Low Cost Fabrication of Si NWs/CuI Heterostructures
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Chemicals
2.2. Silicon NWs Growth
- The Si wafer surface was initially cleaned from the presence of organic contamination with an ultraviolet (UV) ozone treatment. Subsequently, in order to remove the silicon oxide, the samples were immersed in a solution of 5% HF and 95% of H2O.
- The oxide-free Si substrates were immersed in an aqueous solution of 40% AgNO3 and HF 20% and the dissolved Ag salts form a precipitation of small silver nanoparticles (NPs) onto the Si substrate.
- During the process the Ag NPs act as a catalyst leading to the oxidation of the underneath silicon that is etched by the hydrofluoric acid, leading to the formation of Si NW for the unetched Si regions.
- The network of silver dendrites formed during the growth was removed by a 10 min chemical bath of HNO3.
2.3. Realization of Si NWs/CuI Heterostructures
- The Si NWs samples were cut in 3 × 3 cm2 pieces to guarantee the uniformity of the CuI coverage.
- Chemical bath deposition (CBD). In order to obtain the core shell Si NWs/CuI HS the as-grown Si NWs arrays were immersed in a solution of 63 mM of CuI powder dissolved in acetonitrile heated at 80 °C for 20 min hold by a clip. The solution was stirred at 70 rpm with a magnetic stirrer. The CuI solution diffuses inside the interstices between the Si NWs and the HS are realized by the CuI precipitation in its solid phase. Finally, the samples were dried with a nitrogen flux.
- Airbrush spray coating (ASC). Subsequently the CBD, the sample was put on a hot plate at 80 °C covered with an aluminum foil where was subjected to an airbrush spray coating with the same CuI solution, previously heated at 80 °C.
2.4. Structural and Optical Characterization Methods
3. Results
3.1. Structural Characterization of Si NWs/CuI Heterostructures
3.2. Si NWs/CuI Embedded Heterojunction for Photovoltaics
3.3. Photoluminescence of Si NWs/CuI Embedded Heterojunction
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Wu, H.; Cui, Y. Designing nanostructured Si anodes for high energy lithium ion batteries. Nano Today 2012, 7, 414–429. [Google Scholar] [CrossRef]
- Schmidt, V.; Riel, H.; Senz, S.; Karg, S.; Riess, W.; Gösele, U. Realization of a silicon nanowire vertical surround-gate field-effect transistor. Small 2006, 2, 85–88. [Google Scholar] [CrossRef] [PubMed]
- Fazio, B.; Irrera, A.; Pirotta, S.; D’Andrea, C.; Del Sorbo, S.; Josè Lo Faro, M.; Gucciardi, P.G.; Iatì, M.A.; Saija, R.; Patrini, M.; et al. Coherent backscattering of Raman light. Nat. Photonics 2017, 11, 170–176. [Google Scholar] [CrossRef]
- Fazio, B.; Artoni, P.; Antonia Iatì, M.; D’Andrea, C.; Lo Faro, M.J.; Del Sorbo, S.; Pirotta, S.; Giuseppe Gucciardi, P.; Musumeci, P.; Salvatore Vasi, C.; et al. Strongly enhanced light trapping in a two-dimensional silicon nanowire random fractal array. Light Sci. Appl. 2016, 5, e16062. [Google Scholar] [CrossRef]
- Sohn, Y.-S.; Park, J.; Yoon, G.; Song, J.; Jee, S.-W.; Lee, J.-H.; Na, S.; Kwon, T.; Eom, K. Mechanical properties of silicon nanowires. Nanoscale Res. Lett. 2010, 5, 211–216. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Y.; Xu, F.; Qin, Q.; Fung, W.Y.; Lu, W. Mechanical properties of vapor−liquid−solid synthesized silicon nanowires. Nano Lett. 2009, 9, 3934–3939. [Google Scholar] [CrossRef] [PubMed]
- He, R.; Yang, P. Giant piezoresistance effect in silicon nanowires. Nat. Nanotechnol. 2006, 1, 42–46. [Google Scholar] [CrossRef] [PubMed]
- Hahm, J.-I.; Lieber, C.M. Direct ultrasensitive electrical detection of DNA and DNA sequence Variations using nanowire nanosensors. Nano Lett. 2003, 4, 51–54. [Google Scholar] [CrossRef]
- Yao, Y.; Liu, N.; McDowell, M.T.; Pasta, M.; Cui, Y. Improving the cycling stability of silicon nanowire anodes with conducting polymer coatings. Energy Environ. Sci. 2012, 5, 7927. [Google Scholar] [CrossRef]
- Cao, L.; Fan, P.; Vasudev, A.P.; White, J.S.; Yu, Z.; Cai, W.; Schuller, J.A.; Fan, S.; Brongersma, M.L. Semiconductor nanowire optical antenna solar absorbers. Nano Lett. 2010, 10, 439–445. [Google Scholar] [CrossRef] [PubMed]
- Singh, N.; Agarwal, A.; Bera, L.K.; Liow, T.Y.; Yang, R.; Rustagi, S.C.; Tung, C.H.; Kumar, R.; Lo, G.Q.; Balasubramanian, N.; et al. High-performance fully depleted silicon nanowire (diameter/spl les/5 nm) gate-all-around CMOS devices. IEEE Electron Device Lett. 2006, 27, 383–386. [Google Scholar] [CrossRef]
- Priolo, F.; Gregorkiewicz, T.; Galli, M.; Krauss, T.F. Silicon nanostructures for photonics and photovoltaics. Nat. Nanotechnol. 2014, 9, 19–32. [Google Scholar] [CrossRef] [PubMed]
- Tian, B.; Zheng, X.; Kempa, T.J.; Fang, Y.; Yu, N.; Yu, G.; Huang, J.; Lieber, C.M. Coaxial silicon nanowires as solar cells and nanoelectronic power sources. Nature 2007, 449, 885–889. [Google Scholar] [CrossRef] [PubMed]
- Westwater, J.; Gosain, D.P.; Tomiya, S.; Usui, S.; Ruda, H. Growth of silicon nanowires via gold/silane vapor–liquid–solid reaction. J. Vac. Sci. Technol. B 1998, 15, 554. [Google Scholar] [CrossRef]
- Fu, Y.Q.; Colli, A.; Fasoli, A.; Luo, J.K.; Flewitt, A.J.; Ferrari, A.C.; Milne, W.I. Deep reactive ion etching as a tool for nanostructure fabrication. J. Vac. Sci. Technol. B Microelectron. Nanom. Struct. 2009, 27, 1520. [Google Scholar] [CrossRef]
- Fuhrmann, B.; Leipner, H.S.; Höche, H.R.; Schubert, L.; Werner, P.; Gösele, U. Ordered arrays of silicon nanowires produced by nanosphere lithography and molecular beam epitaxy. Nano Lett. 2005, 5, 2524–2527. [Google Scholar] [CrossRef] [PubMed]
- Garnett, E.; Yang, P. Light trapping in silicon nanowire solar cells. Nano Lett. 2010, 10, 1082–1087. [Google Scholar] [CrossRef] [PubMed]
- Yang, B.; Buddharaju, K.D.; Teo, S.H.G.; Singh, N.; Lo, G.Q.; Kwong, D.L. Vertical silicon-nanowire formation and gate-all-around MOSFET. IEEE Electron Device Lett. 2008, 29, 791–794. [Google Scholar] [CrossRef]
- Wang, Y.; Schmidt, V.; Senz, S.; Gösele, U. Epitaxial growth of silicon nanowires using an aluminium catalyst. Nat. Nanotechnol. 2006, 1, 186–189. [Google Scholar] [CrossRef] [PubMed]
- Convertino, A.; Cuscunà, M.; Nicotra, G.; Spinella, C.; Felisari, L.; Fortunato, G.; Martelli, F. Low-temperature growth of In-assisted silicon nanowires. J. Cryst. Growth 2011, 335, 10–16. [Google Scholar] [CrossRef]
- Artoni, P.; Pecora, E.; Irrera, A.; Priolo, F. Kinetics of Si and Ge nanowires growth through electron beam evaporation. Nanoscale Res. Lett. 2011, 6, 162. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- To, W.-K.; Tsang, C.-H.; Li, H.-H.; Huang, Z. Fabrication of n-type mesoporous silicon nanowires by one-step etching. Nano Lett. 2011, 11, 5252–5258. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Ma, W.; Zhou, Y.; Chen, X.; Xiao, Y.; Ma, M.; Zhu, W.; Wei, F. Fabrication of porous silicon nanowires by MACE method in HF/H2O2/AgNO3 system at room temperature. Nanoscale Res. Lett. 2014, 9, 196. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huang, Z.; Geyer, N.; Werner, P.; de Boor, J.; Gösele, U. Metal-assisted chemical etching of silicon: A review. Adv. Mater. 2011, 23, 285–308. [Google Scholar] [CrossRef] [PubMed]
- Irrera, A.; Lo Faro, M.J.; D’Andrea, C.; Alessio Leonardi, A.; Artoni, P.; Fazio, B.; Anna Picca, R.; Cioffi, N.; Trusso, S.; Franzò, G.; et al. Light-emitting silicon nanowires obtained by metal-assisted chemical etching. Semicond. Sci. Technol. 2017, 32, 043004. [Google Scholar] [CrossRef]
- Lo Faro, M.J.; D’Andrea, C.; Messina, E.; Fazio, B.; Musumeci, P.; Franzò, G.; Gucciardi, P.G.; Vasi, C.; Priolo, F.; Iacona, F.; et al. A room temperature light source based on silicon nanowires. Thin Solid Films 2016, 613, 59–63. [Google Scholar] [CrossRef]
- Irrera, A.; Leonardi, A.A.; Di Franco, C.; Lo Faro, M.J.; Palazzo, G.; D’Andrea, C.; Manoli, K.; Franzò, G.; Musumeci, P.; Fazio, B.; et al. New generation of ultrasensitive label-free optical Si nanowire-based biosensors. ACS Photonics 2018, 5, 471–479. [Google Scholar] [CrossRef]
- Zhang, M.L.; Peng, K.Q.; Fan, X.; Jie, J.S.; Zhang, R.Q.; Lee, S.T.; Wong, N.B. Preparation of large-area uniform silicon nanowires arrays through metal-assisted chemical etching. J. Phys. Chem. C 2008, 112, 4444–4450. [Google Scholar] [CrossRef]
- D’Andrea, C.; Faro, M.J.L.; Bertino, G.; Ossi, P.M.; Neri, F.; Trusso, S.; Musumeci, P.; Galli, M.; Cioffi, N.; Irrera, A.; et al. Decoration of silicon nanowires with silver nanoparticles for ultrasensitive surface enhanced Raman scattering. Nanotechnology 2016, 27, 375603. [Google Scholar] [CrossRef] [PubMed]
- Um, H.-D.; Park, K.-T.; Jung, J.-Y.; Li, X.; Zhou, K.; Jee, S.-W.; Lee, J.-H. Incorporation of a self-aligned selective emitter to realize highly efficient (12.8%) Si nanowire solar cells. Nanoscale 2014, 6, 5193–5199. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Ren, J.-G.; Wang, X.; Chui, Y.-S.; Wu, Q.-H.; Chen, X.; Zhang, W. Graphene encapsulated and SiC reinforced silicon nanowires as an anode material for lithium ion batteries. Nanoscale 2013, 5, 8689. [Google Scholar] [CrossRef] [PubMed]
- Picca, R.A.; Calvano, C.D.; Lo Faro, M.J.; Fazio, B.; Trusso, S.; Ossi, P.M.; Neri, F.; D’Andrea, C.; Irrera, A.; Cioffi, N. Functionalization of silicon nanowire arrays by silver nanoparticles for the laser desorption ionization mass spectrometry analysis of vegetable oils. J. Mass Spectrom. 2016, 51, 849–856. [Google Scholar] [CrossRef] [PubMed]
- Javey, A.; Nam, S.; Friedman, R.S.; Yan, H.; Lieber, C.M. Layer-by-layer assembly of nanowires for three-dimensional, multifunctional electronics. Nano Lett. 2007, 7, 773–777. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Kumta, P.N. Nanostructured hybrid silicon/carbon nanotube heterostructures: Reversible high-capacity lithium-ion anodes. ACS Nano 2010, 4, 2233–2241. [Google Scholar] [CrossRef] [PubMed]
- Lo Faro, M.J.; D’Andrea, C.; Messina, E.; Fazio, B.; Musumeci, P.; Reitano, R.; Franzò, G.; Gucciardi, P.G.; Vasi, C.; Priolo, F.; et al. Silicon nanowire and carbon nanotube hybrid for room temperature multiwavelength light source. Sci. Rep. 2015, 5, 16753. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kulakci, M.; Colakoglu, T.; Ozdemir, B.; Parlak, M.; Unalan, H.E.; Turan, R. Silicon nanowire–silver indium selenide heterojunction photodiodes. Nanotechnology 2013, 24, 375203. [Google Scholar] [CrossRef] [PubMed]
- Iimori, H.; Yamane, S.; Kitamura, T.; Murakoshi, K.; Imanishi, A.; Nakato, Y. High photovoltage generation at minority-carrier controlled n-Si/p-CuI heterojunction with morphologically soft CuI. J. Phys. Chem. C 2008, 112, 11586–11590. [Google Scholar] [CrossRef]
- Irrera, A.; Iacona, F.; Franzò, G.; Boninelli, S.; Pacifici, D.; Miritello, M.; Spinella, C.; Sanfilippo, D.; Di Stefano, G.; Fallica, P.G.; et al. Correlation between electroluminescence and structural properties of Si nanoclusters. Opt. Mater. 2005, 27, 1031–1040. [Google Scholar] [CrossRef]
- Ruffino, F.; Crupi, I.; Irrera, A.; Grimaldi, M.G. Pd/Au/SiC nanostructured diodes for nanoelectronics: Room temperature electrical properties. IEEE Trans. Nanotechnol. 2010, 9, 414–421. [Google Scholar] [CrossRef]
- Mulla, R.; Rabinal, M.K. Defect-controlled copper iodide: A promising and ecofriendly thermoelectric material. Energy Technol. 2018. [Google Scholar] [CrossRef]
- Kumara, G.R.A.; Konno, A.; Shiratsuchi, K.; Tsukahara, J.; Tennakone, K. Dye-sensitized solid-state solar cells: Use of crystal growth inhibitors for deposition of the hole collector. Chem. Mater. 2002, 14, 954–955. [Google Scholar] [CrossRef]
- Zainun, A.R.; Mamat, M.H.; Noor, U.M.; Rusop, M. Particles size and conductivity study of P-Type copper (I) iodide (CuI) thin film for solid state dye-sensitized solar cells. IOP Conf. Ser. Mater. Sci. Eng. 2011, 17, 012009. [Google Scholar] [CrossRef]
- Sakamoto, H.; Igarashi, S.; Uchida, M.; Niume, K.; Nagai, M. Highly efficient all solid state dye-sensitized solar cells by the specific interaction of CuI with NCS groups II. Enhancement of the photovoltaic characteristics. Org. Electron. 2012, 13, 514–518. [Google Scholar] [CrossRef]
- Liu, Z.; Qayyum, M.F.; Wu, C.; Whited, M.T.; Djurovich, P.I.; Hodgson, K.O.; Hedman, B.; Solomon, E.I.; Thompson, M.E. A Codeposition route to CuI−pyridine coordination complexes for organic light-emitting diodes. J. Am. Chem. Soc. 2011, 133, 3700–3703. [Google Scholar] [CrossRef] [PubMed]
- Ahn, D.; Park, S.-H. Cuprous halides semiconductors as a new means for highly efficient light-emitting diodes. Sci. Rep. 2016, 6, 20718. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, J.; Li, J.; Li, S.-S. Native p-type transparent conductive CuI via intrinsic defects. J. Appl. Phys. 2011, 110, 054907. [Google Scholar] [CrossRef]
- Casiello, M.; Picca, R.; Fusco, C.; D’Accolti, L.; Leonardi, A.; Lo Faro, M.; Irrera, A.; Trusso, S.; Cotugno, P.; Sportelli, M.; et al. Catalytic activity of silicon nanowires decorated with gold and copper nanoparticles deposited by pulsed laser ablation. Nanomaterials 2018, 8, 78. [Google Scholar] [CrossRef] [PubMed]
- Amalina, M.N.; Rasheid, N.A.; Rusop, M. The properties of sprayed nanostructured P-Type CuI films for dye-sensitized solar cells application. J. Nanomater. 2012, 2012, 1–6. [Google Scholar] [CrossRef]
- Zhu, B.L.; Zhao, X.Z. Transparent conductive CuI thin films prepared by pulsed laser deposition. Phys. Status Solidi 2011, 208, 91–96. [Google Scholar] [CrossRef]
- Lin, G.; Zhao, F.; Zhao, Y.; Zhang, D.; Yang, L.; Xue, X.; Wang, X.; Qu, C.; Li, Q.; Zhang, L. Luminescence properties and mechanisms of CuI thin films fabricated by vapor iodization of copper films. Materials 2016, 9. [Google Scholar] [CrossRef] [PubMed]
- Jung, J.-Y.; Um, H.-D.; Jee, S.-W.; Park, K.-T.; Bang, J.H.; Lee, J.-H. Optimal design for antireflective Si nanowire solar cells. Sol. Energy Mater. Sol. Cells 2013, 112, 84–90. [Google Scholar] [CrossRef]
- Zhou, Y.; lü, M.; Zhou, G.; Wang, S.; Wang, S. Preparation and photoluminescence of γ-CuI nanoparticles. Mater. Lett. 2006, 60, 2184–2186. [Google Scholar] [CrossRef]
- Gao, P.; Gu, M.; Liu, X.; Zheng, Y.-Q.; Shi, E.-W. Photoluminescence study of annealing effects on CuI crystals grown by evaporation method. Cryst. Res. Technol. 2012, 47, 707–712. [Google Scholar] [CrossRef]
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lo Faro, M.J.; Leonardi, A.A.; Morganti, D.; Fazio, B.; Vasi, C.; Musumeci, P.; Priolo, F.; Irrera, A. Low Cost Fabrication of Si NWs/CuI Heterostructures. Nanomaterials 2018, 8, 569. https://doi.org/10.3390/nano8080569
Lo Faro MJ, Leonardi AA, Morganti D, Fazio B, Vasi C, Musumeci P, Priolo F, Irrera A. Low Cost Fabrication of Si NWs/CuI Heterostructures. Nanomaterials. 2018; 8(8):569. https://doi.org/10.3390/nano8080569
Chicago/Turabian StyleLo Faro, Maria José, Antonio Alessio Leonardi, Dario Morganti, Barbara Fazio, Ciro Vasi, Paolo Musumeci, Francesco Priolo, and Alessia Irrera. 2018. "Low Cost Fabrication of Si NWs/CuI Heterostructures" Nanomaterials 8, no. 8: 569. https://doi.org/10.3390/nano8080569
APA StyleLo Faro, M. J., Leonardi, A. A., Morganti, D., Fazio, B., Vasi, C., Musumeci, P., Priolo, F., & Irrera, A. (2018). Low Cost Fabrication of Si NWs/CuI Heterostructures. Nanomaterials, 8(8), 569. https://doi.org/10.3390/nano8080569