Projected 21st Century Coastal Flooding in the Southern California Bight. Part 2: Tools for Assessing Climate Change-Driven Coastal Hazards and Socio-Economic Impacts
Abstract
:1. Introduction
2. Methods
3. Results
3.1. Projected Hazards
3.1.1. Coastline Change
3.1.2. Flood Hazards
3.2. Projected Exposures and Vulnerabilities
3.2.1. County Level
3.2.2. Community Level
4. Stakeholder Engagement and Outreach
5. Discussion and Summary of Findings
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
3-D | Three-dimensional |
360-degree | Image collection and display in a continuous 360-degree arc |
CoSMoS | Coastal Storm Modeling System |
GCM | Global Climate Model |
GIS | Geographic Information System |
GeoTIFF | Common raster file format with georeferencing information |
Technology company with applicable expertise in internet, mapping, and image sharing services; Mountain View, CA, USA | |
Google Earth | Program that renders a three-dimensional view of Earth and imagery; version 6+; Google: Mountain View, CA, USA |
GoPro | A commercial camera company; San Mateo, CA, USA |
HERA | Hazard Exposure Reporting and Analytics |
NAICS | North American Industry Classification System |
NLCD | National Land Cover Database |
LA | Los Angeles County |
OC | Orange County |
OCOF | “Our Coast, Our Future” |
Open Source Geospatial Foundation | Non-profit organization that supports open-source GIS formats and technology; https://www.osgeo.org/ |
“owl” | Virtual reality viewer used to communicate 21st century flood impacts |
Owlized | A commercial virtual-reality company; San Francisco, CA, USA |
PostGIS | An open-source, GIS-support software program; version 2+; available https://postgis.net/ |
PostgreSQL | An open-source relational database; version 9+; available https://www.postgresql.org/ |
SB | Santa Barbara County |
SD | San Diego County |
SLR | Sea-level Rise |
RCP | Representative Concentration Pathway |
VE | Ventura County |
VR | Virtual Reality |
References
- Wahl, T.; Brown, S.; Haigh, I.; Nilsen, J. Coastal sea levels, impacts, and adaptation. J. Mar. Sci. Eng. 2018, 6, 19. [Google Scholar] [CrossRef]
- Mentaschi, L.; Vousdoukas Michalis, I.; Voukouvalas, E.; Dosio, A.; Feyen, L. Global changes of extreme coastal wave energy fluxes triggered by intensified teleconnection patterns. Geophys. Res. Lett. 2017, 44, 2416–2426. [Google Scholar] [CrossRef]
- Hauer, M.E.; Evans, J.M.; Mishra, D.R. Millions projected to be at risk from seal-level rise in the continental united states. Nat. Clim. Chang. 2016, 6, 691–695. [Google Scholar] [CrossRef]
- Sweet, W.V.; Park, J. From the extreme to the mean: Acceleration and tipping points of coastal inundation from sea level rise. Earth Future 2014, 2, 579–600. [Google Scholar] [CrossRef] [Green Version]
- Purvis, M.J.; Bates, P.D.; Hayes, C.M. A probabilistic methodology to estimate future coastal flood risk due to sea level rise. Coast. Eng. 2008, 55, 1062–1073. [Google Scholar] [CrossRef]
- Van Dongeren, A.; Ciavola, P.; Viavattene, C.; de Kleermaker, S.; Martinez, G.; Ferreira, O.; Costa, C.; McCall, R. RISK-KIT: Resilience-Increasing Strategies for Coasts-toolKit. J. Coast. Res. 2014, 70 (Suppl. S1), 366–371. [Google Scholar] [CrossRef]
- Prime, T.; Brown, J.M.; Plater, A.J. Physical and economic impacts of sea-level rise and low probability flooding events on coastal communities. PLoS ONE 2015, 10, e0117030. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Knight, P.J.; Prime, T.; Brown, J.M.; Morrissey, K.; Plater, A.J. Application of flood risk modelling in a web-based geospatial decision support tool for coastal adaptation to climate change. Nat. Hazards Earth Syst. Sci. 2015, 15, 1457–1471. [Google Scholar] [CrossRef] [Green Version]
- Sánchez-Arcilla, A.; García-León, M.; Gracia, V.; Devoy, R.; Stanica, A.; Gault, J. Managing coastal environments under climate change: Pathways to adaptation. Sci. Total Environ. 2016, 572, 1336–1352. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Calil, J.; Reguero, B.G.; Zamora, A.R.; Losada, I.J.; Mendez, F.J. Comparative coastal risk index (CCRI): A multidisciplinary risk index for Latin America and the Caribbean. PLoS ONE 2017, 12. [Google Scholar] [CrossRef] [PubMed]
- Brown, J.M.; Morrissey, K.; Knight, P.; Prime, T.D.; Almeida, L.P.; Masselink, G.; Bird, C.O.; Dodds, D.; Plater, A.J. A coastal vulnerability assessment for planning climate resilient infrastructure. Ocean Coast. Manag. 2018, 163, 101–112. [Google Scholar] [CrossRef]
- Christie, E.K.; Spencer, T.; Owen, D.; McIvor, A.L.; Moller, I.; Viavattene, C. Regional coastal flood risk assessment for a tidally dominant, natural coastal setting: North Norfolk, southern North Sea. Coast. Eng. 2018, 134, 177–190. [Google Scholar] [CrossRef]
- Barnard, P.L.; O’Reilly, B.; van Ormondt, M.; Elias, E.; Ruggiero, P.; Erikson, L.H.; Hapke, C.; Collins, B.D.; Guza, R.T.; Adams, P.N.; et al. The Framework of a Coastal Hazards Model: A Tool for Predicting the Impact of Severe Storms; Open-File Report 2009-1073; U.S. Geological Survey: Reston, VA, USA, 2009; 19p. Available online: http://pubs.usgs.gov/of/2009/1073/ (accessed on 2 February 2018).
- Barnard, P.L.; van Ormondt, M.; Erikson, L.H.; Eshleman, J.; Hapke, C.; Ruggiero, P.; Adams, P.N.; Foxgrover, A.C. Development of the coastal storm modeling system (cosmos) for predicting the impact of storms on high-energy, active-margin coasts. Nat. Hazards 2014, 74, 1095–1125. [Google Scholar] [CrossRef]
- Barnard, P.L.; Erikson, L.H.; Fitzgibbon, M.; Foxgrover, A.; Finzi Hart, J.; Limber, P.; O’Neill, A.C.; van Ormondt, M.; Vitousek, S.; Wood, N.; et al. Dynamic flood modeling essential to assess the coastal impacts of climate change. Sci. Adv. 2018. in review. [Google Scholar]
- O’Neill, A.; Erikson, L.; Barnard, P.; Limber, P.; Vitousek, S.; Warrick, J.; Foxgrover, A.; Lovering, J. Projected 21st century coastal flooding in the Southern California Bight. Part 1: Development of the third generation cosmos model. J. Mar. Sci. Eng. 2018, 6, 59. [Google Scholar] [CrossRef]
- Erikson, L.H.; Hegermiller, C.A.; Barnard, P.L.; Ruggiero, P.; van Ormondt, M. Projected wave conditions in the Eastern North Pacific under the influence of two CMIP5 climate scenarios. Ocean Model. 2015, 96, 171–185. [Google Scholar] [CrossRef]
- Bureau of Economic Analysis (BEA). Gross Domestic Prodcut (GDP); Dataset; United States Department of Commerce, BEA: Suitland, MD, USA, 2017. Available online: https://www.bea.gov/ (accessed on 15 January 2017).
- Point Blue Conservation Science and US Geological Survey. Our Coast, Our Future; Web Application; Point Blue Conservation Science: Petaluma, CA, USA, 2018; Available online: www.ourcoastourfuture.org (accessed on 1 May 2018).
- Jones, J.M.; Henry, K.; Wood, N.; Ng, P.; Jamieson, M. HERA: A dynamic web application for visualizing community exposure to flood hazards based on storm and sea level rise scenarios. Comput. Geosci. 2017, 109, 124–133. [Google Scholar] [CrossRef]
- Erikson, L.H.; Barnard, P.L.; O’Neill, A.C.; Vitousek, S.; Limber, P.; Foxgrover, A.C.; Herdman, L.H.; Warrick, J. Cosmos 3.0 Phase 2 Southern California Bight: Summary of Data and Methods; Summary of Methods to Accompany Data Release; U.S. Geological Survey: Santa Cruz, CA, USA, 2017. [CrossRef]
- Erikson, L.H.; Barnard, P.L.; O’Neill, A.; Limber, P.; Vitousek, S.; Finzi Hart, J.; Hayden, M.; Jones, J.; Wood, N.; Fitzgibbon, M.; et al. Assessing and Communicating the Impacts of Climate Change on the Southern California Coast California’s Fourth Climate Change Assessment; Report; California Natural Resources Agency: Sacramento, CA, USA, 2018; Volume CRNA-CCC4A-2018, p. 75.
- United States Census Bureau. Block Census Data; Dataset; U.S. Department of Commerce, United States Census Bureau: Suitland, MD, USA, 2012. Available online: https://www.census.gov/data.html (accessed on 1 October 2012).
- Rufat, S.; Tate, E.; Burton, C.G.; Maroof, A.S. Social vulnerability to floods: Review of case studies and implications for measurement. Int. J. Disaster Risk Reduct. 2015, 14, 470–486. [Google Scholar] [CrossRef]
- Wood, N.; Ratliff, J.; Peters, J. Community Exposure to Tsunami Hazards in California; Scientific Investigations Report, 2012-5222; U.S. Geological Survey: Reston, VA, USA, 2012.
- Infogroup. Employer Database; Online Government Dataset; Infogroup: Papillion, NE, USA, 2012; Available online: http://www.referenceusagov.com (accessed on 20 October 2012).
- Homer, C.G.; Dewitz, J.A.; Yang, L.; Jin, S.; Danielson, P.; Xian, G.; Coulston, J.; Herold, N.D.; Wickham, J.D.; Megown, K. Completion of the 2011 national land cover database for the conterminous united states-representing a decade of land cover change information. Photogramm. Eng. Remote Sens. 2015, 81, 345–354. [Google Scholar]
- Jones, J.M.; Wood, N.; Ng, P.; Henry, K.; Jones, J.L.; Peters, J.; Jamieson, M. Community Exposure in California to Coastal Flooding Hazards Enhanced by Climate Change, Reference Year 2010; Dataset; U.S. Geological Survey: Reston, VA, USA, 2016; Volume 2018.
- Limber, P.W.; Barnard, P.L.; Hapke, C. Towards projecting the retreat of California’s coastal cliffs during the 21st Century. In Proceedings of the Coastal Sediments 2015, San Diego, CA, USA, 11–15 May 2015; Wang, P., Rosati, J.D., Cheng, J., Eds.; World Scientific: Hackensack, NJ, USA, 2015; p. 14. [Google Scholar] [CrossRef]
- Vitousek, S.; Barnard, P.L.; Limber, P.W.; Erikson, L.; Cole, B. A model integrating longshore and cross-shore processes for predicting long-term shoreline response to climate change. J. Geophys. Res. Earth Surf. 2017, 122, 782–806. [Google Scholar] [CrossRef]
- Limber, P.W.; Barnard, P.L.; Vitousek, S.; Erikson, L.H. A model ensemble for projecting multi-decadal coastal cliff retreat during the 21st century. J. Geophys. Res. Earth Surf. 2018. [Google Scholar] [CrossRef]
- Cayan, D.R.; Kalansky, J.; Iacobellis, S.; Pierce, D. Creating Probabilistic Sea Level Rise Projections to Support the 4th California Climate Assessment; 16-IEPR-04, TN 211806; California Energy Commission: Sacramento, CA, USA, 2016. Available online: http://docketpublic.energy.ca.gov/PublicDocuments/16-IEPR-04/TN211806_20160614T101823_Creating_Probabilistic_Sea_Leve_Rise_Projections.pdf (accessed on 15 February 2018).
- Fielding, J.L. Inequalities in exposure and awareness of flood risk in England and wales. Disasters 2011, 36, 477–494. [Google Scholar] [CrossRef] [PubMed] [Green Version]
1 | average beach loss shorelines are based on a 1 January (mid-winter) time horizon, whereas the max seasonal erosion is based on the upper limit of the 95% confidence interval (2nd standard deviation) using all the model-projected positions. |
SLR (cm) | County | All Counties | ||||||
---|---|---|---|---|---|---|---|---|
Santa Barbara | Ventura | Los Angeles | Orange | San Diego | Total | Increased Flooding | ||
km2 | percent | |||||||
25 | 1.1/7.0 | 1.2/15.6 | 2.6/6.8 | 1.4/4.8 | 3.7/10.5 | 10/45 | 35 | 347% |
50 | 1.4/7.4 | 2.3/17.5 | 4.6/10.4 | 4.0/10.4 | 5.0/13.2 | 17/58 | 41 | 237% |
75 | 3.2/7.8 | 3.7/20.4 | 7.6/13.2 | 6.2/12.9 | 7.5/17.8 | 28/72 | 44 | 155% |
100 | 6.0/8.6 | 6.5/27.2 | 9.5/16.3 | 10.2/21.1 | 9.6/22.8 | 42/96 | 54 | 129% |
125 | 6.4/9.3 | 19.1/41.5 | 12.6/19.2 | 14.8/26.2 | 14.9/30.4 | 68/127 | 59 | 87% |
150 | 7.0/10.1 | 23.0/45.8 | 15.2/23.1 | 21.9/30.7 | 20.1/35.7 | 87/145 | 58 | 67% |
175 | 8.2/13.1 | 37.0/51.0 | 19.2/28.6 | 25.6/54.0 | 29.9/44.3 | 120/191 | 71 | 59% |
200 | 8.8/15.9 | 49.4/62.4 | 15.2/39.0 | 37.5/58.8 | 35.8/50.1 | 147/226 | 79 | 54% |
500 | 19.6/21.0 | 91.3/96.1 | 85.0/97.7 | 95.5/105.1 | 88.9/94.7 | 380/415 | 34 | 9% |
Increase in flooding with 100-year storm (average across all SLRs) * | ||||||||
km2 | 4.5 ± 2.0 | 16.0 ± 5.5 | 9.0 ± 6.0 | 12 ± 8.0 | 11.5 ± 4.0 | 53.0 ± 16.0 | ||
percent | 157% | 327% | 84% | 101% | 99% |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Erikson, L.; Barnard, P.; O’Neill, A.; Wood, N.; Jones, J.; Finzi Hart, J.; Vitousek, S.; Limber, P.; Hayden, M.; Fitzgibbon, M.; et al. Projected 21st Century Coastal Flooding in the Southern California Bight. Part 2: Tools for Assessing Climate Change-Driven Coastal Hazards and Socio-Economic Impacts. J. Mar. Sci. Eng. 2018, 6, 76. https://doi.org/10.3390/jmse6030076
Erikson L, Barnard P, O’Neill A, Wood N, Jones J, Finzi Hart J, Vitousek S, Limber P, Hayden M, Fitzgibbon M, et al. Projected 21st Century Coastal Flooding in the Southern California Bight. Part 2: Tools for Assessing Climate Change-Driven Coastal Hazards and Socio-Economic Impacts. Journal of Marine Science and Engineering. 2018; 6(3):76. https://doi.org/10.3390/jmse6030076
Chicago/Turabian StyleErikson, Li, Patrick Barnard, Andrea O’Neill, Nathan Wood, Jeanne Jones, Juliette Finzi Hart, Sean Vitousek, Patrick Limber, Maya Hayden, Michael Fitzgibbon, and et al. 2018. "Projected 21st Century Coastal Flooding in the Southern California Bight. Part 2: Tools for Assessing Climate Change-Driven Coastal Hazards and Socio-Economic Impacts" Journal of Marine Science and Engineering 6, no. 3: 76. https://doi.org/10.3390/jmse6030076
APA StyleErikson, L., Barnard, P., O’Neill, A., Wood, N., Jones, J., Finzi Hart, J., Vitousek, S., Limber, P., Hayden, M., Fitzgibbon, M., Lovering, J., & Foxgrover, A. (2018). Projected 21st Century Coastal Flooding in the Southern California Bight. Part 2: Tools for Assessing Climate Change-Driven Coastal Hazards and Socio-Economic Impacts. Journal of Marine Science and Engineering, 6(3), 76. https://doi.org/10.3390/jmse6030076