Effective Thermal Conductivity of MOF-5 Powder under a Hydrogen Atmosphere
Abstract
:1. Introduction
2. Theoretical Modeling
2.1. Effective Thermal Conductivity
Parameter | Value | Unit | Reference |
---|---|---|---|
808.60 | kg∙m−3 | [16] | |
71.26 | kg∙m−3 | - | |
1227.78 | kg∙m−3 | [16] | |
2030 | kg∙m−3 | [6] | |
0.14429 | W∙m−1∙k−1 | - | |
0.10329 | W∙m−1∙k−1 | - | |
0.21815 | W∙m−1∙k−1 | - | |
0.18488 | W∙m−1∙k−1 | - | |
0.025835 | W∙m−1∙k−1 | - | |
0.01642 | W∙m−1∙k−1 | [17] | |
1.278 × 10−7 | m | [18] | |
6.28 × 10−8 | m | - | |
6.29 × 10−8 | m | - | |
0.702 | - | [6] | |
1.92 | - | - | |
1.95 | - | - | |
1.95 | - | - | |
1.57 | - | - | |
1.4 | - | - | |
1.4 | - | - | |
1.35 | - | - | |
0.75 | W∙m−1∙k−1 | - | |
1.12 × 10−9 | m | [2] |
2.2. GCMC Models
2.2.1. Simulation Model
Atom Type | ||||
---|---|---|---|---|
Hydrogen/Nitrogen | Carbon Dioxide | |||
C1 | 3.75 a | 52.84 a | 52.84 a | 0.667 b |
C2 | 3.55 a | 35.23 a | 28.18 b | 0.072 b |
C3 | 3.55 a | 35.23 a | 28.18 b | −0.132 b |
O1 | 2.96 a | 73.98 b | 63.41 b | −1.846 b |
O2 | 2.96 a | 73.98 b | 63.41 b | −0.724 b |
H | 2.42 a | 15.10 a | 15.10 a | 0.140 b |
Zn | 2.46 c | 62.40 c | 62.40 c | 1.501 b |
2.2.2. Simulation Method
3. Results and Discussions
3.1. Model Validation
3.2. Effect of Amount of Adsorption on Pore Width
3.3. Effect of Pressure
3.4. Effect of Temperature
3.5. Effect of Main Parameter on Effective Thermal Conductivity
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Kaye, S.S.; Dailly, A.; Yaghi, O.M.; Long, J.R. Impact of preparation and handling on the hydrogen storage properties of Zn4O(1,4-benzenedicarboxylate)3 (MOF-5). J. Am. Chem. Soc. 2007, 129, 14176–14177. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Eddaoudi, M.; O’Keeffe, M.; Yaghi, O.M. Design and synthesis of an exceptionally stable and highly porous metal-organic framework. Nature 1999, 402, 276–279. [Google Scholar]
- Schmit, B.; Mu¨ller, U.; Trukhan, N.; Schubert, M.; Fe’rey, G.; Hirscher, M. Heat of adsorption for hydrogen in microporous high-surface-area materials. ChemPhysChem 2008, 9, 2181–2184. [Google Scholar] [CrossRef] [PubMed]
- Huang, B.L.; McGaughey, A.J.H.; Kaviany, M. Thermal conductivity of metal-organic framework (MOF-5): Part I. molecular dynamics simulations. Int. J. Heat Mass Transf. 2007, 50, 393–404. [Google Scholar] [CrossRef]
- Huang, B.L.; Ni, Z.; Millward, A.; McGaughey, A.J.H.; Kaviany, M.; Yaghi, O.M. Thermal conductivity of a metal-organic framework (MOF-5): Part II measurement. Int. J. Heat Mass Transf. 2007, 50, 405–411. [Google Scholar] [CrossRef]
- Purewal, J.J.; Liu, D.; Yang, J.; Sudik, A.; Siegel, D.J.; Maurer, S.; Mu¨ler, U. Increased volumetric hydrogen uptake of MOF-5 by powder densification. Int. J. Hydrog. Energy 2012, 37, 2723–2727. [Google Scholar] [CrossRef]
- Liu, D.; Purewal, J.J.; Yang, J.; Sudik, A.; Maurer, S.; Mueller, U.; Ni, J.; Siegel, D.J. MOF-5 composites exhibiting improved thermal conductivity. Int. J. Hydrog. Energy 2012, 37, 6109–6117. [Google Scholar] [CrossRef]
- Hu, Y.H.; Zhang, L. Amorphization of metal-organic framework MOF-5 at unusually low applied pressure. Phys. Rev. B 2010, 81, 174103. [Google Scholar] [CrossRef]
- Griesinger, A.; Spindler, K.; Hahne, E. Measurements and theoretical modeling of the effective thermal conductivity of zeolites. Int. J. Heat Mass Transf. 1999, 42, 4363–4374. [Google Scholar] [CrossRef]
- Walton, K.S.; Millward, A.R.; Dubbeldam, D.; Frost, H.; Low, J.J.; Yaghi, O.M.; Snurr, R.Q. Understanding inflections and steps in carbon dioxide adsorption isotherms in metal-organic frameworks. J. Am. Chem. Soc. 2008, 130, 406–407. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Wang, Q.; Liu, Y.C. Design for hydrogen storage materials via observation of adsorption sites by computer tomography. J. Phys. Chem. B 2007, 111, 4291–4295. [Google Scholar] [CrossRef] [PubMed]
- Yang, Q.Y.; Zhong, C.L. Understanding hydrogen adsorption in metal-organic framework with open metal sites: A computational study. J. Phys. Chem. B 2006, 110, 655–658. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.F.; Carson, J.K.; North, M.F.; Cleland, D.J. A new approach to modeling the effective thermal conductivity of heterogeneous materials. Int. J. Heat Mass Transf. 2006, 49, 3075–3083. [Google Scholar] [CrossRef]
- Lu, X.; Caps, R.; Fricke, J.; Alviso, C.T.; Pekala, R.W. Correlation between structure and thermal-conductivity of organic aerogels. J. Non-Cryst. Solid 1995, 188, 226–234. [Google Scholar] [CrossRef]
- Dawoud, B.; Sohel, M.I.; Freni, A.; Vasta, S.; Restuccia, G. On the effective thermal conductivity of wetted zeolite under the working conditions of an adsorption chiller. Appl. Therm. Eng. 2011, 31, 2241–2246. [Google Scholar] [CrossRef]
- Dreisbach, F.; Staudt, R.; Keller, J.U. High pressure adsorption data of methane, nitrogen, carbon dioxide and their binary and ternary mixtures on active carbon. Adsorption 1999, 5, 215–227. [Google Scholar] [CrossRef]
- Yang, S.M.; Tao, W.Q. Heat Transfer, 3rd ed.; Higher Education Press: Beijing, China, 2006. [Google Scholar]
- Zhao, X.B.; Rodil, S.V.; Fletcher, A.J.; Thomas, K.M. Kinetic isotope effect for H2 and D2 quantum molecular sieving in adsorption/desorption on porous carbon materials. J. Phys. Chem. B 2006, 110, 9947–9955. [Google Scholar] [CrossRef] [PubMed]
- Materials Studio v 6.0; Accerys Software Inc: San Diego, CA, USA, 2010.
- Jorgensen, W.L.; Maxwell, D.S.; Tirado-Rives, J. Development and testing of the OPLS all-atom force field on conformational energetics and properties of organic liquids. J. Am. Chem. Soc. 1996, 118, 11225–11236. [Google Scholar] [CrossRef]
- Yang, Q.Y.; Zhong, C.L. Molecular simulation of carbon dioxide/methane/hydrogen mixture adsorption in metal-organic frameworks. J. Phys. Chem. B 2006, 110, 17776–17783. [Google Scholar] [CrossRef] [PubMed]
- Martin, M.G.; Siepmann, J.I. Transferable potentials for phase equilibria. 1. united-atom description of n-alkanes. J. Phys. Chem. B 1998, 102, 2569–2577. [Google Scholar] [CrossRef]
- Liu, Y.; Liu, H.L.; Hu, Y.; Jiang, J.W. Density functional theory for adsorption of gas mixtures in metal-organic frameworks. J. Phys. Chem. B 2010, 114, 2820–2827. [Google Scholar] [CrossRef] [PubMed]
- Greathouse, J.A.; Kinnibrugh, T.L.; Allendorf, M.D. Adsorption and separation of noble gases by IRMOF-1: Grand canonical Monte Carlo simulations. Ind. Eng. Chem. Res. 2009, 48, 3425–3431. [Google Scholar] [CrossRef]
- Skoulidas, A.I.; Sholl, D.S. Self-diffusion and transport diffusion of light gases in metal-organic framework materials assessed using molecular dynamics simulations. J. Phys. Chem. B 2005, 109, 15760–15768. [Google Scholar] [CrossRef] [PubMed]
- Potoff, J.J.; Siepmann, J.I. Vapor-liquid equilibria of mixtures containing alkanes, carbon dioxide and nitrogen. AICHE J. 2001, 47, 1676–1682. [Google Scholar] [CrossRef]
- Frenkel, D.; Smit, B. Understanding Molecular Simulation From Algorithms To Applications; Academic press: New York, NY, USA, 2002. [Google Scholar]
- Kowalczyk, P.; Tanaka, H.; Kaneko, K.; Terzyk, A.P.; Do, D.D. Grand canonical Monte Carlo simulation study of methane adsorption at an open graphite surface and in slit like carbon pores at 273 K. Langmuir 2005, 21, 5639–5646. [Google Scholar] [CrossRef] [PubMed]
- Panella, B.; Hirscher, M.; Putter, H.; Muller, U. Hydrogen adsorption in metal-organic frameworks: Cu-MOFs and Zn-MOFs compared. Adv. Funct. Mater. 2006, 16, 520–524. [Google Scholar] [CrossRef]
© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, H.; Qu, Z.; Zhang, W.; Tao, W. Effective Thermal Conductivity of MOF-5 Powder under a Hydrogen Atmosphere. Computation 2015, 3, 558-573. https://doi.org/10.3390/computation3040558
Wang H, Qu Z, Zhang W, Tao W. Effective Thermal Conductivity of MOF-5 Powder under a Hydrogen Atmosphere. Computation. 2015; 3(4):558-573. https://doi.org/10.3390/computation3040558
Chicago/Turabian StyleWang, Hui, Zhiguo Qu, Wen Zhang, and Wenquan Tao. 2015. "Effective Thermal Conductivity of MOF-5 Powder under a Hydrogen Atmosphere" Computation 3, no. 4: 558-573. https://doi.org/10.3390/computation3040558
APA StyleWang, H., Qu, Z., Zhang, W., & Tao, W. (2015). Effective Thermal Conductivity of MOF-5 Powder under a Hydrogen Atmosphere. Computation, 3(4), 558-573. https://doi.org/10.3390/computation3040558