Gamma Radiation Synthesis of Ag/P25 Nanocomposites for Efficient Photocatalytic Degradation of Organic Contaminant
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Synthesis of Ag/P25 Nanocomposites
2.3. Characterization
2.4. Measurements of Photocatalytic Activities
3. Results and Discussion
3.1. Synthesis and Characterizations of Ag/P25 Nanocomposites
3.2. Photocatalytic Activities
3.3. Mechanism Clarification
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zhang, Y.W.; Ma, H.L.; Peng, J.; Xu, L.; Li, J.Q.; Zhai, M.L. Radiation-Induced Grafting of 4-Vinyl Pyridine onto Cellulose Microsphere for Cr(VI) Removal. Desalin. Water Treat. 2018, 105, 255–263. [Google Scholar] [CrossRef]
- Zhang, N.; Han, C.; Fu, X.Z.; Xu, Y.J. Function-Oriented Engineering of Metal-Based Nanohybrids for Photoredox Catalysis: Exerting Plasmonic Effect and Beyond. Chem 2018, 4, 1832–1861. [Google Scholar] [CrossRef]
- Zhang, Y.; Ma, H.L.; Cao, K.; Wang, L.; Zeng, X.; Zhang, X.; He, L.; Liu, P.; Wang, Z.; Zhai, M. Gamma Irradiation-Induced Preparation of Graphene-Ni Nanocomposites with Efficient Electromagnetic Wave Absorption. Materials 2018, 11, 2145. [Google Scholar] [CrossRef]
- Chen, Y.; Guerin, S.; Yuan, H.; O’Donnell, J.; Xue, B.; Cazade, P.A.; Haq, E.U.; Shimon, L.J.; Rencus-Lazar, S.; Tofail, S.A.; et al. Guest Molecule-Mediated Energy Harvesting in a Conformationally Sensitive Peptide-Metal Organic Framework. J. Am. Chem. Soc. 2022, 144, 3468–3476. [Google Scholar] [CrossRef]
- Basso Peressut, A.; Cristiani, C.; Dotelli, G.; Dotti, A.; Latorrata, S.; Bahamonde, A.; Gascó, A.; Hermosilla, D.; Balzarotti, R. Reduced Graphene Oxide/Waste-Derived TiO2 Composite Membranes: Preliminary Study of a New Material for Hybrid Wastewater Treatment. Nanomaterials 2023, 13, 1043. [Google Scholar] [CrossRef] [PubMed]
- Bolton, J.R.; Bircher, K.G.; Tumas, W.; Tolman, C.A. Figures-of-Merit for the Technical Development and Application of Advanced Oxidation Technologies for Both Electric- and Solar-Driven Systems—(IUPAC Technical Report). Pure Appl. Chem. 2001, 73, 627–637. [Google Scholar] [CrossRef]
- Miklos, D.B.; Remy, C.; Jekel, M.; Linden, K.G.; Drewes, J.E.; Huebner, U. Evaluation of Advanced Oxidation Processes for Water and Wastewater Treatment—A Critical Review. Water Res. 2018, 139, 118–131. [Google Scholar] [CrossRef]
- Ganiyu, S.O.; Sable, S.; El-Din, M.G. Advanced Oxidation Processes for the Degradation of Dissolved Organics in Produced Water: A Review of Process Performance, Degradation Kinetics and Pathway. Chem. Eng. J. 2022, 429, 132492. [Google Scholar] [CrossRef]
- Ângelo, J.; Andrade, L.; Madeira, L.M.; Mendes, A. An Overview of Photocatalysis Phenomena Applied to NOx Abatement. J. Environ. Manag. 2013, 129, 522–539. [Google Scholar] [CrossRef]
- Mills, A.; Lee, S.K. Detoxification of Water by Semiconductor Photocatalysis. J. Ind. Eng. Chem. 2004, 10, 173–187. [Google Scholar]
- Sornalingam, K.; McDonagh, A.; Zhou, J.L.; Johir, M.A.H.; Ahmed, M.B. Photocatalysis of Estrone in Water and Wastewater: Comparison between Au-TiO2 Nanocomposite and TiO2, and Degradation By-Products. Sci. Total Environ. 2018, 610, 521–530. [Google Scholar] [CrossRef] [PubMed]
- Alvillo-Rivera, A.; Garrido-Hoyos, S.; Buitron, G.; Thangarasu-Sarasvathi, P.; Rosano-Ortega, G. Biological Treatment for the Degradation of Cyanide: A Review. J. Mater. Res. Technol. 2021, 12, 1418–1433. [Google Scholar] [CrossRef]
- Jaramillo-Fierro, X.; Leon, R. Effect of Doping TiO2 NPs with Lanthanides (La, Ce and Eu) on the Adsorption and Photodegradation of Cyanide-A Comparative Study. Nanomaterials 2023, 13, 1068. [Google Scholar] [CrossRef] [PubMed]
- Upadhyay, G.K.; Rajput, J.K.; Pathak, T.K.; Kumar, V.; Purohit, L.P. Synthesis of ZnO:TiO2 Nanocomposites for Photocatalyst Application in Visible Light. Vacuum 2019, 160, 154–163. [Google Scholar] [CrossRef]
- Smith, J.G.; Faucheaux, J.A.; Jain, P.K. Plasmon Resonances for Solar Energy Harvesting: A Mechanistic Outlook. Nano Today 2015, 10, 67–80. [Google Scholar] [CrossRef]
- Ibhadon, A.O.; Pitzpatrick, P. Heterogeneous Photocatalysis: Recent Advances and Applications. Catalysts 2013, 3, 189–218. [Google Scholar] [CrossRef]
- Kabra, K.; Chaudhary, R.; Sawhney, R.L. Treatment of Hazardous Organic and Inorganic Compounds through Aqueous-Phase Photocatalysis: A Review. Ind. Eng. Chem. Res. 2004, 43, 7683–7696. [Google Scholar] [CrossRef]
- Liu, Y.; Li, Z.; Green, M.; Just, M.; Li, Y.Y.; Chen, X.B. Titanium Dioxide Nanomaterials for Photocatalysis. J. Phys. D Appl. Phys. 2017, 50, 193003. [Google Scholar] [CrossRef]
- Zhang, Y.F.; Fu, F.; Li, Y.Z.; Zhang, D.S.; Chen, Y.Y. One-Step Synthesis of Ag@TiO2 Nanoparticles for Enhanced Photocatalytic Performance. Nanomaterials 2018, 8, 1032. [Google Scholar] [CrossRef]
- Xu, C.X.; Chen, P.W.; Liu, J.J.; Yin, H.; Gao, X.; Mei, X.F. Fabrication of Visible-Light-Driven Ag/TiO2 Heterojunction Composites Induced by Shock Wave. J. Alloys Compd. 2016, 679, 463–469. [Google Scholar] [CrossRef]
- Du, J.; Gu, X.; Guo, H.Z.; Liu, J.; Wu, Q.; Zou, J.G. Self-Induced Preparation of TiO2 Nanowires by Chemical Vapor Deposition. J. Cryst. Growth 2015, 427, 54–59. [Google Scholar] [CrossRef]
- Grover, I.S.; Prajapat, R.C.; Singh, S.; Pal, B. Highly Photoactive Au-TiO2 Nanowires for Improved Photo-Degradation of Propiconazole Fungicide under UV/Sunlight Irradiation. Sol. Energy 2017, 144, 612–618. [Google Scholar] [CrossRef]
- Tsai, C.Y.; Liu, C.W.; Hsi, H.C.; Lin, K.S.; Lin, Y.W.; Lai, L.C. Synthesis of Ag-Modified TiO2 Nanotube and its Application in Photocatalytic Degradation of Dyes and Elemental Mercury. J. Chem. Technol. Biotechnol. 2019, 94, 3251–3262. [Google Scholar] [CrossRef]
- Kang, S.; Choi, J.; Park, G.Y.; Kim, H.R.; Hwang, J. A Novel and Facile Synthesis of Ag-Doped TiO2 Nanofiber for Airborne Virus/Bacteria Inactivation and VOC Elimination under Visible Light. Appl. Surf. Sci. 2022, 599, 153930. [Google Scholar] [CrossRef]
- Kanmoni, V.G.G.; Daniel, S.; Raj, G.A.G. Photocatalytic Degradation of Chlorpyrifos in Aqueous Suspensions Using Nanocrystals of ZnO and TiO2. React. Kinet. Mech. Catal. 2012, 106, 325–339. [Google Scholar] [CrossRef]
- Guo, C.S.; Xu, J.A.; He, Y.; Zhang, Y.A.; Wang, Y.Q. Photodegradation of Rhodamine B and Methyl Orange over One-Dimensional TiO2 Catalysts under Simulated Solar Irradiation. Appl. Surf. Sci. 2011, 257, 3798–3803. [Google Scholar] [CrossRef]
- Jovic, V.; Chen, W.T.; Sun-Waterhouse, D.; Blackford, M.G.; Idriss, H.; Waterhouse, G.I.N. Effect of Gold Loading and TiO2 Support Composition on the Activity of Au/TiO2 Photocatalysts for H2 Production from Ethanol-Water Mixtures. J. Catal. 2013, 305, 307–317. [Google Scholar] [CrossRef]
- Hu, S.; Shaner, M.R.; Beardslee, J.A.; Lichterman, M.; Brunschwig, B.S.; Lewis, N.S. Amorphous TiO2 Coatings Stabilize Si, GaAs, and GaP Photoanodes for Efficient Water Oxidation. Science 2014, 344, 1005–1009. [Google Scholar] [CrossRef]
- Cao, X.B.; Lu, Z.F.; Zhu, L.W.; Yang, L.; Gu, L.; Cai, L.L.; Chen, J. A New Family of Sunlight-Driven Bifunctional Photocatalysts Based on TiO2 Nanoribbon Frameworks and Bismuth Oxohalide Nanoplates. Nanoscale 2014, 6, 1434–1444. [Google Scholar] [CrossRef]
- Hossain, M.K.; Mortuza, A.A.; Sen, S.K.; Basher, M.K.; Ashraf, M.W.; Tayyaba, S.; Mia, M.N.H.; Uddin, M.J. A Comparative Study on the Influence of Pure Anatase and Degussa-P25 TiO2 Nanomaterials on the Structural and Optical Properties of Dye Sensitized Solar Cell (DSSC) Photoanode. Optik 2018, 171, 507–516. [Google Scholar] [CrossRef]
- Lincho, J.; Zaleska-Medynska, A.; Martins, R.C.; Gomes, J. Nanostructured Photocatalysts for the Abatement of Contaminants by Photocatalysis and Photocatalytic Ozonation: An Overview. Sci. Total Environ. 2022, 837, 155776. [Google Scholar] [CrossRef] [PubMed]
- Elleuch, L.; Messaoud, M.; Djebali, K.; Attafi, M.; Cherni, Y.; Kasmi, M.; Elaoud, A.; Trabelsi, I.; Chatti, A. A New Insight into Highly Contaminated Landfill Leachate Treatment Using Kefir Grains Pre-Treatment Combined with Ag-Doped TiO2 Photocatalytic Process. J. Hazard. Mater. 2019, 382, 121119. [Google Scholar] [CrossRef] [PubMed]
- Komatsuda, S.; Asakura, Y.; Vequizo, J.J.M.; Yamakata, A.; Yin, S. Enhanced Photocatalytic NOx Decomposition of Visible-Light Responsive F-TiO2/(N,C)-TiO2 by Charge Transfer Between F-TiO2 and (N,C)-TiO2 through their Doping Levels. Appl. Catal. B Environ. 2018, 238, 358–364. [Google Scholar] [CrossRef]
- Kou, J.H.; Lu, C.H.; Wang, J.; Chen, Y.K.; Xu, Z.Z.; Varma, R.S. Selectivity Enhancement in Heterogeneous Photocatalytic Transformations. Chem. Rev. 2017, 117, 1445–1514. [Google Scholar] [CrossRef]
- Gao, X.H.; Zhou, B.H.; Yuan, R.F. Doping a Metal (Ag, Al, Mn, Ni and Zn) on TiO2 Nanotubes and its Effect on Rhodamine B Photocatalytic Oxidation. Environ. Eng. Res. 2015, 20, 329–335. [Google Scholar] [CrossRef]
- Belver, C.; Hinojosa, M.; Bedia, J.; Tobajas, M.; Alvarez, M.A.; Rodriguez-Gonzalez, V.; Rodriguez, J.J. Ag-Coated Heterostructures of ZnO-TiO2/Delaminated Montmorillonite as Solar Photocatalysts. Materials 2017, 10, 960. [Google Scholar] [CrossRef]
- Liu, S.Q.; Zhang, N.; Tang, Z.R.; Xu, Y.J. Synthesis of One-Dimensional CdS@TiO2 Core-Shell Nanocomposites Photocatalyst for Selective Redox: The Dual Role of TiO2 Shell. ACS Appl. Mater. Interfaces 2012, 4, 6378–6385. [Google Scholar] [CrossRef]
- Low, J.X.; Dai, B.Z.; Tong, T.; Jiang, C.J.; Yu, J.G. In Situ Irradiated X-Ray Photoelectron Spectroscopy Investigation on a Direct Z-Scheme TiO2/CdS Composite Film Photocatalyst. Adv. Mater. 2019, 31, 1802981. [Google Scholar] [CrossRef]
- Sung-Suh, H.M.; Choi, J.R.; Hah, H.J.; Koo, S.M.; Bae, Y.C. Comparison of Ag Deposition Effects on the Photocatalytic Activity of Nanoparticulate TiO2 under Visible and UV Light Irradiation. J. Photochem. Photobiol. A Chem. 2004, 163, 37–44. [Google Scholar] [CrossRef]
- Liu, S.H.; Huang, G.; Wang, J.F.; Bao, J.S.; Wang, M.Y.; Wei, Y.Q.; Zhong, Y.; Bai, F. Noble Metal Nanoparticle-Loaded Porphyrin Hexagonal Submicrowires Composites (M-HW): Photocatalytic Synthesis and Enhanced Photocatalytic Activity. Nanomaterials 2023, 13, 660. [Google Scholar] [CrossRef]
- Liu, L.Q.; Zhang, X.N.; Yang, L.F.; Ren, L.T.; Wang, D.F.; Ye, J.H. Metal Nanoparticles Induced Photocatalysis. Natl. Sci. Rev. 2017, 4, 761–780. [Google Scholar] [CrossRef]
- Chen, D.; Chen, Q.; Ge, L.; Yin, L.; Fan, B.; Wang, H.; Lu, H.; Xu, H.; Zhang, R.; Shao, G. Synthesis and Ag-Loading-Density-Dependent Photocatalytic Activity of Ag@TiO2 Hybrid Nanocrystals. Appl. Surf. Sci. 2013, 284, 921–929. [Google Scholar] [CrossRef]
- Huang, P.S.; Qin, F.; Lee, J.K. Role of the Interface between Ag and ZnO in the Electric Conductivity of Ag Nanoparticle-Embedded ZnO. ACS Appl. Mater. Interfaces 2020, 12, 4715–4721. [Google Scholar] [CrossRef]
- Wu, Y.Y.; Zhang, L.L.; Zhou, Y.Z.; Zhang, L.L.; Li, Y.; Liu, Q.Q.; Hu, J.; Yang, J. Light-Induced ZnO/Ag/rGO Bactericidal Photocatalyst with Synergistic Effect of Sustained Release of Silver Ions and Enhanced Reactive Oxygen Species. Chin. J. Catal. 2019, 40, 691–702. [Google Scholar] [CrossRef]
- Ou, W.H.; Shen, J.D.; Lyu, F.C.; Xiao, X.F.; Zhou, B.B.; Lu, J.; Li, Y.Y. Facile Surfactant-, Reductant-, and Ag Salt-Free Growth of Ag Nanoparticles with Controllable Size from 35 to 660 nm on Bulk Ag Materials. Chem.-Asian J. 2021, 16, 2249–2252. [Google Scholar] [CrossRef]
- Ruan, W.; Cui, Y.; Lin, F.; Zhou, T.; Hui, G.; Wang, Y.; Chen, Y.; Lu, F.; Guo, J.; Zhao, B. Fabrication of Periodical Ag-Au Compound Nanostructure Films with Controllable Ag Nanoparticle Aggregate Patterns: A Study on Surface-Enhanced Raman Scattering. J. Raman Spectrosc. 2015, 46, 1117–1123. [Google Scholar] [CrossRef]
- Ma, J.Y.; Tan, X.J.; Zhang, Q.Q.; Wang, Y.; Zhang, J.L.; Wang, L.Z. Exploring the Size Effect of Pt Nanoparticles on the Photocatalytic Nonoxidative Coupling of Methane. ACS Catal. 2021, 11, 3352–3360. [Google Scholar] [CrossRef]
- Abdelghany, A.M.; Abdelrazek, E.M.; Badr, S.I.; Abdel-Aziz, M.S.; Morsi, M.A. Effect of Gamma-Irradiation on Biosynthesized Gold Nanoparticles Using Chenopodium Murale Leaf Extract. J. Saudi Chem. Soc. 2017, 21, 528–537. [Google Scholar] [CrossRef]
- Que, X.; Lin, T.; Li, S.; Chen, X.; Hu, C.; Wang, Y.; Shi, M.; Peng, J.; Li, J.; Ma, J.; et al. Radiation Synthesis of Size-Controllable Ruthenium-Based Electrocatalysts for Hydrogen Evolution Reaction. Appl. Surf. Sci. 2021, 541, 148345–148352. [Google Scholar] [CrossRef]
- Mahdieh, Z.M.; Shekarriz, S.; Taromi, F.A.; Montazer, M. A New Method for in situ Synthesis of Ag-TiO2 Nanocomposite Particles on Polyester/Cellulose Fabric by Photoreduction and Self-Cleaning Properties. Cellulose 2018, 25, 2355–2366. [Google Scholar] [CrossRef]
- Lenzi, G.G.; Favero, C.V.B.; Colpini, L.M.S.; Bernabe, H.; Baesso, M.L.; Specchia, S.; Santos, O.A.A. Photocatalytic Reduction of Hg(II) on TiO2 and Ag/TiO2 Prepared by the Sol-Gel and Impregnation Methods. Desalination 2011, 270, 241–247. [Google Scholar] [CrossRef]
- Liu, R.R.; Ji, Z.J.; Wang, J.; Zhang, J.J. Solvothermal Synthesized Ag-Decorated TiO2/Sepiolite Composite with Enhanced UV-Vis and Visible Light Photocatalytic Activity. Micropor. Mesopor. Mater. 2018, 266, 268–275. [Google Scholar] [CrossRef]
- Sun, Y.; Gao, Y.; Zeng, J.Y.; Guo, J.; Wang, H. Enhancing Visible-Light Photocatalytic Activity of Ag-TiO2 Nanowire Composites by One-Step Hydrothermal Process. Mater. Lett. 2020, 279, 128506–128510. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, T.; Zhou, M.; Wang, Y.; Zhang, Z.M. Hydrothermal Preparation of Ag-TiO2 Nanostructures with Exposed {001}/{101} Facets for Enhancing Visible Light Photocatalytic Activity. Ceram. Int. 2017, 43, 3118–3126. [Google Scholar] [CrossRef]
- Wang, C.L.; Yang, K.; Wei, X.H.; Ding, S.; Tian, F.; Li, F. One-pot solvothermal synthesis of carbon dots/Ag nanoparticles/TiO2 nanocomposites with enhanced photocatalytic performance. Ceram. Int. 2018, 44, 22481–22488. [Google Scholar] [CrossRef]
- Zhang, L.X.; Ni, C.H.; Jiu, H.F.; Xie, C.M.; Yan, J.B.; Qi, G.S. One-pot synthesis of Ag-TiO2/reduced graphene oxide nanocomposite for high performance of adsorption and photocatalysis. Ceram. Int. 2017, 43, 5450–5456. [Google Scholar] [CrossRef]
- Di, L.B.; Xu, Z.J.; Zhang, X.L. Atmospheric-Pressure Cold Plasma for Synthesizing Ag Modified Degussa P25 with Visible Light Activity Using Dielectric Barrier Discharge. Catal. Today 2013, 211, 143–146. [Google Scholar] [CrossRef]
- Dong, P.M.; Nie, X.X.; Jin, Z.; Huang, Z.F.; Wang, X.Y.; Zhang, X.W. Dual Dielectric Barrier Discharge Plasma Treatments for Synthesis of Ag-TiO2 Functionalized Polypropylene Fabrics. Ind. Eng. Chem. Res. 2019, 58, 7734–7741. [Google Scholar] [CrossRef]
- Cheng, X.D.; Dong, P.M.; Huang, Z.F.; Zhang, Y.Z.; Chen, Y.; Nie, X.X.; Zhang, X.W. Green Synthesis of Plasmonic Ag Nanoparticles Anchored TiO2 Nanorod Arrays Using Cold Plasma for Visible-Light-Driven Photocatalytic Reduction of CO2. J. CO2 Util. 2017, 20, 200–207. [Google Scholar] [CrossRef]
- Dong, P.M.; Yang, F.F.; Cheng, X.D.; Huang, Z.F.; Nie, X.X.; Xiao, Y.H.; Zhang, X.W. Plasmon enhanced photocatalytic and antimicrobial activities of Ag-TiO2 nanocomposites under visible light irradiation prepared by DBD cold plasma treatment. Mater. Sci. Eng. C 2019, 96, 197–204. [Google Scholar] [CrossRef]
- Liang, H.J.; Jia, Z.C.; Zhang, H.C.; Wang, X.B.; Wang, J.J. Photocatalysis Oxidation Activity Regulation of Ag/TiO2 Composites Evaluated by the Selective Oxidation of Rhodamine B. Appl. Surf. Sci. 2017, 422, 1–10. [Google Scholar] [CrossRef]
- Zhou, B.; Hong, H.T.; Zhang, H.F.; Yu, S.S.; Tian, H.W. Heterostructured Ag/g-C3N4/TiO2 with enhanced visible light photocatalytic performances. J. Chem. Technol. Biotechnol. 2019, 94, 3806–3814. [Google Scholar] [CrossRef]
- Flores-Rojas, G.G.; Lopez-Saucedo, F.; Bucio, E. Gamma-Irradiation Applied in the Synthesis of Metallic and Organic Nanoparticles: A Short Review. Radiat. Phys. Chem. 2020, 169, 107962–107977. [Google Scholar] [CrossRef]
- Belloni, J.; Marignier, J.L.; Mostafavi, M. Mechanisms of Metal Nanoparticles Nucleation and Growth Studied by Radiolysis. Radiat. Phys. Chem. 2020, 169, 107952. [Google Scholar] [CrossRef]
- Rojas, J.V.; Castano, C.H. Production of Palladium Nanoparticles Supported on Multiwalled Carbon Nanotubes by Gamma Irradiation. Radiat. Phys. Chem. 2012, 81, 16–21. [Google Scholar] [CrossRef]
- Sanchez-Polo, M.; Lopez-Penalver, J.; Prados-Joya, G.; Ferro-Garcia, M.A.; Rivera-Utrilla, J. Gamma Irradiation of Pharmaceutical Compounds, Nitroimidazoles, as a New Alternative for Water Treatment. Water Res. 2009, 43, 4028–4036. [Google Scholar] [CrossRef]
- Fu, X.; Zhang, Y.; Cao, P.; Ma, H.; Liu, P.; He, L.; Peng, J.; Li, J.; Zhai, M. Radiation Synthesis of CdS/Reduced Graphene Oxide Nanocomposites for Visible-Light-Driven Photocatalytic Degradation of Organic Contaminant. Radiat. Phys. Chem. 2016, 123, 79–86. [Google Scholar] [CrossRef]
- Kozmer, Z.; Takacs, E.; Wojnarovits, L.; Alapi, T.; Hernadi, K.; Dombi, A. The Influence of Radical Transfer and Scavenger Materials in Various Concentrations on the Gamma Radiolysis of Phenol. Radiat. Phys. Chem. 2016, 124, 52–57. [Google Scholar] [CrossRef]
- Wang, S.; Zhang, Y.; Ma, H.L.; Zhang, Q.; Xu, W.; Peng, J.; Li, J.; Yu, Z.Z.; Zhai, M. Ionic-Liquid-Assisted Facile Synthesis of Silver Nanoparticle-Reduced Graphene Oxide Hybrids by Gamma Irradiation. Carbon 2013, 55, 245–252. [Google Scholar] [CrossRef]
- Murdoch, M.; Waterhouse, G.I.N.; Nadeem, N.A.; Metson, J.B.; Keane, M.A.; Howe, R.F.; Llorca, J.; Idriss, H. The Effect of Gold Loading and Particle Size on Photocatalytic Hydrogen Production from Ethanol over Au/TiO2 Nanoparticles. Nat. Chem. 2011, 3, 489–492. [Google Scholar] [CrossRef]
- UV-Vis-NIR Spectrum for Calculation of Bandgap. Available online: https://iscms.westlake.edu.cn/info/1052/1436.htm (accessed on 25 April 2023).
- Wang, Y.; Feng, C.X.; Zhang, M.; Yang, J.J.; Zhang, Z.J. Visible Light Active N-Doped TiO2 Prepared from Different Precursors: Origin of the Visible Light Absorption and Photoactivity. Appl. Catal. B Environ. 2011, 104, 268–274. [Google Scholar] [CrossRef]
- Natarajan, T.S.; Thomas, M.; Natarajan, K.; Bajaj, H.C.; Tayade, R.J. Study on UV-LED/TiO2 Process for Degradation of Rhodamine B Dye. Chem. Eng. J. 2011, 169, 126–134. [Google Scholar] [CrossRef]
- Hajipour, P.; Bahrami, A.; Mehr, M.Y.; van Driel, W.D.; Zhang, K.C. Facile Synthesis of Ag Nanowire/TiO2 and Ag Nanowire/TiO2/GO Nanocomposites for Photocatalytic Degradation of Rhodamine B. Materials 2021, 14, 763. [Google Scholar] [CrossRef] [PubMed]
- Ma, J.; Xu, S.Y.; Chu, J.; Xue, J.Q.; Tang, J.L.; Qiang, L.S. Effect of Metal-Support Interaction on the Structural and Enhanced Photocatalytic Performance of Mesoporous M-TiO2/SBA-16 (M = Ag and Fe). J. Porous Mater. 2017, 24, 45–54. [Google Scholar] [CrossRef]
Sample | Feed Ratio (Ag/P25 wt%) | Dose Rate (Gy/min) | Free Radical Scavenger |
---|---|---|---|
P25 | 0 | / | / |
Ag/P25-1 | 0.5 | 31 | IPA |
Ag/P25-2 | 1.0 | 31 | IPA |
Ag/P25-3 | 2.5 | 31 | IPA |
Ag/P25-4 | 5.0 | 31 | IPA |
Ag/P25-5 | 2.5 | 7.2 | IPA |
Ag/P25-6 | 2.5 | 130 | IPA |
Ag/P25-7 | 2.5 | 31 | EMImAc |
Ag/P25-8 | 2.5 | 31 | EG |
Sample | Feed Ratio (Ag/P25 wt%) | Ag (wt%) | Doping Efficiency (%) |
---|---|---|---|
Ag/P25-1 | 0.5 | 0.37 | 74 |
Ag/P25-2 | 1.0 | 0.71 | 71 |
Ag/P25-3 | 2.5 | 2.18 | 87 |
Ag/P25-4 | 5.0 | 4.22 | 84 |
Photocatalysts | Preparation Method | Light Source | Reaction Solution and Amount | Removal Time and Percentage | Reaction Rate Constant (min−1) | Reference |
---|---|---|---|---|---|---|
Ag-1%@P25 | Photo reduction | Homemade light source (λ > 400 nm, ~150 mW/cm2) | 10 mg/L, 25 mL, 50 mg | 30 min, 95% | 0.113(4) | [42] |
3 at% Ag-TiO2 nanowire | Hydrothermal process | 350 W Xenon light | 10 mg/L, 200 mL, 100 mg | 45 min, 100% | NA | [53] |
2 at% Ag-TiO2 nanostructure | Hydrothermal process | 800 W Xenon light (λ > 420 nm) | 10 mg/L, 50 mL, 30 mg | 270 min, 95% | 0.01108 | [54] |
Ag/TiO2-II | Photo reduction | 500 W mercury lamp (UV) | 10 mg/L, 300 mL, 600 mg | 180 min, 93% | 0.0144 | [61] |
500 W Xenon lamp (Visible light) | 180 min, 88% | 0.0111 | ||||
Ag/TiO2 nanowire | Polyol method | Xenon light of 75.9 kJ/m2 | 12 mg/L, NA | 100 min, 84% | 0.026 | [74] |
1.0%Ag–TiO2/ SBA-16 | Wet impregnation method | 300 W Xenon light (λ > 420 nm) | 10 mg/L, 100 mL, 50 mg | 120 min, 90% | 0.02072 | [75] |
Ag/P25-6 | Gamma radiation reduction | 300 W Xenon light | 30 mg/L, 90 mL, 30 mg | 45 min, 97% | 0.0674 | this work |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zeng, Z.; Li, S.; Que, X.; Peng, J.; Li, J.; Zhai, M. Gamma Radiation Synthesis of Ag/P25 Nanocomposites for Efficient Photocatalytic Degradation of Organic Contaminant. Nanomaterials 2023, 13, 1666. https://doi.org/10.3390/nano13101666
Zeng Z, Li S, Que X, Peng J, Li J, Zhai M. Gamma Radiation Synthesis of Ag/P25 Nanocomposites for Efficient Photocatalytic Degradation of Organic Contaminant. Nanomaterials. 2023; 13(10):1666. https://doi.org/10.3390/nano13101666
Chicago/Turabian StyleZeng, Zihua, Shuangxiao Li, Xueyan Que, Jing Peng, Jiuqiang Li, and Maolin Zhai. 2023. "Gamma Radiation Synthesis of Ag/P25 Nanocomposites for Efficient Photocatalytic Degradation of Organic Contaminant" Nanomaterials 13, no. 10: 1666. https://doi.org/10.3390/nano13101666