Enhancing Third- and Fifth-Order Nonlinearity via Tunneling in Multiple Quantum Dots
Abstract
:1. Introduction
2. Models and Equations
3. Results and Discussion
3.1. Tunneling Induced Transparency of MQDs
3.2. Dressed States of MQDs
3.3. Self-Kerr and Fifth-Order Nonlinearity of MQDs
3.4. Cross-Kerr Nonlinearity of MQDs
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
Appendix A
References
- Karabulut, İ.; Baskoutas, S. Linear and nonlinear optical absorption coefficients and refractive index changes in spherical quantum dots: Effects of impurities, electric field, size, and optical intensity. J. Appl. Phys. 2008, 103, 073512. [Google Scholar] [CrossRef]
- Englund, D.; Faraon, A.; Fushman, I.; Stoltz, N.; Petroff, P.; Vučković, J. Controlling cavity reflectivity with a single quantum dot. Nature 2007, 450, 857. [Google Scholar] [CrossRef] [PubMed]
- Nair, S.V.; Takagahara, T. Theory of exciton pair states and their nonlinear optical properties in semiconductor quantum dots. Phys. Rev. B 1997, 55, 5153–5170. [Google Scholar] [CrossRef]
- Petruska, M.A.; Malko, A.V.; Voyles, P.M.; Klimov, V.I. High-Performance, Quantum Dot Nanocomposites for Nonlinear Optical and Optical Gain Applications. Adv. Mater. 2003, 15, 610–613. [Google Scholar] [CrossRef]
- Vagov, A.; Axt, V.M.; Kuhn, T. Impact of pure dephasing on the nonlinear optical response of single quantum dots and dot ensembles. Phys. Rev. B 2003, 67, 115338. [Google Scholar] [CrossRef]
- Auffèves-Garnier, A.; Simon, C.; Gérard, J.-M.; Poizat, J.-P. Giant optical nonlinearity induced by a single two-level system interacting with a cavity in the Purcell regime. Phys. Rev. A 2007, 75, 053823. [Google Scholar] [CrossRef]
- Srinivasan, K.; Painter, O. Linear and nonlinear optical spectroscopy of a strongly coupled microdisk-quantum dot system. Nature 2007, 450, 862–2865. [Google Scholar] [CrossRef]
- Tohari, M.M.; Lyras, A.; AlSalhi, M.S. Giant Self-Kerr Nonlinearity in the Metal Nanoparticles-Graphene Nanodisks-Quantum Dots Hybrid Systems Under Low-Intensity Light Irradiance. Nanomaterials 2018, 8, 521. [Google Scholar] [CrossRef]
- Baira, M.; Salem, B.; Madhar, N.A.; Ilahi, B. Linear and Nonlinear Intersubband Optical Properties of Direct Band Gap GeSn Quantum Dots. Nanomaterials 2019, 9, 124. [Google Scholar] [CrossRef]
- Guenther, T.; Lienau, C.; Elsaesser, T.; Glanemann, M.; Axt, V.M.; Kuhn, T.; Eshlaghi, S.; Wieck, A.D. Coherent Nonlinear Optical Response of Single Quantum Dots Studied by Ultrafast Near-Field Spectroscopy. Phys. Rev. Lett. 2002, 89, 057401. [Google Scholar] [CrossRef]
- Chen, G.; Bonadeo, N.H.; Steel, D.G.; Gammon, D.; Katzer, D.S.; Park, D.; Sham, L.J. Optically Induced Entanglement of Excitons in a Single Quantum Dot. Science 2000, 289, 1906. [Google Scholar] [CrossRef] [PubMed]
- Fushman, I.; Englund, D.; Faraon, A.; Stoltz, N.; Petroff, P.; Vučković, J. Controlled Phase Shifts with a Single Quantum Dot. Science 2008, 320, 769. [Google Scholar] [CrossRef] [PubMed]
- Sugawara, M.; Ebe, H.; Hatori, N.; Ishida, M.; Arakawa, Y.; Akiyama, T.; Otsubo, K.; Nakata, Y. Theory of optical signal amplification and processing by quantum-dot semiconductor optical amplifiers. Phys. Rev. B 2004, 69, 235332. [Google Scholar] [CrossRef]
- Akiyama, T.; Wada, O.; Kuwatsuka, H.; Simoyama, T.; Nakata, Y.; Mukai, K.; Sugawara, M.; Ishikawa, H. Nonlinear processes responsible for nondegenerate four-wave mixing in quantum-dot optical amplifiers. Appl. Phys. Lett. 2000, 77, 1753–1755. [Google Scholar] [CrossRef]
- Loo, V.; Arnold, C.; Gazzano, O.; Lemaître, A.; Sagnes, I.; Krebs, O.; Voisin, P.; Senellart, P.; Lanco, L. Optical Nonlinearity for Few-Photon Pulses on a Quantum Dot-Pillar Cavity Device. Phys. Rev. Lett. 2012, 109, 166806. [Google Scholar] [CrossRef] [Green Version]
- Harris, S.E. Electromagnetically induced transparency. Phys. Today 1997, 50, 36–42. [Google Scholar] [CrossRef]
- Marangos, J.P. Topical review electromagnetically induced transparency. J. Mod. Opt. 1998, 45, 471–503. [Google Scholar] [CrossRef]
- Fleischhauer, M.; Imamoglu, A.; Marangos, J.P. Electromagnetically induced transparency: Optics in coherent media. Rev. Mod. Phys. 2005, 77, 633–673. [Google Scholar] [CrossRef] [Green Version]
- Schmidt, H.; Imamoglu, A. Giant Kerr nonlinearities obtained by electromagnetically induced transparency. Opt. Lett. 1996, 21, 1936–1938. [Google Scholar] [CrossRef]
- Kang, H.; Zhu, Y. Observation of Large Kerr Nonlinearity at Low Light Intensities. Phys. Rev. Lett. 2003, 91, 093601. [Google Scholar] [CrossRef]
- Matsko, A.B.; Novikova, I.; Welch, G.R.; Zubairy, M.S. Enhancement of Kerr nonlinearity by multiphoton coherence. Opt. Lett. 2003, 28, 96–98. [Google Scholar] [CrossRef] [PubMed]
- Niu, Y.; Gong, S.; Li, R.; Xu, Z.; Liang, X. Giant Kerr nonlinearity induced by interacting dark resonances. Opt. Lett. 2005, 30, 3371–3373. [Google Scholar] [CrossRef] [PubMed]
- Hui, S.; Yueping, N.; Shiqi, J.; Shangqing, G. Phase control of the Kerr nonlinearity in electromagnetically induced transparency media. J. Phys. B At. Mol. Opt. Phys. 2008, 41, 065504. [Google Scholar] [CrossRef]
- Li, S.; Yang, X.; Cao, X.; Zhang, C.; Xie, C.; Wang, H. Enhanced Cross-Phase Modulation Based on a Double Electromagnetically Induced Transparency in a Four-Level Tripod Atomic System. Phys. Rev. Lett. 2008, 101, 073602. [Google Scholar] [CrossRef] [PubMed]
- Bai, Y.; Yang, W.; Yu, X. Controllable Kerr nonlinearity with vanishing absorption in a four-level inverted-Y atomic system. Opt. Commun. 2010, 283, 5062–5066. [Google Scholar] [CrossRef]
- Liang, H.; Niu, Y.; Deng, L.; Gong, S. Enhancement of Kerr nonlinearity completely without absorption. Phys. Lett. A 2017, 381, 3978–3982. [Google Scholar] [CrossRef]
- Alotaibi, H.M.M.; Sanders, B.C. Enhanced nonlinear susceptibility via double-double electromagnetically induced transparency. Phys. Rev. A 2016, 94, 053832. [Google Scholar] [CrossRef]
- Hemmer, P.R.; Katz, D.P.; Donoghue, J.; Shahriar, M.S.; Kumar, P.; Cronin-Golomb, M. Efficient low-intensity optical phase conjugation based on coherentpopulation trapping in sodium. Opt. Lett. 1995, 20, 982–984. [Google Scholar] [CrossRef] [PubMed]
- Imamoglu, A.; Schmidt, H.; Woods, G.; Deutsch, M. Strongly Interacting Photons in a Nonlinear Cavity. Phys. Rev. Lett. 1997, 79, 1467–1470. [Google Scholar] [CrossRef]
- Harris, S.E.; Hau, L.V. Nonlinear Optics at Low Light Levels. Phys. Rev. Lett. 1999, 82, 4611–4614. [Google Scholar] [CrossRef]
- Kaufman, L.J.; Heo, J.; Ziegler, L.D.; Fleming, G.R. Heterodyne-Detected Fifth-Order Nonresonant Raman Scattering from Room Temperature CS2. Phys. Rev. Lett. 2002, 88, 207402. [Google Scholar] [CrossRef]
- Saito, S.; Ohmine, I. Off-Resonant Fifth-Order Response Function for Two-Dimensional Raman Spectroscopy of Liquids CS2 and H2O. Phys. Rev. Lett. 2002, 88, 207401. [Google Scholar] [CrossRef]
- Dolgaleva, K.; Shin, H.; Boyd, R.W. Observation of a Microscopic Cascaded Contribution to the Fifth-Order Nonlinear Susceptibility. Phys. Rev. Lett. 2009, 103, 113902. [Google Scholar] [CrossRef]
- Zhang, Y.; Khadka, U.; Anderson, B.; Xiao, M. Temporal and Spatial Interference between Four-Wave Mixing and Six-Wave Mixing Channels. Phys. Rev. Lett. 2009, 102, 013601. [Google Scholar] [CrossRef]
- Falcão-Filho, E.L.; de Araújo, C.B.; Boudebs, G.; Leblond, H.; Skarka, V. Robust Two-Dimensional Spatial Solitons in Liquid Carbon Disulfide. Phys. Rev. Lett. 2013, 110, 013901. [Google Scholar] [CrossRef]
- Peng, Y.; Yang, A.; Chen, B.; Xu, Y.; Hu, X. Tunneling-induced large fifth-order nonlinearity with competing linear and nonlinear susceptibilities. J. Opt. Soc. Am. B 2014, 31, 2188–2192. [Google Scholar] [CrossRef]
- Bai, Z.; Huang, G. Enhanced third-order and fifth-order Kerr nonlinearities in a cold atomic system via Rydberg-Rydberg interaction. Opt. Express 2016, 24, 4442–4461. [Google Scholar] [CrossRef]
- Li, P.; Gu, Y.; Wang, L.; Gong, Q. Fifth-order nonlinearity and 3-qubit phase gate in a five-level tripod atomic system. J. Opt. Soc. Am. B 2008, 25, 504–512. [Google Scholar] [CrossRef]
- Wu, Z.; Zhang, Y.; Yuan, C.; Wen, F.; Zheng, H.; Zhang, Y.; Xiao, M. Cubic-quintic condensate solitons in four-wave mixing. Phys. Rev. A 2013, 88, 063828. [Google Scholar] [CrossRef]
- Joel, A.G.; Daniel, J.G. High-order optical nonlinearity at low light levels. EPL (Europhys. Lett.) 2012, 98, 24001. [Google Scholar] [CrossRef] [Green Version]
- Paredes, Á.; Feijoo, D.; Michinel, H. Coherent Cavitation in the Liquid of Light. Phys. Rev. Lett. 2014, 112, 173901. [Google Scholar] [CrossRef]
- Xie, Q.; Madhukar, A.; Chen, P.; Kobayashi, N.P. Vertically Self-Organized InAs Quantum Box Islands on GaAs(100). Phys. Rev. Lett. 1995, 75, 2542–2545. [Google Scholar] [CrossRef]
- Songmuang, R.; Kiravittaya, S.; Schmidt, O.G. Formation of lateral quantum dot molecules around self-assembled nanoholes. Appl. Phys. Lett. 2003, 82, 2892–2894. [Google Scholar] [CrossRef]
- Lee, J.H.; Wang, Z.M.; Strom, N.W.; Mazur, Y.I.; Salamo, G.J. InGaAs quantum dot molecules around self-assembled GaAs nanomound templates. Appl. Phys. Lett. 2006, 89, 202101. [Google Scholar] [CrossRef]
- Chang-Yu, H.; Yun-Pil, S.; Marek, K.; Pawel, H. Physics of lateral triple quantum-dot molecules with controlled electron numbers. Rep. Prog. Phys. 2012, 75, 114501. [Google Scholar] [CrossRef]
- Beirne, G.J.; Hermannstädter, C.; Wang, L.; Rastelli, A.; Schmidt, O.G.; Michler, P. Quantum Light Emission of Two Lateral Tunnel-Coupled (In,Ga)As/Ga Quantum Dots Controlled by a Tunable Static Electric Field. Phys. Rev. Lett. 2006, 96, 137401. [Google Scholar] [CrossRef]
- Hayne, M.; Provoost, R.; Zundel, M.K.; Manz, Y.M.; Eberl, K.; Moshchalkov, V.V. Electron and hole confinement in stacked self-assembled InP quantum dots. Phys. Rev. B 2000, 62, 10324–10328. [Google Scholar] [CrossRef] [Green Version]
- Popescu, V.; Bester, G.; Hanna, M.C.; Norman, A.G.; Zunger, A. Theoretical and experimental examination of the intermediate-band concept for strain-balanced (In,Ga)As/Ga(As,P) quantum dot solar cells. Phys. Rev. B 2008, 78, 205321. [Google Scholar] [CrossRef]
- Bayer, M.; Hawrylak, P.; Hinzer, K.; Fafard, S.; Korkusinski, M.; Wasilewski, Z.R.; Stern, O.; Forchel, A. Coupling and Entangling of Quantum States in Quantum Dot Molecules. Science 2001, 291, 451–453. [Google Scholar] [CrossRef]
- Paspalakis, E. Localizing two interacting electrons in a driven quantum dot molecule. Phys. Rev. B 2003, 67, 233306. [Google Scholar] [CrossRef]
- Villas-Bôas, J.M.; Govorov, A.O.; Ulloa, S.E. Coherent control of tunneling in a quantum dot molecule. Phys. Rev. B 2004, 69, 125342. [Google Scholar] [CrossRef]
- Borges, H.S.; Sanz, L.; Villas-Bôas, J.M.; Diniz Neto, O.O.; Alcalde, A.M. Tunneling induced transparency and slow light in quantum dot molecules. Phys. Rev. B 2012, 85, 115425. [Google Scholar] [CrossRef]
- Sköld, N.; Boyer de la Giroday, A.; Bennett, A.J.; Farrer, I.; Ritchie, D.A.; Shields, A.J. Electrical Control of the Exciton Fine Structure of a Quantum Dot Molecule. Phys. Rev. Lett. 2013, 110, 016804. [Google Scholar] [CrossRef]
- Weiss, K.M.; Elzerman, J.M.; Delley, Y.L.; Miguel-Sanchez, J.; Imamoğlu, A. Coherent Two-Electron Spin Qubits in an Optically Active Pair of Coupled InGaAs Quantum Dots. Phys. Rev. Lett. 2012, 109, 107401. [Google Scholar] [CrossRef]
- Müller, K.; Bechtold, A.; Ruppert, C.; Zecherle, M.; Reithmaier, G.; Bichler, M.; Krenner, H.J.; Abstreiter, G.; Holleitner, A.W.; Villas-Boas, J.M.; et al. Electrical Control of Interdot Electron Tunneling in a Double InGaAs Quantum-Dot Nanostructure. Phys. Rev. Lett. 2012, 108, 197402. [Google Scholar] [CrossRef]
- Boyer de la Giroday, A.; Sköld, N.; Stevenson, R.M.; Farrer, I.; Ritchie, D.A.; Shields, A.J. Exciton-Spin Memory with a Semiconductor Quantum Dot Molecule. Phys. Rev. Lett. 2011, 106, 216802. [Google Scholar] [CrossRef]
- Kim, D.; Carter, S.G.; Greilich, A.; Bracker, A.S.; Gammon, D. Ultrafast optical control of entanglement between two quantum-dot spins. Nat. Phys. 2011, 7, 223–229. [Google Scholar] [CrossRef]
- Krenner, H.J.; Sabathil, M.; Clark, E.C.; Kress, A.; Schuh, D.; Bichler, M.; Abstreiter, G.; Finley, J.J. Direct observation of controlled coupling in an individual quantum dot molecule. Phys. Rev. Lett. 2005, 94. [Google Scholar] [CrossRef]
- Unold, T.; Mueller, K.; Lienau, C.; Elsaesser, T.; Wieck, A.D. Optical Control of Excitons in a Pair of Quantum Dots Coupled by the Dipole-Dipole Interaction. Phys. Rev. Lett. 2005, 94, 137404. [Google Scholar] [CrossRef]
- Stinaff, E.A.; Scheibner, M.; Bracker, A.S.; Ponomarev, I.V.; Korenev, V.L.; Ware, M.E.; Doty, M.F.; Reinecke, T.L.; Gammon, D. Optical Signatures of Coupled Quantum Dots. Science 2006, 311, 636–639. [Google Scholar] [CrossRef]
- Tian, S.-C.; Wan, R.-G.; Tong, C.-Z.; Ning, Y.-Q. Controlling optical bistability via interacting double dark resonances in linear quantum dot molecules. J. Opt. Soc. Am. B 2014, 31, 2681–2688. [Google Scholar] [CrossRef]
- Tian, S.-C.; Wan, R.-G.; Tong, C.-Z.; Ning, Y.-Q.; Qin, L.; Liu, Y. Giant Kerr nonlinearity induced by tunneling in triple quantum dot molecules. J. Opt. Soc. Am. B 2014, 31, 1436–1442. [Google Scholar] [CrossRef]
- Tian, S.-C.; Wan, R.-G.; Tong, C.-Z.; Ning, Y.-Q. Giant fifth-order nonlinearity via tunneling induced quantum interference in triple quantum dots. AIP Adv. 2015, 5, 027111. [Google Scholar] [CrossRef] [Green Version]
- Tian, S.-C.; Xing, E.-B.; Wan, R.-G.; Wang, C.-L.; Wang, L.-J.; Shu, S.-L.; Tong, C.-Z.; Wang, L.-J. Control of coherence transfer via tunneling in quadruple and multiple quantum dots. Laser Phys. Lett. 2016, 13. [Google Scholar] [CrossRef]
- Tian, S.-C.; Wan, R.-G.; Wang, L.-J.; Shu, S.-L.; Tong, C.-Z.; Wang, L.-J. Tunneling-assisted coherent population transfer and creation of coherent superposition states in triple quantum dots. Laser Phys. Lett. 2016, 13. [Google Scholar] [CrossRef]
- Tackeuchi, A.; Kuroda, T.; Mase, K.; Nakata, Y.; Yokoyama, N. Dynamics of carrier tunneling between vertically aligned double quantum dots. Phys. Rev. B 2000, 62, 1568–1571. [Google Scholar] [CrossRef]
- Emary, C.; Sham, L.J. Optically controlled logic gates for two spin qubits in vertically coupled quantum dots. Phys. Rev. B 2007, 75, 125317. [Google Scholar] [CrossRef]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tian, S.-C.; Lu, H.-Y.; Zhang, H.; Wang, L.-J.; Shu, S.-L.; Zhang, X.; Hou, G.-Y.; Wang, Z.-Y.; Tong, C.-Z.; Wang, L.-J. Enhancing Third- and Fifth-Order Nonlinearity via Tunneling in Multiple Quantum Dots. Nanomaterials 2019, 9, 423. https://doi.org/10.3390/nano9030423
Tian S-C, Lu H-Y, Zhang H, Wang L-J, Shu S-L, Zhang X, Hou G-Y, Wang Z-Y, Tong C-Z, Wang L-J. Enhancing Third- and Fifth-Order Nonlinearity via Tunneling in Multiple Quantum Dots. Nanomaterials. 2019; 9(3):423. https://doi.org/10.3390/nano9030423
Chicago/Turabian StyleTian, Si-Cong, Huan-Yu Lu, Hang Zhang, Li-Jie Wang, Shi-Li Shu, Xin Zhang, Guan-Yu Hou, Zi-Ye Wang, Cun-Zhu Tong, and Li-Jun Wang. 2019. "Enhancing Third- and Fifth-Order Nonlinearity via Tunneling in Multiple Quantum Dots" Nanomaterials 9, no. 3: 423. https://doi.org/10.3390/nano9030423
APA StyleTian, S. -C., Lu, H. -Y., Zhang, H., Wang, L. -J., Shu, S. -L., Zhang, X., Hou, G. -Y., Wang, Z. -Y., Tong, C. -Z., & Wang, L. -J. (2019). Enhancing Third- and Fifth-Order Nonlinearity via Tunneling in Multiple Quantum Dots. Nanomaterials, 9(3), 423. https://doi.org/10.3390/nano9030423