Numerical Simulation of a Sandy Seabed Response to Water Surface Waves Propagating on Current
Abstract
:1. Introduction
2. Methods
2.1. Fluid Sub-Model
2.2. Seabed Sub-Model
2.3. Boundary Treatment
2.4. Numerical Scheme
3. Results
3.1. Model Validation
3.2. Hydrodynamics of WCSI
3.3. Seabed Response
3.4. Seabed Liquefaction
4. Discussion
5. Conclusions
Author Contributions
Acknowledgments
Conflicts of Interest
References
- Sterling, G.H.; Strohbeck, G.E. The Failure of the south pass 70 platform B in Hurricane Camille. J. Pet. Technol. 1975, 27, 263–268. [Google Scholar] [CrossRef]
- Smith, A.W.S.; Gordon, A.D. Large breakwater toe failures. J. Waterw. Pt. Coast. Ocean Eng. 1983, 109, 253–255. [Google Scholar] [CrossRef]
- Franco, L. Vertical breakwaters: the Italian experience. Coast. Eng. 1994, 22, 31–55. [Google Scholar] [CrossRef]
- Jeng, D.S. Wave-induced sea floor dynamics. Appl. Mech. Rev. 2003, 56, 407–429. [Google Scholar] [CrossRef]
- Sumer, B.M. Liquefaction around Marine Structures; Liu, P.L.F., Ed.; World Scientific: Singapore, 2014. [Google Scholar]
- Huang, Y.; Bao, Y.; Zhang, M.; Liu, C.; Lu, P. Analysis of the mechanism of seabed liquefaction induced by waves and related seabed protection. Nat. Hazards 2015, 79, 1399–1408. [Google Scholar] [CrossRef]
- Zhang, J.; Li, Q.; Ding, C.; Zheng, J.; Zhang, T. Experimental investigation of wave-driven pore-water pressure and wave attenuation in a sandy seabed. Adv. Mech. Eng. 2016, 8, 1–10. [Google Scholar] [CrossRef]
- Liao, C.; Tong, D.; Jeng, D.-S.; Zhao, H. Numerical study for wave-induced oscillatory pore pressures and liquefaction around impermeable slope breakwater heads. Ocean Eng. 2018, 157, 364–375. [Google Scholar] [CrossRef]
- Liao, C.; Tong, D.; Chen, L.H. Pore pressure distribution and momentary liquefaction in vicinity of impermeable slope-type breakwater head. Appl. Ocean Res. 2018, 78, 290–306. [Google Scholar]
- Hsu, H.C.; Chen, Y.Y.; Hsu, J.R.C.; Tseng, W.J.; Hsu, H.C.; Chen, Y.Y.; Hsu, J.R.C.; Tseng, W.J. Nonlinear water waves on uniform current in Lagrangian coordinates. J. Nonlinear Math. Phys. 2009, 16, 47–61. [Google Scholar] [CrossRef]
- Ulker, M.B.C.; Rahman, M.S.; Jeng, D.S. Wave-induced response of seabed: various formulations and their applicability. Appl. Ocean Res. 2009, 31, 12–24. [Google Scholar] [CrossRef]
- Cheng, A.H.D.; Liu, P.L.F. Seepage force on a pipeline buried in a poroelastic seabed under wave loadings. Appl. Ocean Res. 1986, 8, 22–32. [Google Scholar] [CrossRef]
- Ye, J.H.; Jeng, D.S. Response of porous seabed to nature loadings: Waves and currents. J. Eng. Mech. 2012, 138, 601–613. [Google Scholar] [CrossRef]
- Zienkiewicz, O.C.; Chang, C.T.; Bettess, P. Drained, undrained, consolidating and dynamic behaviour assumptions in soils. Géotechnique 1980, 30, 385–395. [Google Scholar] [CrossRef]
- Alfonsi, G.; Lauria, A.; Primavera, L. Recent results from analysis of flow structures and energy modes induced by viscous wave around a surface-piercing cylinder. Math. Probl. Eng. 2017, 2017, 1–10. [Google Scholar] [CrossRef]
- Alfonsi, G.; Lauria, A.; Primavera, L. Proper orthogonal flow modes in the viscous-fluid wave-diffraction case. J. Flow Vis. Image Process. 2013, 20, 227–241. [Google Scholar] [CrossRef]
- Zhang, J.S.; Zhang, Y.; Jeng, D.S.; Liu, P.L.F.; Zhang, C. Numerical simulation of wave-current interaction using a RANS solver. Ocean Eng. 2014, 75, 157–164. [Google Scholar] [CrossRef]
- Zhang, J.S.; Zhang, Y.; Zhang, C.; Jeng, D.S. Numerical modeling of seabed response to combined wave-current loading. J. Offshore Mech. Arct. Eng. 2013, 135, 125–131. [Google Scholar] [CrossRef]
- Zhang, J.; Zheng, J.; Jeng, D.S.; Guo, Y. Numerical simulation of solitary-wave propagation over a steady current. J. Waterw. Port Coastal Ocean Eng. 2015, 141, 04014041. [Google Scholar] [CrossRef]
- Lin, P.; Liu, P.L.-F. Internal wave-maker for navier-stokes equations models. J. Waterw. Port Coast. Ocean Eng. 1999, 125, 207–215. [Google Scholar] [CrossRef]
- Wen, F.; Wang, J.H. Response of Layered Seabed under Wave and Current Loading. J. Coast. Res. 2015, 314, 907–919. [Google Scholar] [CrossRef]
- Wen, F.; Wang, J.H.; Zhou, X.L. Response of saturated porous seabed under combined short-crested waves and current loading. J. Coast. Res. 2016, 318, 286–300. [Google Scholar] [CrossRef]
- Zhang, X.; Zhang, G.; Xu, C. Stability analysis on a porous seabed under wave and current loadings. Mar. Georesources Geotechnol. 2017, 35, 710–718. [Google Scholar] [CrossRef]
- Biot, M.A. Mechanics of deformation and acoustic propagation in porous media. J. Appl. Phys. 1962, 33, 1482–1498. [Google Scholar] [CrossRef]
- Yang, G.; Ye, J. Wave & current-induced progressive liquefaction in loosely deposited seabed. Ocean Eng. 2017, 142, 303–314. [Google Scholar]
- Ye, J.; Jeng, D.; Wang, R.; Zhu, C. Validation of a 2-D semi-coupled numerical model for fluid-structure-seabed interaction. J. Fluids Struct. 2013, 42, 333–357. [Google Scholar] [CrossRef]
- Zhang, Y.; Jeng, D.S.; Gao, F.P.; Zhang, J.S. An analytical solution for response of a porous seabed to combined wave and current loading. Ocean Eng. 2013, 57, 240–247. [Google Scholar] [CrossRef] [Green Version]
- Biot, M.A. General theory of three-dimensional consolidation. J. Appl. Phys. 1941, 12, 155–164. [Google Scholar] [CrossRef]
- Liu, B.; Jeng, D.S.; Zhang, J.S. Dynamic response in a porous seabed of finite depth to combined wave and current loadings. J. Coast. Res. 2014, 296, 765–776. [Google Scholar] [CrossRef]
- Liao, C.C.; Jeng, D.S.; Zhang, L.L. An analytical approximation for dynamic soil response of a porous seabed due to combined wave and current loading. J. Coast. Res. 2015, 315, 1120–1128. [Google Scholar] [CrossRef]
- Hirt, C.W.; Nichols, B.D. Volume of fluid (VOF) method for the dynamics of free boundaries. J. Comput. Phys. 1981, 39, 201–225. [Google Scholar] [CrossRef]
- Lin, P.; Liu, P.L.F. A numerical study of breaking waves in the surf zone. J. Fluid Mech. 1998, 359, 239–264. [Google Scholar] [CrossRef]
- Orlanski, I. A simple boundary condition for unbounded hyperbolic flows. J. Comput. Phys. 1976, 21, 251–269. [Google Scholar] [CrossRef]
- Jeng, D.S. Porous Models for Wave-seabed Interactions; Springer: Berlin/Heidelberg, Germany, 2013. [Google Scholar]
- Tsui, Y.; Helfrich, S.C. Wave-induced pore pressures in submerged sand layer. J. Geotech. Eng. 1983, 109, 603–618. [Google Scholar] [CrossRef]
- Liu, B.; Jeng, D.-S.; Ye, G.L.; Yang, B. Laboratory study for pore pressures in sandy deposit under wave loading. Ocean Eng. 2015, 106, 207–219. [Google Scholar] [CrossRef]
- Hsu, J.R.C.; Jeng, D.S. Wave-induced soil response in an unsaturated anisotropic seabed of finite thickness. Int. J. Numer. Anal. Methods Geomech. 1994, 18, 785–807. [Google Scholar] [CrossRef]
- Tong, D.; Liao, C.; Jeng, D.S.; Zhang, L.; Wang, J.; Chen, L. Three-dimensional modeling of wave-structure-seabed interaction around twin-pile group. Ocean Eng. 2017, 145, 416–429. [Google Scholar] [CrossRef]
- Tong, D.; Liao, C.; Jeng, D.; Wang, J. Numerical study of pile group effect on wave-induced seabed response. Appl. Ocean Res. 2018, 76, 148–158. [Google Scholar] [CrossRef]
- Tong, D.; Liao, C.; Wang, J.; Jeng, D. Wave-induced oscillatory soil response around circular rubble-mound breakwater head. In Proceedings of the International Conference on Ocean, Offshore and Arctic Engineering, Trondheim, Norway, 25–30 June 2017; Volume 155, pp. V009T10A008. [Google Scholar]
- Umeyama, M. Coupled PIV and PTV measurements of particle velocities and trajectories for surface waves following a steady current. J. Waterw. Port Coastal Ocean Eng. 2011, 137, 85–94. [Google Scholar] [CrossRef]
- Zen, K.; Yamazaki, H. Mechanism of wave-induced liquefaction and densification in seabed. SOILS Found. 1990, 30, 90–104. [Google Scholar] [CrossRef]
- Lin, Z.; Guo, Y.; Jeng, D.; Liao, C.; Rey, N. An integrated numerical model for wave-soil-pipeline interactions. Coast. Eng. 2016, 108, 25–35. [Google Scholar] [CrossRef]
- Zhou, X.L.; Zhang, J.; Guo, J.J.; Wang, J.H.; Jeng, D.S. Cnoidal wave induced seabed response around a buried pipeline. Ocean Eng. 2015, 101, 118–130. [Google Scholar] [CrossRef]
- Jeng, D.-S.; Ou, J. 3D models for wave-induced pore pressures near breakwater heads. Acta Mech. 2010, 215, 85–104. [Google Scholar] [CrossRef]
- Lin, Z.; Pokrajac, D.; Guo, Y.; Jeng, D.S.; Tang, T.; Rey, N.; Zheng, J.; Zhang, J. Investigation of nonlinear wave-induced seabed response around mono-pile foundation. Coast. Eng. 2017, 121, 197–211. [Google Scholar] [CrossRef] [Green Version]
Module | Parameter | Notation | Magnitude | Unit |
---|---|---|---|---|
Wave | Water Depth | 10 | m | |
Wave Height | H | 3 | m | |
Wave Period | T | 8 | s | |
Wavelength | 71 | m | ||
Current | Velocity | vc | 0, 0.25, 0.5, 0.75, 1 | m/s |
Seabed | Permeability | ks | 1.0 × 10−4 | m/s |
Degree of Saturation | Sr | 0.985 | - | |
Shear Modulus | G | 1.0 × 107 | N/m2 | |
Poisson’s Ratio | 0.333 | - | ||
Porosity | ns | 0.3 | - |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tong, D.; Liao, C.; Chen, J.; Zhang, Q. Numerical Simulation of a Sandy Seabed Response to Water Surface Waves Propagating on Current. J. Mar. Sci. Eng. 2018, 6, 88. https://doi.org/10.3390/jmse6030088
Tong D, Liao C, Chen J, Zhang Q. Numerical Simulation of a Sandy Seabed Response to Water Surface Waves Propagating on Current. Journal of Marine Science and Engineering. 2018; 6(3):88. https://doi.org/10.3390/jmse6030088
Chicago/Turabian StyleTong, Dagui, Chencong Liao, Jinjian Chen, and Qi Zhang. 2018. "Numerical Simulation of a Sandy Seabed Response to Water Surface Waves Propagating on Current" Journal of Marine Science and Engineering 6, no. 3: 88. https://doi.org/10.3390/jmse6030088
APA StyleTong, D., Liao, C., Chen, J., & Zhang, Q. (2018). Numerical Simulation of a Sandy Seabed Response to Water Surface Waves Propagating on Current. Journal of Marine Science and Engineering, 6(3), 88. https://doi.org/10.3390/jmse6030088