Enhanced Electroluminescence from Silicon Quantum Dots Embedded in Silicon Nitride Thin Films Coupled with Gold Nanoparticles in Light Emitting Devices
Abstract
:1. Introduction
2. Methods
3. Results and Discussion
3.1. Preparation of the Layered Luminescent Devices
3.2. Electroluminescence
3.3. J-E Characteristics
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Abeles, B.; Tiedje, T. Amorphous Semiconductor Superlattices. Phys. Rev. Lett. 1983, 51, 2003–2006. [Google Scholar] [CrossRef]
- DiMaria, D.J.; Kirtley, J.R.; Pakulis, E.J.; Dong, D.W.; Kuan, T.S.; Pesavento, F.L.; Theis, T.N.; Cutro, J.A.; Brorson, S.D. Electroluminescence studies in silicon dioxide films containing tiny silicon islands. J. Appl. Phys. 1984, 56, 401–416. [Google Scholar] [CrossRef]
- Canham, L.T. Silicon quantum wire array fabrication by electrochemical and chemical dissolution of wafers. Appl. Phys. Lett. 1990, 57, 1046–1048. [Google Scholar] [CrossRef]
- Pavesi, L.; Gaburro, Z.; Negro, L.D.; Bettotti, P.; Prakash, G.V.; Cazzanelli, M.; Oton, C.J. Nanostructured silicon as a photonic material. Opt. Lasers Eng. 2003, 39, 345–368. [Google Scholar] [CrossRef]
- Streshinsky, M.; Ding, R.; Liu, Y.; Novack, A.; Galland, C.; Lim, A.E.-J.; Guo-Qiang Lo, P.; Baehr-Jones, T.; Hochberg, M. The Road to Affordable, Large-Scale Silicon Photonics. Opt. Photonics News 2013, 24, 32. [Google Scholar] [CrossRef]
- Rickman, A. The commercialization of silicon photonics. Nat. Photonics 2014, 8, 579–582. [Google Scholar] [CrossRef]
- Priolo, F.; Gregorkiewicz, T.; Galli, M.; Krauss, T.F. Silicon nanostructures for photonics and photovoltaics. Nat. Nanotechnol. 2014, 9, 19–32. [Google Scholar] [CrossRef] [PubMed]
- Park, N.-M.; Choi, C.-J.; Seong, T.-Y.; Park, S.-J. Quantum Confinement in Amorphous Silicon Quantum Dots Embedded in Silicon Nitride. Phys. Rev. Lett. 2001, 86, 1355–1357. [Google Scholar] [CrossRef] [PubMed]
- Kim, T.-W.; Cho, C.-H.; Kim, B.-H.; Park, S.-J. Quantum confinement effect in crystalline silicon quantum dots in silicon nitride grown using SiH4 and NH3. Appl. Phys. Lett. 2006, 88, 123102. [Google Scholar] [CrossRef]
- Kim, T.; Park, N.; Kim, K.; Yong, G. Quantum confinement effect of silicon nanocrystals in situ grown in silicon nitride films. Appl. Phys. Lett. 2004, 85, 5355–5357. [Google Scholar] [CrossRef]
- Rodriguez, A.; Arenas, J.; Alonso, J.C. Photoluminescence mechanisms in silicon quantum dots embedded in nanometric chlorinated-silicon nitride films. J. Lumin. 2012, 132, 2385–2389. [Google Scholar] [CrossRef]
- Das, D.; Samanta, A. Quantum size effects on the optical properties of nc-Si QDs embedded in an a-SiOx matrix synthesized by spontaneous plasma processing. Phys. Chem. Chem. Phys. 2015, 17, 5063–5071. [Google Scholar] [CrossRef] [PubMed]
- Alonso, J.C.; Pulgarín, F.A.; Monroy, B.M.; Benami, A.; Bizarro, M.; Ortiz, A. Visible electroluminescence from silicon nanoclusters embedded in chlorinated silicon nitride thin films. Thin Solid Films 2010, 518, 3891–3893. [Google Scholar] [CrossRef]
- Biteen, J.S.; Pacifici, D.; Lewis, N.S.; Atwater, H.A. Enhanced Radiative Emission Rate and Quantum Efficiency in Coupled Silicon Nanocrystal-Nanostructured Gold Emitters. Nano Lett. 2005, 5, 1768–1773. [Google Scholar] [CrossRef] [PubMed]
- Biteen, J.S.; Lewis, N.S.; Atwater, H.A.; Mertens, H.; Polman, A. Spectral tuning of plasmon-enhanced silicon quantum dot luminescence. Appl. Phys. Lett. 2006, 88, 131109. [Google Scholar] [CrossRef]
- Mertens, H.; Biteen, J.S.; Atwater, H.A.; Polman, A. Polarization-Selective Plasmon-Enhanced Silicon Quantum-Dot Luminescence. Nano Lett. 2006, 6, 2622–2625. [Google Scholar] [CrossRef] [PubMed]
- Benami, A.; López-Suárez, A.; Rodríguez-Fernández, L.; Crespo-Sosa, A.; Cheang-Wong, J.C.; Reyes-Esqueda, J.A.; Oliver, A. Enhancement and quenching of photoluminescence from silicon quantum dots by silver nanoparticles in a totally integrated configuration. AIP Adv. 2012, 2, 012193. [Google Scholar] [CrossRef]
- Benami, A.; El Hassouani, Y.; Oliver, A.; Lopez-Suarez, A. Effect of Silver Nanoparticles on the Photoluminescence of Silicon Nanocrystals. Spectrosc. Lett. 2014, 47, 411–414. [Google Scholar] [CrossRef]
- Muñoz-Rosas, A.L.; Rodríguez-Gómez, A.; Arenas-Alatorre, J.A.; Alonso-Huitrón, J.C. Photoluminescence enhancement from silicon quantum dots located in the vicinity of a monolayer of gold nanoparticles. RSC Adv. 2015, 5, 92923–92931. [Google Scholar] [CrossRef]
- Biteen, J.S.; Sweatlock, L.A.; Mertens, H.; Lewis, N.S.; Polman, A.; Atwater, H.A. Plasmon-Enhanced Photoluminescence of Silicon Quantum Dots: Simulation and Experiment. J. Phys. Chem. C 2007, 111, 13372–13377. [Google Scholar] [CrossRef]
- Inoue, A.; Fujii, M.; Sugimoto, H.; Imakita, K. Surface Plasmon-Enhanced Luminescence of Silicon Quantum Dots in Gold Nanoparticle Composites. J. Phys. Chem. C 2015, 119, 25108–25113. [Google Scholar] [CrossRef]
- Yashima, S.; Sugimoto, H.; Takashina, H.; Fujii, M. Fluorescence Enhancement and Spectral Shaping of Silicon Quantum Dot Monolayer by Plasmonic Gap Resonances. J. Phys. Chem. C 2016, 120, 28795–28801. [Google Scholar] [CrossRef]
- Inoue, A.; Sugimoto, H.; Fujii, M. Photoluminescence Enhancement of Silicon Quantum Dot Monolayer by Double Resonance Plasmonic Substrate. J. Phys. Chem. C 2017, 121, 11609–11615. [Google Scholar] [CrossRef]
- Kim, B.-H.; Cho, C.-H.; Mun, J.-S.; Kwon, M.-K.; Park, T.-Y.; Kim, J.S.; Byeon, C.C.; Lee, J.; Park, S.-J. Enhancement of the External Quantum Efficiency of a Silicon Quantum Dot Light-Emitting Diode by Localized Surface Plasmons. Adv. Mater. 2008, 20, 3100–3104. [Google Scholar] [CrossRef]
- Li, D.; Wang, F.; Ren, C.; Yang, D. Improved electroluminescence from silicon nitride light emitting devices by localized surface plasmons. Opt. Mater. Express 2012, 2, 872. [Google Scholar] [CrossRef]
- Li, D.; Wang, F.; Yang, D. Evolution of electroluminescence from silicon nitride light-emitting devices via nanostructural silver. Nanoscale 2013, 5, 3435–3440. [Google Scholar] [CrossRef] [PubMed]
- Kim, B.H.; Davis, R.F.; Cho, C.-H.; Park, S.-J. Enhanced performance of silicon quantum dot light-emitting diodes grown on nanoroughened silicon substrate. Appl. Phys. Lett. 2009, 95, 073113. [Google Scholar] [CrossRef]
- Li, W.; Wang, S.; Hu, M.; He, S.; Ge, P.; Wang, J.; Guo, Y.Y.; Zhaowei, L. Enhancement of electroluminescence from embedded Si quantum dots/SiO2 multilayers film by localized-surface-plasmon and surface roughening. Sci. Rep. 2015, 5, 11881. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez-Gómez, A.; Moreno-Rios, M.; García-García, R.; Pérez-Martínez, A.L.; Reyes-Gasga, J. Role of the substrate on the growth of silicon quantum dots embedded in silicon nitride thin films. Mater. Chem. Phys. 2018, 208, 61–67. [Google Scholar] [CrossRef]
- Tauc, J. Optical properties and electronic structure of amorphous Ge and Si. Mater. Res. Bull. 1968, 3, 37–46. [Google Scholar] [CrossRef]
- Robertson, J. Electronic structure of silicon nitride. Philos. Mag. Part B 1991, 63, 47–77. [Google Scholar] [CrossRef]
- Aspnes, D.E.; Studna, A.A. Dielectric functions and optical parameters of Si, Ge, GaP, GaAs, GaSb, InP, InAs, and InSb from 1.5 to 6.0 eV. Phys. Rev. B 1983, 27, 985–1009. [Google Scholar] [CrossRef]
- Anutgan, M.; Anutgan, T.A.; Atilgan, I.; Katircioglu, B. Photoluminescence analyses of hydrogenated amorphous silicon nitride thin films. J. Lumin. 2011, 131, 1305–1311. [Google Scholar] [CrossRef]
- Ay, F.; Aydinli, A. Comparative investigation of hydrogen bonding in silicon based PECVD grown dielectrics for optical waveguides. Opt. Mater. 2004, 26, 33–46. [Google Scholar] [CrossRef] [Green Version]
- Jiang, X.; Ma, Z.; Xu, J.; Chen, K.; Xu, L.; Li, W.; Huang, X.; Feng, D. a-SiNx:H-based ultra-low power resistive random access memory with tunable Si dangling bond conduction paths. Sci. Rep. 2015, 5, 15762. [Google Scholar] [CrossRef] [PubMed]
- Serrano-Núñez, M.A.; Rodríguez-Gómez, A.; Escobar-Alarcón, L.; Alonso-Huitrón, J.C. Combined study of the effect of deposition temperature and post-deposition annealing on the photoluminescence of silicon quantum dots embedded in chlorinated silicon nitride thin films. RSC Adv. 2016, 6, 77440–77451. [Google Scholar] [CrossRef]
- Rodríguez-Gómez, A.; Escobar-Alarcón, L.; Serna, R.; Cabello, F.; Haro-Poniatowski, E.; García-Valenzuela, A.; Alonso, J.C. Modeling of the refractive index and composition of luminescent nanometric chlorinated-silicon nitride films with embedded Si-quantum dots. J. Appl. Phys. 2016, 120, 145305. [Google Scholar] [CrossRef]
- Wang, M.; Xie, M.; Ferraioli, L.; Yuan, Z.; Li, D.; Yang, D.; Pavesi, L. Light emission properties and mechanism of low-temperature prepared amorphous SiNX films. I. Room-temperature band tail states photoluminescence. J. Appl. Phys. 2008, 104, 083504. [Google Scholar] [CrossRef]
- Wang, M.; Huang, J.; Yuan, Z.; Anopchenko, A.; Li, D.; Yang, D.; Pavesi, L. Light emission properties and mechanism of low-temperature prepared amorphous SiNX films. II. Defect states electroluminescence. J. Appl. Phys. 2008, 104, 083505. [Google Scholar] [CrossRef]
- Morales-Sánchez, A.; Domínguez, C.; Barreto, J.; Aceves-Mijares, M.; Licea-Jiménez, L.; Luna-López, J.A.; Carrillo, J. Floating substrate luminescence from silicon rich oxide metal-oxide-semiconductor devices. Thin Solid Films 2013, 531, 442–445. [Google Scholar] [CrossRef]
- Cabañas-Tay, S.A.; Palacios-Huerta, L.; Luna-López, J.A.; Aceves-Mijares, M.; Alcántara-Iniesta, S.; Pérez-García, S.A.; Morales-Sánchez, A. Analysis of the luminescent centers in silicon rich silicon nitride light-emitting capacitors. Semicond. Sci. Technol. 2015, 30, 065009. [Google Scholar] [CrossRef]
- Gaillard, N.; Pinzelli, L.; Gros-Jean, M.; Bsiesy, A. In situ electric field simulation in metal/insulator/metal capacitors. Appl. Phys. Lett. 2006, 89, 89–92. [Google Scholar] [CrossRef]
- Lopes, M.C.V. Si-SiO2 Electronic Interface Roughness as a Consequence of Si-SiO2 Topographic Interface Roughness. J. Electrochem. Soc. 1996, 143, 1021–1025. [Google Scholar] [CrossRef]
- Regan, W.; Byrnes, S.; Gannett, W.; Ergen, O.; Vazquez-Mena, O.; Wang, F.; Zettl, A. Screening-Engineered Field-Effect Solar Cells. Nano Lett. 2012, 12, 4300–4304. [Google Scholar] [CrossRef] [PubMed]
- Oguro, T.; Koyama, H.; Ozaki, T.; Koshida, N. Mechanism of the visible electroluminescence from metal/porous silicon/n-Si devices. J. Appl. Phys. 1997, 81, 1407–1412. [Google Scholar] [CrossRef]
R = NH3/SiH2Cl2 Gas Flow Ratio | Sample | Thickness (nm) | Refractive Index | Optical Band Gap (eV) |
---|---|---|---|---|
120 | SiNx | 96.5 | 1.78 | 4.68 |
40 | SiQDs | 97.9 | 1.84 | 4.04 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Muñoz-Rosas, A.L.; Rodríguez-Gómez, A.; Alonso-Huitrón, J.C. Enhanced Electroluminescence from Silicon Quantum Dots Embedded in Silicon Nitride Thin Films Coupled with Gold Nanoparticles in Light Emitting Devices. Nanomaterials 2018, 8, 182. https://doi.org/10.3390/nano8040182
Muñoz-Rosas AL, Rodríguez-Gómez A, Alonso-Huitrón JC. Enhanced Electroluminescence from Silicon Quantum Dots Embedded in Silicon Nitride Thin Films Coupled with Gold Nanoparticles in Light Emitting Devices. Nanomaterials. 2018; 8(4):182. https://doi.org/10.3390/nano8040182
Chicago/Turabian StyleMuñoz-Rosas, Ana Luz, Arturo Rodríguez-Gómez, and Juan Carlos Alonso-Huitrón. 2018. "Enhanced Electroluminescence from Silicon Quantum Dots Embedded in Silicon Nitride Thin Films Coupled with Gold Nanoparticles in Light Emitting Devices" Nanomaterials 8, no. 4: 182. https://doi.org/10.3390/nano8040182
APA StyleMuñoz-Rosas, A. L., Rodríguez-Gómez, A., & Alonso-Huitrón, J. C. (2018). Enhanced Electroluminescence from Silicon Quantum Dots Embedded in Silicon Nitride Thin Films Coupled with Gold Nanoparticles in Light Emitting Devices. Nanomaterials, 8(4), 182. https://doi.org/10.3390/nano8040182