Morphology, Photocatalytic and Antimicrobial Properties of TiO2 Modified with Mono- and Bimetallic Copper, Platinum and Silver Nanoparticles
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Characterization Techniques
2.3. Preparation of Photocatalysts
2.4. Photocatalytic Activity
2.4.1. 2-Propanol Photocatalytic Oxidation
2.4.2. Hydrogen Generation
2.4.3. The Spectral Activity of Phenol Photocatalytic Oxidation
2.4.4. Photocatalytic Phenol Oxidation in UV/Vis-LED System
2.4.5. Biocidal Properties
3. Results
3.1. Characterization of Nanocomposites
3.2. Photocatalytic Activity
3.2.1. 2-Propanol Oxidation
3.2.2. Hydrogen Generation
3.2.3. Action Spectra of Pt-TiO2_1_T and TiO2
3.2.4. Photocatalytic Activity in the Vis_LED System
3.2.5. Antimicrobial Properties
4. Discussion and Concluding Remarks
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Pulit, J.; Banach, M.; Kowalski, Z. Właściwości Nanocząstek Miedzi, Platyny, Srebra, Złota i Palladu. Czas. Tech. Chem. 2011, 2, 202–203. [Google Scholar]
- Langhammer, C.; Yuan, Z.; Zorić, I.; Kasemo, B. Plasmonic Properties of Supported Pt and Pd Nanostructures. Nano Lett. 2006, 6, 833–838. [Google Scholar] [CrossRef] [PubMed]
- Hajipour, M.J.; Fromm, K.M.; Akbar Ashkarran, A.; Jimenez de Aberasturi, D.; Larramendi, I.R.; de Rojo, T.; Serpooshan, V.; Parak, W.J.; Mahmoudi, M. Antibacterial Properties of Nanoparticles. Trends Biotechnol. 2012, 30, 499–511. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Chen, Y.L.; Liu, R.-S.; Tsai, D.P. Plasmonic Photocatalysis. Rep. Prog. Phys. 2013, 76, 046401. [Google Scholar] [CrossRef] [PubMed]
- Devi, L.G.; Kavitha, R. A Review on Plasmonic Metal-TiO2 Composite for Generation, Trapping, Storing and Dynamic Vectorial Transfer of Photogenerated Electrons across the Schottky Junction in a Photocatalytic System. Appl. Surf. Sci. 2016, 360, 601–622. [Google Scholar] [CrossRef]
- Clavero, C. Plasmon-Induced Hot-Electron Generation at Nanoparticle/Metal-Oxide Interfaces for Photovoltaic and Photocatalytic Devices. Nat. Photonics 2014, 8, 95–103. [Google Scholar] [CrossRef]
- Kelly, K.L.; Coronado, E.; Zhao, L.L.; Schatz, G.C. The Optical Properties of Metal Nanoparticles: The Influence of Size, Shape, and Dielectric Environment. J. Phys. Chem. B 2003, 107, 668–677. [Google Scholar] [CrossRef]
- Langhammer, C.; Larsson, E.M. Nanoplasmonic in Situ Spectroscopy for Catalysis Applications. ACS Catal. 2012, 2, 2036–2045. [Google Scholar] [CrossRef]
- Kumar, S.G.; Rao, K.S.R.K. Comparison of Modification Strategies towards Enhanced Charge Carrier Separation and Photocatalytic Degradation Activity of Metal Oxide Semiconductors (TiO2, WO3 and ZnO). Appl. Surf. Sci. 2016, 391, 124–128. [Google Scholar]
- Kowalska, E.; Mahaney, O.O.P.; Abe, R.; Ohtani, B. Visible-Light-Induced Photocatalysis through Surface Plasmon Excitation of Gold on Titania Surfaces. Phys. Chem. Chem. Phys. 2010, 12, 2344–2355. [Google Scholar] [CrossRef]
- Leong, K.H.; Gan, B.L.; Ibrahim, S.; Saravanan, P. Synthesis of Surface Plasmon Resonance (SPR) Triggered Ag/TiO2 Photocatalyst for Degradation of Endocrine Disturbing Compounds. Appl. Surf. Sci. 2014, 319, 128–135. [Google Scholar] [CrossRef]
- Wei, Z.; Rosa, L.; Wang, K.; Endo, M.; Juodkazis, S.; Ohtani, B.; Kowalska, E. Size-Controlled Gold Nanoparticles on Octahedral Anatase Particles as Efficient Plasmonic Photocatalyst. Appl. Catal. B Environ. 2017, 206, 393–405. [Google Scholar] [CrossRef] [PubMed]
- Sarina, S.; Waclawik, E.R.; Zhu, H. Photocatalysis on Supported Gold and Silver Nanoparticles under Ultraviolet and Visible Light Irradiation. Green Chem. 2013, 15, 1814. [Google Scholar] [CrossRef]
- Schneider, J.; Matsuoka, M.; Takeuchi, M.; Zhang, J.; Horiuchi, Y.; Anpo, M.; Bahnemann, D.W. Understanding TiO2 Photocatalysis: Mechanisms and Materials. Chem. Rev. 2014, 114, 9919–9986. [Google Scholar] [CrossRef]
- Ohtani, B. Revisiting the Fundamental Physical Chemistry in Heterogeneous Photocatalysis: Its Thermodynamics and Kinetics. Phys. Chem. Chem. Phys. 2014, 16, 1788–1797. [Google Scholar] [CrossRef] [PubMed]
- Fujishima, A.; Rao, T.N.; Tryk, D.A. Titanium Dioxide Photocatalysis. J. Photochem. Photobiol. C Photochem. Rev. 2000, 1, 1–21. [Google Scholar] [CrossRef]
- Mills, A.; Le Hunte, S. An Overview of Semiconductor Photocatalysis. J. Photochem. Photobiol. A Chem. 1997, 108, 1–35. [Google Scholar] [CrossRef]
- Zielińska-Jurek, A.; Hupka, J. Preparation and Characterization of Pt/Pd-Modified Titanium Dioxide Nanoparticles for Visible Light Irradiation. Catal. Today 2014, 230, 181–187. [Google Scholar] [CrossRef]
- Wei, Z.; Endo, M.; Wang, K.; Charbit, E.; Markowska-Szczupak, A.; Ohtani, B.; Kowalska, E. Noble Metal-Modified Octahedral Anatase Titania Particles with Enhanced Activity for Decomposition of Chemical and Microbiological Pollutants. Chem. Eng. J. 2017, 318, 121–134. [Google Scholar] [CrossRef]
- Dozzi, M.V.; Selli, E. Doping TiO2 with P-Block Elements: Effects on Photocatalytic Activity. J. Photochem. Photobiol. C Photochem. Rev. 2013, 14, 13–28. [Google Scholar] [CrossRef]
- Kowalska, E.; Rau, S.; Ohtani, B. Plasmonic Titania Photocatalysts Active under UV and Visible-Light Irradiation: Influence of Gold Amount, Size, and Shape. J. Nanotechnol. 2012, 2012, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Kaneko, M.; Ueno, H.; Nemoto, J. Schottky Junction/Ohmic Contact Behavior of a Nanoporous TiO2 Thin Film Photoanode in Contact with Redox Electrolyte Solutions. Beilstein J. Nanotechnol. 2011, 2, 127–134. [Google Scholar] [CrossRef] [PubMed]
- Radecka, M.; Rekas, M.; Trenczek-Zajac, A.; Zakrzewska, K. Importance of the Band Gap Energy and Flat Band Potential for Application of Modified TiO2 Photoanodes in Water Photolysis. J. Power Sources 2008, 181, 46–55. [Google Scholar] [CrossRef]
- Chen, H.W.; Ku, Y.; Kuo, Y.L. Effect of Pt/TiO2 Characteristics on Temporal Behavior of o-Cresol Decomposition by Visible Light-Induced Photocatalysis. Water Res. 2007, 41, 2069–2078. [Google Scholar] [CrossRef] [PubMed]
- Borowska, E.; Gomes, J.; Martins, R.C.; Quinta-ferreira, R.M.; Horn, H.; Gmurek, M. Solar Photocatalytic Degradation of Sulfamethoxazole. Catalysts 2019, 9, 500. [Google Scholar] [CrossRef]
- Zielińska-Jurek, A.; Wei, Z.; Wysocka, I.; Szweda, P.; Kowalska, E. The Effect of Nanoparticles Size on Photocatalytic and Antimicrobial Properties of Ag-Pt/TiO2 Photocatalysts. Appl. Surf. Sci. 2015, 353, 317–325. [Google Scholar] [CrossRef]
- Foster, H.A.; Sheel, D.W.; Sheel, P.; Evans, P.; Varghese, S.; Rutschke, N.; Yates, H.M. Antimicrobial Activity of Titania/Silver and Titania/Copper Films Prepared by CVD. J. Photochem. Photobiol. A Chem. 2010, 216, 283–289. [Google Scholar] [CrossRef]
- Pulgarin, C.; Kiwi, J.; Nadtochenko, V. Mechanism of Photocatalytic Bacterial Inactivation on TiO2 Films Involving Cell-Wall Damage and Lysis. Appl. Catal. B Environ. 2012, 128, 179–183. [Google Scholar] [CrossRef]
- Laxma Reddy, P.V.; Kavitha, B.; Kumar Reddy, P.A.; Kim, K.H. TiO2-Based Photocatalytic Disinfection of Microbes in Aqueous Media: A Review. Environ. Res. 2017, 154, 296–303. [Google Scholar] [CrossRef] [PubMed]
- Gamage McEvoy, J.; Zhang, Z. Antimicrobial and Photocatalytic Disinfection Mechanisms in Silver-Modified Photocatalysts under Dark and Light Conditions. J. Photochem. Photobiol. C Photochem. Rev. 2014, 19, 62–75. [Google Scholar] [CrossRef]
- Gołabiewska, A.; Malankowska, A.; Jarek, M.; Lisowski, W.; Nowaczyk, G.; Jurga, S.; Zaleska-Medynska, A. The Effect of Gold Shape and Size on the Properties and Visible Light-Induced Photoactivity of Au-TiO2. Appl. Catal. B Environ. 2016, 196, 27–40. [Google Scholar] [CrossRef]
- Dong, C.; Lian, C.; Hu, S.; Deng, Z.; Gong, J.; Li, M.; Liu, H.; Xing, M.; Zhang, J. Size-Dependent Activity and Selectivity of Carbon Dioxide Photocatalytic Reduction over Platinum Nanoparticles. Nat. Commun. 2018, 9, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Cybula, A.; Priebe, J.B.; Pohl, M.-M.; Sobczak, J.W.; Schneider, M.; Zielińska-Jurek, A.; Brückner, A.; Zaleska, A. The Effect of Calcination Temperature on Structure and Photocatalytic Properties of Au/Pd Nanoparticles Supported on TiO2. Appl. Catal. B Environ. 2014, 152, 202–211. [Google Scholar] [CrossRef]
- Parayil, S.K.; Kibombo, H.S.; Wu, C.M.; Peng, R.; Kindle, T.; Mishra, S.; Ahrenkiel, S.P.; Baltrusaitis, J.; Dimitrijevic, N.M.; Rajh, T.; et al. Synthesis-Dependent Oxidation State of Platinum on TiO2 and Their Influences on the Solar Simulated Photocatalytic Hydrogen Production from Water. J. Phys. Chem. C 2013, 117, 16850–16862. [Google Scholar] [CrossRef]
- Wysocka, I.; Kowalska, E.; Trzciński, K.; Łapiński, M.; Nowaczyk, G.; Zielińska-Jurek, A. UV-Vis-Induced Degradation of Phenol over Magnetic Photocatalysts Modified with Pt, Pd, Cu and Au Nanoparticles. Nanomaterials 2018, 8, 28. [Google Scholar] [CrossRef]
- Anpo, M.; Yamashita, H.; Ichihashi, Y.; Ehara, S. Photocatalytic Reduction of CO2 with H20 on Various Titanium Oxide Catalysts. J. Electroanal. Chem. 1995, 396, 21–26. [Google Scholar] [CrossRef]
- Murcia, J.J.; Hidalgo, M.C.; Navío, J.A.; Araña, J.; Doña-Rodríguez, J.M. Study of the Phenol Photocatalytic Degradation over TiO2 Modified by Sulfation, Fluorination, and Platinum Nanoparticles Photodeposition. Appl. Catal. B Environ. 2015, 179, 305–312. [Google Scholar] [CrossRef]
- Yadav, H.M.; Otari, S.V.; Koli, V.B.; Mali, S.S.; Hong, C.K.; Pawar, S.H.; Delekar, S.D. Preparation and Characterization of Copper-Doped Anatase TiO2 Nanoparticles with Visible Light Photocatalytic Antibacterial Activity. J. Photochem. Photobiol. A Chem. 2014, 280, 32–38. [Google Scholar] [CrossRef]
- Hu, Y.; Song, X.; Jiang, S.; Wei, C. Enhanced Photocatalytic Activity of Pt-Doped TiO2for NOxoxidation Both under UV and Visible Light Irradiation: A Synergistic Effect of Lattice Pt4+and Surface PtO. Chem. Eng. J. 2015, 274, 102–112. [Google Scholar] [CrossRef]
- Gołąbiewska, A.; Lisowski, W.; Jarek, M.; Nowaczyk, G.; Zielińska-Jurek, A.; Zaleska, A. Visible Light Photoactivity of TiO2 Loaded with Monometallic (Au or Pt) and Bimetallic (Au/Pt) Nanoparticles. Appl. Surf. Sci. 2014, 317, 1131–1142. [Google Scholar] [CrossRef]
- Galhenage, R.P.; Yan, H.; Tenney, S.A.; Park, N.; Henkelman, G.; Albrecht, P.; Mullins, D.R.; Chen, D.A. Understanding the Nucleation and Growth of Metals on TiO2: Co Compared to Au, Ni, and Pt. J. Phys. Chem. C 2013, 117, 7191–7201. [Google Scholar] [CrossRef]
- Luo, K.; St. Clair, T.P.; Lai, X.; Goodman, D.W. Silver Growth on TiO2 (110) (1 × 1) and (1 × 2). J. Phys. Chem. B 2000, 104, 3050–3057. [Google Scholar] [CrossRef]
- Zielińska-Jurek, A.; Kowalska, E.; Sobczak, J.W.; Lisowski, W.; Ohtani, B.; Zaleska, A. Preparation and Characterization of Monometallic (Au) and Bimetallic (Ag/Au) Modified-Titania Photocatalysts Activated by Visible Light. Appl. Catal. B Environ. 2011, 101, 504–514. [Google Scholar] [CrossRef]
- Kowalska, E.; Wei, Z.; Karabiyik, B.; Herissan, A.; Janczarek, M.; Endo, M.; Markowska-Szczupak, A.; Remita, H.; Ohtani, B. Silver-Modified Titania with Enhanced Photocatalytic and Antimicrobial Properties under UV and Visible Light Irradiation. Catal. Today 2015, 252, 136–142. [Google Scholar] [CrossRef]
- He, Z.; Fu, J.; Cheng, B.; Yu, J.; Cao, S. Cu2(OH)2CO3 Clusters: Novel Noble-Metal-Free Cocatalysts for Efficient Photocatalytic Hydrogen Production from Water Splitting. Appl. Catal. B Environ. 2017, 205, 104–111. [Google Scholar] [CrossRef]
- Athawale, A.A.; Katre, P.P.; Kumar, M.; Majumdar, M.B. Synthesis of CTAB-IPA Reduced Copper Nanoparticles. Mater. Chem. Phys. 2005, 91, 507–512. [Google Scholar] [CrossRef]
- Giuffrida, S.; Costanzo, L.L.; Ventimiglia, G.; Bongiorno, C. Photochemical Synthesis of Copper Nanoparticles Incorporated in Poly(Vinyl Pyrrolidone). J. Nanoparticle Res. 2008, 10, 1183–1192. [Google Scholar] [CrossRef]
- Kubacka, A.; Muñoz-Batista, M.J.; Fernández-García, M.; Obregón, S.; Colón, G. Evolution of H2 Photoproduction with Cu Content on CuOx-TiO2 Composite Catalysts Prepared by a Microemulsion Method. Appl. Catal. B Environ. 2015, 163, 214–222. [Google Scholar] [CrossRef]
- Wei, Z.; Janczarek, M.; Endo, M.; Colbeau-Justin, C.; Ohtani, B.; Kowalska, E. Silver-Modified Octahedral Anatase Particles as Plasmonic Photocatalyst. Catal. Today 2018, 310, 19–25. [Google Scholar] [CrossRef] [PubMed]
- Erdem, B.; Hunsicker, R.A.; Simmons, G.W.; Sudol, E.D.; Dimonie, V.L.; El-Aasser, M.S. XPS and FTIR Surface Characterization of TiO2 Particles Used in Polymer Encapsulation. Langmuir 2001, 17, 2664–2669. [Google Scholar] [CrossRef]
- Xiong, L.; Li, J.; Yang, B.; Yu, Y. Ti3+ in the Surface of Titanium Dioxide: Generation, Properties and Photocatalytic Application. J. Nanomater. 2012, 2012, 1–13. [Google Scholar] [CrossRef]
- Rjeb, A.; Letarte, S.; Tajounte, L.; El Idrissi, M.C.; Adnot, A.; Roy, D.; Claire, Y.; Kaloustian, J. Polypropylene Natural Aging Studied by X-ray Photoelectron Spectroscopy. J. Electron. Spectros. Relat. Phenom. 2000, 107, 221–230. [Google Scholar] [CrossRef]
- López, R.; Gómez, R.; Llanos, M.E. Photophysical and Photocatalytic Properties of Nanosized Copper-Doped Titania Sol-Gel Catalysts. Catal. Today 2010, 148, 103–108. [Google Scholar] [CrossRef]
- Ahmed, L.M.; Ivanova, I.; Hussein, F.H.; Bahnemann, D.W. Role of Platinum Deposited on TiO2 in Photocatalytic Methanol Oxidation and Dehydrogenation Reactions. Int. J. Photoenergy 2014, 2014, 1–9. [Google Scholar] [CrossRef]
- Wang, K.; Wei, Z.; Ohtani, B.; Kowalska, E. Interparticle Electron Transfer in Methanol Dehydrogenation on Platinum-Loaded Titania Particles Prepared from P25. Catal. Today 2018, 303, 327–333. [Google Scholar] [CrossRef]
- Sun, B.; Vorontsov, A.V.; Smirniotis, P.G. Role of Platinum Deposited on TiO2 in Phenol Photocatalytic Oxidation. Langmuir 2003, 19, 3151–3156. [Google Scholar] [CrossRef]
- Shiraishi, Y.; Sakamoto, H.; Sugano, Y.; Ichikawa, S.; Hirai, T. Pt-Cu Bimetallic Alloy Nanoparticles Supported on Anatase TiO2: Highly Active Catalysts for Aerobic Oxidation Driven by Visible Light. ACS Nano 2013, 7, 9287–9297. [Google Scholar] [CrossRef] [PubMed]
- Ioannides, T.; Verykios, X.E. Charge Transfer in Metal Catalysts Supported on Doped TiO2: A Theoretical Approach Based on Metal-Semiconductor Contact Theory. J. Catal. 1996, 161, 560–569. [Google Scholar] [CrossRef]
- Zhdanov, V.P. Nm-Sized Metal Particles on a Semiconductor Surface, Schottky Model, Etc. Surf. Sci. 2002, 512, 6–9. [Google Scholar] [CrossRef]
- Etacheri, V.; Di Valentin, C.; Schneider, J.; Bahnemann, D.; Pillai, S.C. Visible-Light Activation of TiO2 Photocatalysts: Advances in Theory and Experiments. J. Photochem. Photobiol. C Photochem. Rev. 2015, 25, 1–29. [Google Scholar] [CrossRef]
- Shiraishi, Y.; Sakamoto, H.; Fujiwara, K.; Ichikawa, S.; Hirai, T. Selective Photocatalytic Oxidation of Aniline to Nitrosobenzene by Pt Nanoparticles Supported on TiO2 under Visible Light Irradiation. ACS Catal. 2014, 4, 2418–2425. [Google Scholar] [CrossRef]
- Lv, J.; Gao, H.; Wang, H.; Lu, X.; Xu, G.; Wang, D.; Chen, Z.; Zhang, X.; Zheng, Z.; Wu, Y. Controlled Deposition and Enhanced Visible Light Photocatalytic Performance of Pt-Modified TiO2 Nanotube Arrays. Appl. Surf. Sci. 2015, 351, 225–231. [Google Scholar] [CrossRef]
- Lee, J.S.; You, K.H.; Park, C.B. Highly Photoactive, Low Bandgap TiO2 Nanoparticles Wrapped by Graphene. Adv. Mater. 2012, 24, 1084–1088. [Google Scholar] [CrossRef] [PubMed]
- Yoon, H.; Kim, D.; Park, M.; Kim, J.; Kim, J.; Srituravanich, W.; Shin, B.; Jung, Y.; Jeon, S. Extraordinary Enhancement of UV Absorption in TiO2 Nanoparticles Enabled by Low-Oxidized Graphene Nanodots. J. Phys. Chem. C 2018, 122, 12114–12121. [Google Scholar] [CrossRef]
- Nagakawa, H.; Ochiai, T.; Takekuma, Y.; Konuma, S.; Nagata, M. Effective Photocatalytic Hydrogen Evolution by Cascadal Carrier Transfer in the Reverse Direction. ACS Omega 2018, 3, 12770–12777. [Google Scholar] [CrossRef]
- Nagakawa, H.; Ochiai, T.; Konuma, S.; Nagata, M. Visible-Light Overall Water Splitting by CdS/WO 3 /CdWO 4 Tricomposite Photocatalyst Suppressing Photocorrosion. ACS Appl. Energy Mater. 2018, 1, 6730–6735. [Google Scholar] [CrossRef]
- Martín-Sómer, M.; Pablos, C.; van Grieken, R.; Marugán, J. Influence of Light Distribution on the Performance of Photocatalytic Reactors: LED vs. Mercury Lamps. Appl. Catal. B Environ. 2017, 215, 1–7. [Google Scholar] [CrossRef]
- Yang, M.Q.; Zhang, Y.; Zhang, N.; Tang, Z.R.; Xu, Y.J. Visible-Light-Driven Oxidation of Primary C-H Bonds over CdS with Dual Co-Catalysts Graphene and TiO2. Sci. Rep. 2013, 3, 3314. [Google Scholar] [CrossRef]
- Kolobov, N.S.; Svintsitskiy, D.A.; Kozlova, E.A.; Selishchev, D.S.; Kozlov, D.V. UV-LED Photocatalytic Oxidation of Carbon Monoxide over TiO2supported with Noble Metal Nanoparticles. Chem. Eng. J. 2017, 314, 600–611. [Google Scholar] [CrossRef]
- Vamvasakis, I.; Liu, B.; Armatas, G.S. Size Effects of Platinum Nanoparticles in the Photocatalytic Hydrogen Production Over 3D Mesoporous Networks of CdS and Pt Nanojunctions. Adv. Funct. Mater. 2016, 26, 8062–8071. [Google Scholar] [CrossRef]
- Xing, J.; Li, Y.H.; Jiang, H.B.; Wang, Y.; Yang, H.G. The Size and Valence State Effect of Pt on Photocatalytic H2 Evolution over Platinized TiO2photocatalyst. Int. J. Hydrogen Energy 2014, 39, 1237–1242. [Google Scholar] [CrossRef]
- Wu, D.; You, H.; Jin, D.; Li, X. Enhanced Inactivation of Escherichia Coli with Ag-Coated TiO2 Thin Film under UV-C Irradiation. J. Photochem. Photobiol. A Chem. 2011, 217, 177–183. [Google Scholar] [CrossRef]
- Gallo, A.; Marelli, M.; Psaro, R.; Gombac, V.; Montini, T.; Fornasiero, P.; Pievo, R.; Santo, V.D. Bimetallic Au–Pt/TiO2 Photocatalysts Active under UV-A and Simulated Sunlight for H2 Production from Ethanol. Green Chem. 2012, 14, 330–333. [Google Scholar] [CrossRef]
- Duan, K.; Liu, Z.; Li, J.; Yuan, L.; Hu, H.; Woo, S.I. Novel Pd-Au/for the Selective Catalytic Reduction of NOxby H2. Catal. Commun. 2014, 57, 19–22. [Google Scholar] [CrossRef]
- Oros-Ruiz, S.; Zanella, R.; Collins, S.E.; Hernández-Gordillo, A.; Gómez, R. Photocatalytic Hydrogen Production by Au-MxOy(MAg, Cu, Ni) Catalysts Supported on TiO2. Catal. Commun. 2014, 47, 1–6. [Google Scholar] [CrossRef]
- Zielińska-Jurek, A. Progress, Challenge, and Perspective of Bimetallic TiO2-Based Photocatalysts. J. Nanomater. 2014, 2014, 1–17. [Google Scholar] [CrossRef]
- Nadeem, M.A.; Al-Oufi, M.; Wahab, A.K.; Anjum, D.; Idriss, H. Hydrogen Production on Ag-Pd/TiO2 Bimetallic Catalysts: Is There a Combined Effect of Surface Plasmon Resonance with Schottky Mechanism on the Photo-Catalytic Activity? ChemistrySelect 2017, 2, 2754–2762. [Google Scholar] [CrossRef]
- Kowalska, E.; Janczarek, M.; Rosa, L.; Juodkazis, S.; Ohtani, B. Mono-and Bi-Metallic Plasmonic Photocatalysts for Degradation of Organic Compounds under UV and Visible Light Irradiation. Catal. Today 2014, 230, 131–137. [Google Scholar] [CrossRef]
- Klaine, S.J.; Alvarez, P.J.J.; Batley, G.E.; Fernandes, T.F.; Handy, R.D.; Lyon, D.Y.; Mahendra, S.; McLaughlin, M.J.; Lead, J.R. Nanomaterials in the Environment: Behavior, Fate, Bioavailability, and Effects. Environ. Toxicol. Chem. 2008, 27, 1825–1851. [Google Scholar] [CrossRef]
- Bhatt, I.; Tripathi, B.N. Interaction of Engineered Nanoparticles with Various Components of the Environment and Possible Strategies for Their Risk Assessment. Chemosphere 2011, 82, 308–317. [Google Scholar] [CrossRef]
- Zheng, K.; Setyawati, M.I.; Leong, D.T.; Xie, J. Antimicrobial Silver Nanomaterials. Coord. Chem. Rev. 2018, 357, 1–17. [Google Scholar] [CrossRef]
- Pietrzak, K.; Twarużek, M.; Czyżowska, A.; Kosicki, R.; Gutarowska, B. Influence of Silver Nanoparticles on Metabolism and Toxicity of Moulds. Acta Biochim. Pol. 2015, 62, 851–857. [Google Scholar] [CrossRef] [PubMed]
- Hoseinzadeh, E.; Makhdoumi, P.; Taha, P.; Hossini, H.; Stelling, J.; Amjad Kamal, M. A Review on Nano-Antimicrobials: Metal Nanoparticles, Methods and Mechanisms. Curr. Drug Metab. 2017, 18, 120–128. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Hu, C.; Shao, L. The Antimicrobial Activity of Nanoparticles: Present Situation and Prospects for the Future. Int. J. Nanomed. 2017, 12, 1227–1249. [Google Scholar] [CrossRef] [PubMed]
- Rai, M.; Kon, K.; Ingle, A.; Duran, N.; Galdiero, S.; Galdiero, M. Broad-Spectrum Bioactivities of Silver Nanoparticles: The Emerging Trends and Future Prospects. Appl. Microbiol. Biotechnol. 2014, 98, 1951–1961. [Google Scholar] [CrossRef] [PubMed]
Sample Label | Metal Content Used for Preparation [% mol] | Anatase Crystallite Size [nm] | 2-Propanol Photooxidation Rate [µmol·h−1] | Hydrogen Generation Rate [µmol·h−1] UV-Vis | |||
---|---|---|---|---|---|---|---|
Pt | Ag | Cu | UV-Vis | Vis | |||
TiO2 | 0 | 0 | 0 | 12 | 34.3 ± 1.7 | 0.026 ± 0.001 | 1.9 ± 0.1 |
Pt-TiO2_1_C | 0.1 | 0 | 0 | 12 | 227.3 ± 11.4 | 0.496 ± 0.025 | 409.5 ± 20.5 |
Pt-TiO2_2_C | 0.05 | 0 | 0 | 14 | 80.8 ± 4.1 | 0.197 ± 0.010 | 501.4 ± 25.1 |
Cu-TiO2_1_C | 0 | 0 | 0.5 | 13 | 61.1 ± 3.1 | 0.088 ± 0.004 | 63.1 ± 3.2 |
Cu-TiO2_2_C | 0 | 0 | 0.1 | 15 | 14.3 ± 0.7 | 0.103 ± 0.005 | 81.1 ± 4.1 |
Ag-TiO2_C | 0 | 0.5 | 0 | 14 | 62.1 ± 3.1 | 0.148 ± 0.007 | 42.2 ± 2.1 |
Cu/Ag-TiO2_C | 0 | 0.5 | 0.5 | 12 | 54.3 ± 2.7 | 0.092 ± 0.005 | 60.1 ± 3.1 |
Ag/Pt-TiO2_C | 0.1 | 0.5 | 0 | 12 | 151.1 ± 7.6 | 0.246 ± 0.012 | 338.9 ± 16.9 |
Cu/Pt-TiO2_1_C | 0.1 | 0 | 0.5 | 14 | 61.2 ± 3.1 | 0.286 ± 0.014 | 219.4 ± 10.9 |
Cu/Pt-TiO2_2_C | 0.05 | 0 | 0.1 | 13 | 150.5 ± 7.5 | 0.414 ± 0.021 | 371.1 ± 18.5 |
Pt-TiO2_1_T | 0.1 | 0 | 0 | 13 | 117.1 ± 5.9 | 0.582 ± 0.029 | 355.9 ± 17.8 |
Pt-TiO2_2_T | 0.05 | 0 | 0 | 13 | 40.2 ± 2.1 | 0.606 ± 0.030 | 113.5 ± 5.7 |
Cu-TiO2_1_T | 0 | 0 | 0.5 | 12 | 71.9 ± 3.6 | 0.087 ± 0.004 | 60.1 ± 3 |
Cu-TiO2_2_T | 0 | 0 | 0.1 | 14 | 21.1 ± 1.1 | 0.186 ± 0.009 | 82.3 ± 4.1 |
Ag-TiO2_T | 0 | 0.5 | 0 | 12 | 72.1 ± 3.6 | 0.144 ± 0.007 | 16.3 ± 0.8 |
Cu/Ag-TiO2_T | 0 | 0.5 | 0.5 | 14 | 61.5 ± 3.1 | 0.089 ± 0.004 | 51.1 ± 2.5 |
Ag/Pt-TiO2_T | 0.1 | 0.5 | 0 | 12 | 117.3 ± 5.9 | 0.293 ± 0.014 | 219.1 ± 10.9 |
Cu/Pt-TiO2_1_T | 0.1 | 0 | 0.5 | 13 | 40.7 ± 2.1 | 0.257 ± 0.013 | 137.7 ± 6.9 |
Cu/Pt-TiO2_2_T | 0.05 | 0 | 0.1 | 12 | 109.1 ± 5.5 | 0.520 ± 0.026 | 175.5 ± 8.8 |
Sample Label | Element Content [at. %] | Particle Size [nm] | |||||
---|---|---|---|---|---|---|---|
Ti 2p | O 1s | C 1s | Pt 4f | Cu 2p | Ag 3d | ||
Pt-TiO2_2_C | 27.1 | 62.9 | 9.9 | 0.1 | - | - | 3.4 ± 0.9 |
Pt-TiO2_2_T | 24.7 | 63.4 | 11.9 | n.d. | - | - | 1.5 ± 0.6 |
Ag/Pt-TiO2_C | 26.4 | 62.0 | 11.2 | 0.2 | - | 0.2 | - |
Ag/Pt-TiO2_T | 26.6 | 60.8 | 12.0 | 0.2 | - | 0.4 | - |
Ag/Cu-TiO2_C | 23.3 | 62.4 | 13.9 | - | 0.1 | 0.3 | - |
Ag/Cu-TiO2_T | 25.2 | 60.4 | 13.9 | - | 0.2 | 0.3 | - |
Cu/Pt-TiO2_2_C | 26.9 | 59.4 | 13.6 | 0.1 | n.d. | - | 2.2 ± 0.8 |
Cu/Pt-TiO2_2_T | 26.9 | 61.7 | 11.4 | 0.1 | n.d. | - | - |
Sample Label | log(N/N0) | |
---|---|---|
Under Irradiation (λ > 450 nm) | In the Dark | |
TiO2 | −0.27 | −0.42 |
Cu-TiO2_1_C | −2.86 | −1.68 |
Ag-TiO2_C | −7.63 | −6.80 |
Cu/Ag-TiO2_C | −8.14 | −8.14 |
Ag/Pt-TiO2_C | −8.21 | −8.21 |
Cu-TiO2_1_T | −2.17 | −2.05 |
Ag-TiO2_T | −3.06 | −1.22 |
Cu/Ag-TiO2_T | −4.64 | −2.14 |
Ag/Pt-TiO2_T | −2.43 | −2.12 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wysocka, I.; Kowalska, E.; Ryl, J.; Nowaczyk, G.; Zielińska-Jurek, A. Morphology, Photocatalytic and Antimicrobial Properties of TiO2 Modified with Mono- and Bimetallic Copper, Platinum and Silver Nanoparticles. Nanomaterials 2019, 9, 1129. https://doi.org/10.3390/nano9081129
Wysocka I, Kowalska E, Ryl J, Nowaczyk G, Zielińska-Jurek A. Morphology, Photocatalytic and Antimicrobial Properties of TiO2 Modified with Mono- and Bimetallic Copper, Platinum and Silver Nanoparticles. Nanomaterials. 2019; 9(8):1129. https://doi.org/10.3390/nano9081129
Chicago/Turabian StyleWysocka, Izabela, Ewa Kowalska, Jacek Ryl, Grzegorz Nowaczyk, and Anna Zielińska-Jurek. 2019. "Morphology, Photocatalytic and Antimicrobial Properties of TiO2 Modified with Mono- and Bimetallic Copper, Platinum and Silver Nanoparticles" Nanomaterials 9, no. 8: 1129. https://doi.org/10.3390/nano9081129
APA StyleWysocka, I., Kowalska, E., Ryl, J., Nowaczyk, G., & Zielińska-Jurek, A. (2019). Morphology, Photocatalytic and Antimicrobial Properties of TiO2 Modified with Mono- and Bimetallic Copper, Platinum and Silver Nanoparticles. Nanomaterials, 9(8), 1129. https://doi.org/10.3390/nano9081129