Polyelectrolyte Complex Based Interfacial Drug Delivery System with Controlled Loading and Improved Release Performance for Bone Therapeutics
Abstract
:1. Introduction
2. Experimental Section
2.1. Materials
2.2. Preparation of Polyelectrolyte Complex (PEC) Particles
- : molar mixing ratio
- : molar charge units of PA and PC
- : molar amount of anionic (n−) and cationic (n+) repeating units
2.3. Centrifugation of PEC Particles and Coating Procedure
2.4. Quantitative UV/VIS and CD Spectroscopy
2.5. Quantitative ATR-FTIR Spectroscopy
2.5.1. Factor Analysis (FA)
- : PEC absorbance spectrum
- : factor of the j-th pure component absorbance spectrum
- : j-th pure component (factor) spectrum
- X: residuals
2.5.2. Lineshape Analysis (LSA)
2.6. Colloid Titration
2.7. Dynamic Light Scattering (DLS)
2.8. Scanning Force Microscopy (SFM)
2.9. Cellular Compatibility
3. Results and Discussion
3.1. Drug Free PEC Systems
3.1.1. Colloid Properties
3.1.2. Adhesive Properties of PEC Coatings
3.2. Drug Loaded PEC
3.2.1. Preparation Aspects
3.2.2. Colloidal Properties
3.3. Drug Release from PEC Coatings at Model Substrate
3.3.1. Pure Drug Release
3.3.2. Effect of pH on Drug Release
Risedronate/PEC
Rifampicin/PEC
3.3.3. Effect of Salt
3.4. Drug Release and Biocompatibility of PEC NP Coatings at Implant Material
3.4.1. Drug Release
3.4.2. Biocompatibility
4. Conclusions
Supplementary Materials
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Sessa, G.; Weissmann, G. Incorporation of lysozyme into liposomes. J. Biol. Chem. 1970, 245, 2295–2301. [Google Scholar]
- Jain, S.; Kumar, D.; Swarnakar, N.; Thanki, K. Polyelectrolyte stabilized multilayered liposomes for oral delivery of paclitaxel. Biomaterials 2012, 33, 6758–6768. [Google Scholar] [CrossRef] [PubMed]
- Caddeo, C.; Díez-Sales, O.; Pons, R.; Carbone, C.; Ennas, G.; Puglisi, G.; Fadda, A.M.; Manconi, M. Cross-linked chitosan/liposome hybrid system for the intestinal delivery of quercetin. J. Colloid Interface Sci. 2016, 461, 69–78. [Google Scholar] [CrossRef] [PubMed]
- Guo, H.; Kim, J.C. Upper critical solution temperature behavior of cinnamic acid and polyethyleneimine mixture and its effect on temperature-dependent release of liposome. Int. J. Pharm. 2015, 494, 172–179. [Google Scholar] [CrossRef] [PubMed]
- Bae, Y.; Nishiyama, N.; Fukushima, S.; Koyama, H.; Yasuhiro, M.; Kataoka, K. Preparation and biological characterization of polymeric micelle drug carriers with intracellular pH-triggered drug release property: Tumor permeability, controlled subcellular drug distribution and enhanced in vivo antitumor efficacy. Bioconj. Chem. 2005, 16, 122–130. [Google Scholar] [CrossRef] [PubMed]
- Bae, Y.; Jang, W.D.; Nishiyama, N.; Fukushima, S.; Kataoka, K. Multifunctional polymeric micelles with folate-mediated cancer cell targeting and pH-triggered drug releasing properties for active intracellular drug delivery. Mol. Biosyst. 2005, 1, 242–250. [Google Scholar] [CrossRef] [PubMed]
- Topete, A.; Barbosa, S.; Taboada, P. Intelligent micellar polymeric nanocarriers for therapeutics and diagnosis. J. Appl. Polym. Sci. 2015, 132. [Google Scholar] [CrossRef]
- Sosnik, A.; Raskin, M.M. Polymeric micelles in mucosal drug delivery: Challenges towards clinical translation. Biotechnol. Adv. 2015, 33, 1380–1392. [Google Scholar] [CrossRef] [PubMed]
- Donath, E.; Sukhorukov, G.B.; Caruso, F.; Davis, S.A.; Möhwald, H. Novel hollow polymer shells by colloid-templated assembly of polyelectrolytes. Angew. Chem. Int. Ed. 1998, 37, 2324–2327. [Google Scholar] [CrossRef]
- Shi, J.; Du, C.; Wang, Y.; Cao, S. Hollow multilayer microcapsules for pH-/thermally responsive drug delivery using aliphatic poly(urethane-amine) as smart component. Macromol. Biosci. 2013, 13, 494–502. [Google Scholar] [CrossRef] [PubMed]
- Miksa, B. Recent progress in designing shell cross-linked polymer capsules for drug delivery. RSC Adv. 2015, 5, 87781–87805. [Google Scholar] [CrossRef]
- Staedler, B.; Price, A.D.; Zelikin, A.N.A. Critical look at multilayered polymer capsules in biomedicine: Drug carriers, artificial organelles and cell mimics. Adv. Funct. Mater. 2011, 21, 14–28. [Google Scholar] [CrossRef]
- Müller, M.; Keßler, B. Release of pamidronate from poly(ethyleneimine)/cellulose sulphate complex nanoparticle films: An in situ ATR-FTIR study. J. Pharm. Biomed. Anal. 2012, 66, 183–190. [Google Scholar] [CrossRef] [PubMed]
- Striegler, C.; Schumacher, M.; Effenberg, C.; Müller, M.; Seckinger, A.; Schnettler, R.; Voit, B.; Hose, D.; Gelinsky, M.; Appelhans, D. Dendritic glycopolymer as drug delivery system for proteasome inhibitor bortezomib in a calcium phosphate bone cement: First steps towards a local therapy of osteolytic bone lesions. Macromol. Biosci. 2015, 15, 1283–1295. [Google Scholar] [CrossRef] [PubMed]
- Helth, A.; Gostin, P.F.; Oswald, S.; Wendrock, H.; Wolff, U.; Hempel, U.; Arnhold, S.; Calin, M.; Eckert, J.; Gebert, A. Chemical nanoroughening of Ti40Nb surfaces and its effect on human mesenchymal stromal cell response. J. Biomed. Mater. Res. B 2014, 102, 31–41. [Google Scholar] [CrossRef] [PubMed]
- Thünemann, A.F.; Müller, M.; Dautzenberg, H.; Joanny, J.F.; Löwen, H. Polyelectrolyte complexes. Adv. Polym. Sci. 2004, 166, 113–171. [Google Scholar]
- Müller, M. Polyelectrolyte Complexes in the Dispersed and Solid State. In Advances of Polymer Science; Springer: Berlin/Heidelberg, Germany, 2014; Volume 255. [Google Scholar]
- Müller, M. Sizing, shaping and pharmaceutical applications of polyelectrolyte complex nanoparticles. Adv. Polym. Sci. 2014, 256, 197–260. [Google Scholar]
- Bauer, H.H.; Müller, M.; Goette, J.; Merkle, H.P.; Fringeli, U.P. Interfacial Adsorption and aggregation associated changes in secondary structure of human calcitonin monitored by ATR-FTIR spectroscopy. Biochemistry 1994, 33, 12276–12282. [Google Scholar] [CrossRef] [PubMed]
- Torger, B.; Vehlow, D.; Urban, B.; Salem, S.; Appelhans, D.; Müller, M. Cast adhesive polyelectrolyte complex particle films of unmodified or maltose-modified poly(ethyleneimine) and cellulose sulphate: Fabrication, film stability and retarded release of zoledronate. Biointerphases 2013, 8. [Google Scholar] [CrossRef] [PubMed]
- Müller, M.; Kessler, B.; Richter, S. Preparation of monomodal polyelectrolyte complexe nanoparticles of PDADMAC/poly(maleic acid‑alt‑α‑methylstyrene) by consecutive centrifugation. Langmuir 2005, 21, 7044–7051. [Google Scholar] [CrossRef] [PubMed]
- Müller, M.; Torger, B.; Wehrum, D.; Vehlow, D.; Urban, B.; Woltman, B.; Hempel, U. Drug delivery and cell interaction of adhesive poly(ethyleneimine)/sulphated polysaccharide complex particle films. Biointerphases 2015, 10. [Google Scholar] [CrossRef] [PubMed]
- Product Monograph, Actonel, Risedronate Sodium; Warner Chilcott Canada Company (Sanofi-Aventis): Toronto, ON, Canada, 2011.
- Gallo, G.G.; Radaelli, P. Analytical Profiles of Drug Substances; Florey, K., Ed.; Academic Press: Cambridge, MA, USA, 1976; Volume 5, p. 467. [Google Scholar]
- Schulz, G.E.; Schirmer, R.H. Principles of Protein Structure; Springer: Berlin/Heidelberg, Germany, 1985. [Google Scholar]
- Ebert, G. Biopolymere; Teubner: Stuttgart, Germany, 1993. [Google Scholar]
- Deserno, M.; May, S.; Holm, C. Fraction of condensed counterions around a charged rod: Comparison of Poisson-Boltzmann theory and computer simulations. Macromolecules 2000, 33, 199–206. [Google Scholar] [CrossRef]
- Evans, D.F.; Wennerström, H. The Colloidal Domain: Where Physics, Chemistry, Biology, and Technology Meet; VCH Publishers: Weinheim, Germany, 1994. [Google Scholar]
- Calin, M.; Helth, A.; Gutierrez, M.J.J.; Bönisch, M.; Brackmann, V.; Giebeler, L.; Gemming, T.; Lekka, C.E.; Gebert, A.; Schnettler, R.; et al. Elastic softening of β-type Ti-Nb alloys by indium (In) additions. J. Mech. Behav. Biomed. Mater. 2014, 39, 162–174. [Google Scholar] [CrossRef] [PubMed]
PEL Sample | Factor F+/− | Charge Sign | Degree of Substitution (DS) (Supplier) |
---|---|---|---|
PLL | 1.004 ± 0.025 | (+) | 1.0 |
CS-0.5 | 0.401 ± 0.016 | (−) | 0.5 |
CS-3.0 | 3.046 ± 0.030 | (−) | 3.0 |
CS-1.0 * | 1.035 ± 0.020 | (−) | 1.0 |
Sample | Countrate (kHz) | Hydrodynamic Radius RH (nm) | Polydispersity Index | |
---|---|---|---|---|
PEC 0.9 PLL/CS-0.5 | before | 70 ± 3 | 131 ± 69 | 0.37 ± 0.03 |
after | 56 ± 11 | 235 ± 86 | 0.50 ± 0.02 | |
PEC 1.1 PLL/CS-0.5 | before | 67 ± 10 | 211 ± 107 | 0.48 ± 0.01 |
after | 56 ± 3 | 229 ± 65 | 0.48 ± 0.03 | |
PEC 0.9 PLL/CS-1.0 | before | 127 ± 14 | 98 ± 15 | 0.20 ± 0.02 |
after | 112 ± 12 | 121 ± 36 | 0.35 ± 0.10 | |
PEC 1.1 PLL/CS-1.0 | before | 135 ± 18 | 133 ± 15 | 0.28 ± 0.08 |
after | 125 ± 18 | 157 ± 32 | 0.39 ± 0.10 | |
PEC 0.9 PLL/CS-3.0 | before | 185 ± 14 | 100 ± 18 | 0.21 ± 0.01 |
after | 123 ± 9 | 155 ± 45 | 0.39 ± 0.02 | |
PEC 1.1 PLL/CS-3.0 | before | 202 ± 24 | 109 ± 25 | 0.26 ± 0.05 |
after | 135 ± 3 | 236 ± 64 | 0.49 ± 0.24 |
Sample | Countrate (kHz) | Hydrodynamic Radius RH (nm) | Polydispersity Index |
---|---|---|---|
RIS/[PLL/CS-1.0]-0.9 | 54 ± 6 | 1074 ± 420 | 0.39 ± 0.06 |
RIF/[PLL/CS-1.0]-1.2 | 43 ± 2 | 592 ± 41 | 0.32 ± 0.03 |
pH of Release Medium | RIS/REC 0.9 | RIF/PEC 1.2 | ||
---|---|---|---|---|
IB (%) | RC (%) | IB (%) | RC (%) | |
pH = 4 | 70 ± 4 | 9 ± 5 | 5 ± 4 | 62 ± 9 |
pH = 7 | 18 ± 11 | 64 ± 5 | 23 ± 17 | 21 ± 15 |
pH = 10 | 3 ± 4 | 96 ± 7 | 79 ± 13 | 5 ± 4 |
Salt Concentration of Release Media | RIS/PEC 0.9 | |
---|---|---|
IB (%) | RC (%) | |
0.001 M | 6 ± 1 | 100 ± 1 |
0.01 M | 7 ± 1 | 87 ± 2 |
0.1 M | 7 ± 1 | 31 ± 7 |
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons by Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vehlow, D.; Schmidt, R.; Gebert, A.; Siebert, M.; Lips, K.S.; Müller, M. Polyelectrolyte Complex Based Interfacial Drug Delivery System with Controlled Loading and Improved Release Performance for Bone Therapeutics. Nanomaterials 2016, 6, 53. https://doi.org/10.3390/nano6030053
Vehlow D, Schmidt R, Gebert A, Siebert M, Lips KS, Müller M. Polyelectrolyte Complex Based Interfacial Drug Delivery System with Controlled Loading and Improved Release Performance for Bone Therapeutics. Nanomaterials. 2016; 6(3):53. https://doi.org/10.3390/nano6030053
Chicago/Turabian StyleVehlow, David, Romy Schmidt, Annett Gebert, Maximilian Siebert, Katrin Susanne Lips, and Martin Müller. 2016. "Polyelectrolyte Complex Based Interfacial Drug Delivery System with Controlled Loading and Improved Release Performance for Bone Therapeutics" Nanomaterials 6, no. 3: 53. https://doi.org/10.3390/nano6030053
APA StyleVehlow, D., Schmidt, R., Gebert, A., Siebert, M., Lips, K. S., & Müller, M. (2016). Polyelectrolyte Complex Based Interfacial Drug Delivery System with Controlled Loading and Improved Release Performance for Bone Therapeutics. Nanomaterials, 6(3), 53. https://doi.org/10.3390/nano6030053