef] [Green Version]
- Miroshnychenko, I.; Barontini, R.; Testa, F. Green practices and financial performance: A global outlook. J. Clean. Prod. 2017, 147, 340–351. [Google Scholar] [CrossRef] [Green Version]
- Finger, M.; Gavious, I.; Manos, R. Environmental risk management and financial performance in the banking industry: A cross-country comparison. J. Int. Financ. Mark. Inst. Money 2018, 52, 240–261. [Google Scholar] [CrossRef]
- Maqbool, S.; Zameer, M.N. Corporate social responsibility and financial performance: An empirical analysis of Indian banks. Future Bus. J. 2018, 4, 84–93. [Google Scholar] [CrossRef]
- Taslima, J.; Salina, K. How serious are Islamic banks in offering green financing?: An exploratory study on Bangladesh banking sector. Int. J. Green Econ. 2019, 13, 120–138. [Google Scholar]
- Fukuyama, H.; Yong, T. Implementing strategic disposability for performance evaluation: Innovation, stability, profitability and corporate social responsibility in Chinese banking. Eur. J. Oper. Res. 2022, 296, 652–668. [Google Scholar] [CrossRef]
- Garcia-Sanchez, I.M.; Garcia-Meca, E. CSR Engagement and Earnings Quality in Banks. Moderating Role Inst. Factors. Corp. Soc. Responsib. Environ. Manag. 2017, 24, 145–158. [Google Scholar]
- Naiwei, C.; Hsiu-Hsi, H.; Chia He, L. Equator principles and bank liquidity. Int. Rev. Econ. Financ. 2018, 55, 39–48. [Google Scholar]
- Owen, R.; Brennan, G.; Lyon, F. Enabling investment for the transition to a low carbon economy: Government policy to finance early stage green innovation. Curr. Opin. Environ. Sustain. 2018, 31, 137–145. [Google Scholar] [CrossRef]
- Belasri, S.; Gomes, M.; Pijourlet, G. Corporate social responsibility and bank efficiency. J. Multinatl. Financ. Manag. 2020, 54, 100612. [Google Scholar] [CrossRef]
- Huwei, W.; Chien-Chiang, L.; Fengxiu, Z. Green credit policy, credit allocation efficiency and upgrade of energy-intensive enterprises. Energy Econ. 2021, 105099. [Google Scholar]
Classification of Indices | Index | Unit | Description |
---|---|---|---|
Input variables | Pesticide application amount | t | Amount of pesticides applied in agricultural production in the current year |
Number of persons employed in agriculture, forestry, animal husbandry, and fishery | 10,000 persons | Number of people engaged in the industries of agriculture, forestry, animal husbandry, and fishery in the current year | |
Converted pure amount of agricultural fertilizers applied | t | Amount of fertilizers applied in agricultural production in the current year | |
Total power of agricultural machinery | kWh | Power consumption of machinery used in agricultural production in the current year | |
Sown area of crops | 1000 ha. | Area of land invested in agricultural production in the current year | |
Output variables | Total output value of agriculture, forestry, animal husbandry, and fishery | 100 million yuan | Economic value of total agricultural output in the current year |
Per capita net income of rural residents | Yuan | Per capita disposable income of rural households in the current year | |
Food crop yield | 10,000 t | Total food crop yield in the current year |
Region | 2013 | 2014 | 2015 | 2016 | 2017 | 2018 | 2019 | Mean | Ranking |
---|---|---|---|---|---|---|---|---|---|
Zhengzhou | 0.6609 | 0.6837 | 0.7302 | 0.757 | 0.706 | 0.738 | 0.7517 | 0.7182 | 26 |
Kaifeng | 0.7978 | 0.8154 | 0.8474 | 0.916 | 0.907 | 0.9202 | 1 | 0.8863 | 16 |
Luoyang | 0.8377 | 0.8375 | 0.868 | 0.8335 | 0.817 | 0.8974 | 0.9576 | 0.8641 | 19 |
Pingdingshan | 0.6772 | 0.6886 | 0.7294 | 0.7591 | 0.7503 | 0.7577 | 0.8055 | 0.7383 | 25 |
Anyang | 0.7916 | 0.8054 | 0.8271 | 0.8264 | 0.8466 | 0.8855 | 0.9022 | 0.8407 | 23 |
Hebi | 0.9712 | 0.9906 | 1 | 0.9975 | 0.9799 | 0.984 | 1 | 0.9890 | 1 |
Xinxiang | 0.837 | 0.8483 | 0.8707 | 0.8591 | 0.9316 | 0.8899 | 0.9101 | 0.8781 | 17 |
Jiaozuo | 0.9492 | 0.962 | 0.9737 | 1 | 0.9864 | 0.9934 | 1 | 0.9807 | 3 |
Puyang | 0.8664 | 0.871 | 0.8907 | 0.8963 | 1 | 0.967 | 1 | 0.9273 | 10 |
Xuchang | 0.8704 | 0.8635 | 0.893 | 0.9196 | 0.9367 | 0.9858 | 1 | 0.9241 | 11 |
Luohe | 0.8466 | 0.8477 | 0.8731 | 0.8862 | 0.8854 | 0.9125 | 0.9693 | 0.8887 | 14 |
Sanmenxia | 0.731 | 0.8676 | 0.8908 | 0.9366 | 0.9034 | 0.9221 | 1 | 0.8931 | 13 |
Nanyang | 0.5946 | 0.5981 | 0.6187 | 0.6136 | 0.6594 | 0.6644 | 0.721 | 0.6385 | 28 |
Shangqiu | 0.7699 | 0.7875 | 0.8316 | 0.863 | 0.9021 | 0.8847 | 0.9181 | 0.8510 | 22 |
Xinyang | 0.9869 | 0.9868 | 0.9653 | 1 | 0.9468 | 0.9966 | 1 | 0.9832 | 2 |
Zhoukou | 0.8463 | 0.8386 | 0.8576 | 0.8755 | 0.9463 | 0.9169 | 0.9347 | 0.8880 | 15 |
Zhumadian | 0.929 | 0.9248 | 0.9553 | 0.9667 | 1 | 0.9016 | 0.9342 | 0.9445 | 7 |
Jiyuan | 0.8283 | 0.8611 | 0.87 | 0.9215 | 0.9052 | 0.9922 | 1 | 0.9112 | 12 |
Gongyi | 0.7376 | 0.7328 | 0.8558 | 0.8481 | 0.8865 | 0.972 | 1 | 0.8618 | 20 |
Lankao | 0.7369 | 0.7612 | 0.8045 | 0.8676 | 0.8931 | 0.9523 | 1 | 0.8594 | 21 |
Ruzhou | 0.771 | 0.7782 | 0.815 | 0.827 | 0.8007 | 0.8294 | 0.89 | 0.8159 | 24 |
Huaxia | 0.8808 | 0.9013 | 0.9217 | 0.9046 | 0.966 | 1 | 1 | 0.9392 | 8 |
Changyuan | 0.8565 | 0.8845 | 0.9211 | 0.9145 | 0.9671 | 1 | 1 | 0.9348 | 9 |
Dengzhou | 0.6501 | 0.6625 | 0.7004 | 0.7253 | 0.723 | 0.6945 | 0.7506 | 0.7009 | 27 |
Yongcheng | 0.8884 | 0.9104 | 0.9539 | 1 | 1 | 0.9874 | 1 | 0.9629 | 6 |
Gushi | 1 | 0.9966 | 0.9988 | 0.9775 | 0.8906 | 0.9534 | 0.9415 | 0.9655 | 5 |
Luyi | 0.9443 | 0.9319 | 0.95 | 1 | 0.9812 | 1 | 1 | 0.9725 | 4 |
Xincai | 0.7396 | 0.8117 | 0.8396 | 0.9084 | 0.9508 | 0.8841 | 0.9303 | 0.8664 | 18 |
Region | 2013 | 2014 | 2015 | 2016 | 2017 | 2018 | 2019 | Mean | Ranking |
---|---|---|---|---|---|---|---|---|---|
Zhengzhou | 0.6612 | 0.687 | 0.7385 | 0.7772 | 0.7386 | 0.7851 | 1 | 0.7697 | 25 |
Kaifeng | 0.8148 | 0.837 | 0.8667 | 1 | 0.9665 | 0.925 | 1 | 0.9157 | 18 |
Luoyang | 0.8637 | 0.8637 | 0.9013 | 0.8608 | 0.848 | 0.9283 | 0.9817 | 0.8925 | 23 |
Pingdingshan | 0.6851 | 0.6985 | 0.7392 | 0.7736 | 0.7595 | 0.7714 | 0.8454 | 0.7532 | 26 |
Anyang | 0.8405 | 0.8623 | 0.8933 | 0.8702 | 0.9009 | 0.9387 | 0.9694 | 0.8965 | 21 |
Hebi | 0.974 | 0.9933 | 1 | 0.9981 | 0.9802 | 0.9883 | 1 | 0.9906 | 5 |
Xinxiang | 0.9107 | 0.9273 | 0.9491 | 0.9286 | 1 | 0.9723 | 1 | 0.9554 | 13 |
Jiaozuo | 0.9818 | 0.9862 | 1 | 1 | 0.9882 | 0.9934 | 1 | 0.9928 | 3 |
Puyang | 0.908 | 0.9163 | 0.9396 | 0.9258 | 1 | 0.9821 | 1 | 0.9531 | 14 |
Xuchang | 0.8855 | 0.8764 | 0.9066 | 0.9488 | 0.9672 | 0.9979 | 1 | 0.9403 | 16 |
Luohe | 0.8474 | 0.8483 | 0.8746 | 0.8867 | 0.8863 | 0.9138 | 0.9988 | 0.8937 | 22 |
Sanmenxia | 0.7382 | 0.873 | 0.895 | 0.9515 | 0.9274 | 0.9336 | 1 | 0.9027 | 19 |
Nanyang | 0.6603 | 0.6712 | 0.7122 | 0.6878 | 0.7463 | 0.7934 | 1 | 0.7530 | 27 |
Shangqiu | 0.8803 | 0.9132 | 0.9695 | 0.9539 | 0.9993 | 0.9827 | 1 | 0.9570 | 12 |
Xinyang | 1 | 1 | 0.9914 | 1 | 0.9587 | 1 | 1 | 0.9929 | 2 |
Zhoukou | 0.9479 | 0.9276 | 0.9529 | 0.9401 | 1 | 1 | 1 | 0.9669 | 11 |
Zhumadian | 0.9734 | 0.9819 | 0.9997 | 1 | 1 | 0.9704 | 1 | 0.9893 | 7 |
Jiyuan | 1 | 0.9898 | 0.9656 | 0.9781 | 1 | 1 | 1 | 0.9905 | 6 |
Gongyi | 1 | 0.9996 | 1 | 1 | 0.9971 | 1 | 1 | 0.9995 | 1 |
Lankao | 0.8139 | 0.8258 | 0.8584 | 0.9938 | 1 | 1 | 1 | 0.9274 | 17 |
Ruzhou | 0.7955 | 0.7958 | 0.8288 | 0.8362 | 0.8117 | 0.8403 | 0.8994 | 0.8297 | 24 |
Huaxia | 0.8811 | 0.9013 | 0.9292 | 0.9137 | 0.9981 | 1 | 1 | 0.9462 | 15 |
Changyuan | 0.9964 | 1 | 0.9883 | 0.9687 | 0.9834 | 1 | 1 | 0.9910 | 4 |
Dengzhou | 0.659 | 0.6701 | 0.7051 | 0.7282 | 0.7249 | 0.695 | 0.751 | 0.7048 | 28 |
Yongcheng | 0.8888 | 0.9363 | 0.9696 | 1 | 1 | 0.9918 | 1 | 0.9695 | 9 |
Gushi | 1 | 0.9979 | 1 | 0.9787 | 0.8923 | 0.9539 | 0.9504 | 0.9676 | 10 |
Luyi | 0.9454 | 0.9326 | 0.9513 | 1 | 0.9844 | 1 | 1 | 0.9734 | 8 |
Xincai | 0.8037 | 0.8513 | 0.8732 | 0.9529 | 0.9818 | 0.887 | 0.931 | 0.8973 | 20 |
Region | 2013 | 2014 | 2015 | 2016 | 2017 | 2018 | 2019 | Mean | Ranking |
---|---|---|---|---|---|---|---|---|---|
Zhengzhou | 0.6609 | 0.6837 | 0.7302 | 0.757 | 0.706 | 0.738 | 0.7517 | 0.7182 | 26 |
Kaifeng | 0.7978 | 0.8154 | 0.8474 | 0.916 | 0.907 | 0.9202 | 1.0656 | 0.8956 | 16 |
Luoyang | 0.8377 | 0.8375 | 0.868 | 0.8335 | 0.817 | 0.8974 | 0.9576 | 0.8641 | 21 |
Pingdingshan | 0.6772 | 0.6886 | 0.7294 | 0.7591 | 0.7503 | 0.7577 | 0.8055 | 0.7383 | 25 |
Anyang | 0.7916 | 0.8054 | 0.8271 | 0.8264 | 0.8466 | 0.8855 | 0.9022 | 0.8407 | 23 |
Hebi | 0.9712 | 0.9906 | 1.0186 | 0.9975 | 0.9799 | 0.984 | 1.1986 | 1.0201 | 1 |
Xinxiang | 0.837 | 0.8483 | 0.8707 | 0.8591 | 0.9316 | 0.8899 | 0.9101 | 0.8781 | 19 |
Jiaozuo | 0.9492 | 0.962 | 0.9737 | 1.0114 | 0.9864 | 0.9934 | 1.0767 | 0.9933 | 5 |
Puyang | 0.8664 | 0.871 | 0.8907 | 0.8963 | 1.0014 | 0.967 | 1.0338 | 0.9324 | 12 |
Xuchang | 0.8704 | 0.8635 | 0.893 | 0.9196 | 0.9367 | 0.9858 | 1.0761 | 0.9350 | 11 |
Luohe | 0.8466 | 0.8477 | 0.8731 | 0.8862 | 0.8854 | 0.9125 | 0.9693 | 0.8887 | 17 |
Sanmenxia | 0.731 | 0.8676 | 0.8908 | 0.9366 | 0.9034 | 0.9221 | 1.2731 | 0.9321 | 13 |
Nanyang | 0.5946 | 0.5981 | 0.6187 | 0.6136 | 0.6594 | 0.6644 | 0.721 | 0.6385 | 28 |
Shangqiu | 0.7699 | 0.7875 | 0.8316 | 0.863 | 0.9021 | 0.8847 | 0.9181 | 0.8510 | 22 |
Xinyang | 0.9869 | 0.9868 | 0.9653 | 1.007 | 0.9468 | 0.9966 | 1.0863 | 0.9965 | 2 |
Zhoukou | 0.8463 | 0.8386 | 0.8576 | 0.8755 | 0.9463 | 0.9169 | 0.9347 | 0.8880 | 18 |
Zhumadian | 0.929 | 0.9248 | 0.9553 | 0.9667 | 1.0069 | 0.9016 | 0.9342 | 0.9455 | 9 |
Jiyuan | 0.8283 | 0.8611 | 0.87 | 0.9215 | 0.9052 | 0.9922 | 1.1387 | 0.9310 | 14 |
Gongyi | 0.7376 | 0.7328 | 0.8558 | 0.8481 | 0.8865 | 0.972 | 1.9377 | 0.9958 | 3 |
Lankao | 0.7369 | 0.7612 | 0.8045 | 0.8676 | 0.8931 | 0.9523 | 1.3194 | 0.9050 | 15 |
Ruzhou | 0.771 | 0.7782 | 0.815 | 0.827 | 0.8007 | 0.8294 | 0.89 | 0.8159 | 24 |
Huaxia | 0.8808 | 0.9013 | 0.9217 | 0.9046 | 0.966 | 1.0149 | 1.0088 | 0.9426 | 10 |
Changyuan | 0.8565 | 0.8845 | 0.9211 | 0.9145 | 0.9671 | 1.1282 | 1.1241 | 0.9709 | 8 |
Dengzhou | 0.6501 | 0.6625 | 0.7004 | 0.7253 | 0.723 | 0.6945 | 0.7506 | 0.7009 | 27 |
Yongcheng | 0.8884 | 0.9104 | 0.9539 | 1.0479 | 1.0143 | 0.9874 | 1.0821 | 0.9835 | 6 |
Gushi | 1.0796 | 0.9966 | 0.9988 | 0.9775 | 0.8906 | 0.9534 | 0.9415 | 0.9769 | 7 |
Luyi | 0.9443 | 0.9319 | 0.95 | 1.0163 | 0.9812 | 1.0062 | 1.1335 | 0.9948 | 4 |
Xincai | 0.7396 | 0.8117 | 0.8396 | 0.9084 | 0.9508 | 0.8841 | 0.9303 | 0.8664 | 20 |
Classification of Indices | Index | Average Value of Relatively Efficient Group | |||
---|---|---|---|---|---|
2016 | 2017 | 2018 | 2019 | ||
Input variables | Pesticide application amount | 4399.245 | 4087.657 | 1266.333 | 2520.786 |
Number of persons employed in agriculture, forestry, animal husbandry, and fisheries | 86.025 | 123.161 | 18.85 | 57.362 | |
Converted pure amount of agricultural fertilizers applied | 235,232.525 | 406,425.440 | 124,340.333 | 162,869.571 | |
Total power of agricultural machinery | 264.002 | 608.518 | 139 | 243.323 | |
Sown area of crops | 505.559 | 818.700 | 196.073 | 358.145 | |
Output variables | Total output value of agriculture, forestry, animal husbandry, and fisheries | 320.563 | 382.073 | 290.883 | 249.550 |
Per capita net income of rural residents | 12,128.000 | 11,905.667 | 14865 | 16,685.052 | |
Food crop yield | 251.004 | 399.690 | 109.10 | 172.967 |
Classification of Indices | Index | Average Value of Relatively Inefficient Group | |||
---|---|---|---|---|---|
2016 | 2017 | 2018 | 2019 | ||
Input variables | Pesticide application amount | 5217.652 | 4930.847 | 5084.12 | 6287.143 |
Number of persons employed in agriculture, forestry, animal husbandry, and fisheries | 103.732 | 99.571 | 108.024 | 122.704 | |
Converted pure amount of agricultural fertilizers applied | 303,443.262 | 278,802.114 | 306,742.680 | 391,415.786 | |
Total power of agricultural machinery | 421.273 | 382.581 | 443.72 | 591.375 | |
Sown area of crops | 590.370 | 553.953 | 641.782 | 823.610 | |
Output variables | Total output value of agriculture, forestry, animal husbandry, and fisheries | 311.976 | 293.836 | 333.691 | 438.685 |
Per capita net income of rural residents | 12,570.083 | 13,855.840 | 14,877.36 | 15,653.234 | |
Food crop yield | 254.285 | 248.288 | 289.17 | 370.914 |
Variable | Mean | Standard Deviation | Minimum | Maximum |
---|---|---|---|---|
sueffic | 0.891 | 0.123 | 0.598 | 1.319 |
fs | 0.202 | 0.126 | 0.0841 | 0.720 |
landstru | 0.752 | 0.0707 | 0.604 | 0.896 |
income | 12,600 | 3477 | 6839 | 23,536 |
ecolevl | 0.422 | 0.145 | 0.0947 | 0.732 |
machpower | 0.442 | 0.219 | 0.136 | 1.421 |
chemic | 0.0409 | 0.0131 | 0.0182 | 0.0880 |
plastic | 0.0385 | 0.0175 | 0.0118 | 0.0885 |
fertili | 0.000655 | 0.000280 | 0.000219 | 0.00190 |
electic | 20.31 | 13.69 | 0.557 | 60.74 |
labcapital | 0.197 | 0.0302 | 0.118 | 0.275 |
urban | 46.30 | 9.362 | 25.08 | 73.40 |
Variables | (1) | (2) | (3) | (4) | (5) | (6) |
---|---|---|---|---|---|---|
Sueffic | Sueffic | Sueffic | Sueffic | Sueffic | Sueffic | |
fs1 | 0.248 ** | 0.268 ** | 0.278 ** | 0.290 ** | 0.305 ** | 0.242 ** |
(2.11) | (2.28) | (2.35) | (2.46) | (2.59) | (2.02) | |
landstru | 0.637 *** | 0.700 *** | 0.719 *** | 0.736 *** | 0.722 *** | 0.733 *** |
(2.81) | (3.07) | (3.13) | (3.23) | (3.17) | (3.26) | |
chemic | 6.610 *** | 6.404 *** | 6.170 *** | 5.973 *** | 5.936 *** | 6.338 *** |
(10.92) | (10.44) | (9.08) | (8.75) | (8.72) | (9.09) | |
plastic | 1.137 * | 0.769 | 0.698 | 0.697 | 0.446 | 0.636 |
(1.66) | (1.08) | (0.97) | (0.97) | (0.61) | (0.87) | |
urban | 0.001 | 0.001 | 0.001 | 0.000 | −0.005 | −0.002 |
(0.64) | (0.73) | (0.53) | (0.01) | (−1.28) | (−0.43) | |
electic | 0.002 * | 0.002 | 0.001 | 0.002 | 0.003 * | |
(1.72) | (1.41) | (0.81) | (0.98) | (1.81) | ||
fertili | 51.247 | 26.243 | 6.921 | 73.435 | ||
(0.81) | (0.41) | (0.11) | (1.03) | |||
machpower | 0.105 * | 0.117 ** | 0.130 ** | |||
(1.88) | (2.08) | (2.33) | ||||
income | 0.000 | 0.000 | ||||
(1.46) | (0.75) | |||||
ecolevl | −0.386 ** | |||||
(−2.19) | ||||||
Constant | −0.009 | −0.096 | −0.110 | −0.082 | 0.082 | 0.033 |
(−0.06) | (−0.66) | (−0.75) | (−0.56) | (0.44) | (0.18) | |
Observations | 196 | 196 | 196 | 196 | 196 | 196 |
Number of ct | 28 | 28 | 28 | 28 | 28 | 28 |
R-squared | 0.708 | 0.713 | 0.714 | 0.720 | 0.724 | 0.732 |
City FE | YES | YES | YES | YES | YES | YES |
F test | 0 | 0 | 0 | 0 | 0 | 0 |
r2_a | 0.650 | 0.654 | 0.653 | 0.659 | 0.661 | 0.669 |
Variables | (1) | (2) | (3) | (4) | (5) | (6) |
---|---|---|---|---|---|---|
Sueffic | Sueffic | Sueffic | Sueffic | Sueffic | Sueffic | |
fs1 | 0.354 *** | 0.363 *** | 0.385 *** | 0.405 *** | 0.463 *** | 0.381 *** |
(2.96) | (3.03) | (3.21) | (3.42) | (3.97) | (3.43) | |
landstru | 0.700 *** | 0.739 *** | 0.782 *** | 0.807 *** | 0.791 *** | 0.827 *** |
(3.16) | (3.30) | (3.48) | (3.65) | (3.67) | (4.09) | |
chemic | 6.433 *** | 6.301 *** | 5.924 *** | 5.546 *** | 5.376 *** | 5.964 *** |
(10.20) | (9.83) | (8.71) | (8.08) | (8.03) | (9.29) | |
plastic | 1.347 * | 1.084 | 1.109 | 0.969 | 0.597 | 0.832 |
(1.90) | (1.45) | (1.49) | (1.32) | (0.82) | (1.22) | |
urban | 0.022 *** | 0.020 ** | 0.024 *** | 0.025 *** | 0.023 *** | 0.035 *** |
(2.73) | (2.49) | (2.88) | (3.02) | (2.89) | (4.37) | |
electic | 0.002 | 0.001 | −0.001 | −0.001 | 0.002 | |
(1.11) | (0.46) | (−0.32) | (−0.36) | (1.39) | ||
fertili | 109.183 | 71.039 | 56.043 | 178.901 *** | ||
(1.60) | (1.03) | (0.83) | (2.61) | |||
machpower | 0.146 ** | 0.181 *** | 0.245 *** | |||
(2.46) | (3.09) | (4.32) | ||||
income | 0.000 *** | 0.000 ** | ||||
(3.15) | (2.07) | |||||
ecolevl | −0.819 ** | |||||
(−4.64) | ||||||
Constant | −0.915 ** | −0.898 ** | −1.144 *** | −1.186 *** | −1.272 *** | −1.563 ** |
(−2.56) | (−2.51) | (−2.95) | (−3.10) | (−3.41) | (−4.40) | |
Observations | 196 | 196 | 196 | 196 | 196 | 196 |
Number of ct | 28 | 28 | 28 | 28 | 28 | 28 |
R-squared | 0.733 | 0.735 | 0.740 | 0.749 | 0.765 | 0.794 |
City FE | YES | YES | YES | YES | YES | YES |
Year FE | YES | YES | YES | YES | YES | YES |
F test | 0 | 0 | 0 | 0 | 0 | 0 |
r2_a | 0.669 | 0.669 | 0.672 | 0.683 | 0.700 | 0.736 |
F | 39.22 | 36.11 | 33.86 | 32.90 | 33.15 | 36.58 |
Variables | Endogeneity Considered Regression Results of the First Stage | Endogeneity Considered Regression Results of the Second Stage | Replacement of the Explained Variable |
---|---|---|---|
fs1 | Sueffic | ccr | |
fs1 | 2.154 ** | 0.143 ** | |
(2.08) | (2.08) | ||
fs_1 | 0.212 ** | ||
(2.17) | |||
landstru | 0.301 * | 0.180 | 0.896 *** |
(1.85) | (0.38) | (7.11) | |
income | 0.000 | 0.000 * | 0.000 |
(−0.83) | (1.78) | (0.92) | |
machpower | −0.019 | 0.251 ** | 0.202 *** |
(−0.39) | (2.24) | (5.69) | |
chemic | 0.476 | 5.181 *** | 2.629 *** |
(0.94) | (4.18) | (6.57) | |
plastic | 0.070 | 0.557 | 0.875 ** |
(0.12) | (0.42) | (2.06) | |
fertili | −51.421 | 279.627 ** | 112.090 *** |
(−0.89) | (1.97) | (2.62) | |
electic | 0.001 | 0.002 | −0.000 |
(0.49) | (0.57) | (−0.20) | |
urban | −0.009 | 0.055*** | 0.020 *** |
(−1.31) | (3.21) | (4.07) | |
ecolevl | −0.192 | −0.552 | −0.506 *** |
(−1.35) | (−1.48) | (−4.59) | |
Constant | 0.435 | −2.565 *** | −0.790 *** |
(1.38) | (−3.08) | (−3.57) | |
Observations | 168 | 168 | 196 |
Number of ct | 28 | 28 | 28 |
City FE | YES | YES | YES |
Year FE | YES | YES | YES |
R-sq | 0.4591 | 0.4089 | 0.800 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, S.; Yang, J.; Kang, X. Effect of Fiscal Expenditure for Supporting Agriculture on Agricultural Economic Efficiency in Central China—A Case Study of Henan Province. Agriculture 2023, 13, 822. https://doi.org/10.3390/agriculture13040822
Chen S, Yang J, Kang X. Effect of Fiscal Expenditure for Supporting Agriculture on Agricultural Economic Efficiency in Central China—A Case Study of Henan Province. Agriculture. 2023; 13(4):822. https://doi.org/10.3390/agriculture13040822
Chicago/Turabian StyleChen, Shuai, Jiameng Yang, and Xinyi Kang. 2023. "Effect of Fiscal Expenditure for Supporting Agriculture on Agricultural Economic Efficiency in Central China—A Case Study of Henan Province" Agriculture 13, no. 4: 822. https://doi.org/10.3390/agriculture13040822