Facile Synthesis of SnO2/LaFeO3−XNX Composite: Photocatalytic Activity and Gas Sensing Performance
Abstract
:1. Introduction
2. Experimental Section
2.1. Synthesis of LaFeO3 Nanoparticles
2.2. Synthesis of LaFeO3−XNX Oxynitride
2.3. Fabrication of SnO2/LaFeO3−XNX Nanocomposite
2.4. Characterization
2.5. Photoelectrochemical Measurements
2.6. Photoactivity Evaluation
2.7. Gas Sensing Evaluation
3. Results and Discussion
3.1. Structural Morphology and Chemical Composition
3.2. Photo-Induced Charge Properties
3.3. Photocatalytic and Gas Sensing Performance
3.4. Discussion
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Gangu, K.K.; Maddila, S.; Jonnalagadda, S.B. A review on novel composites of MWCNTs mediated semiconducting materials as photocatalysts in water treatment. Sci. Total Environ. 2019, 646, 1398–1412. [Google Scholar] [CrossRef] [PubMed]
- Yin, X.-T.; Zhou, W.-D.; Li, J.; Wang, Q.; Wu, F.-Y..; Dastan, D.; Wang, D.; Garmestani, H.; Wang, X.-M.; Talu, S. A highly sensitivity and selectivity Pt-SnO2 nanoparticles for sensing applications at extremely low level hydrogen gas detection. J. Alloy. Compd. 2019, 805, 229–236. [Google Scholar] [CrossRef]
- Dastan, D.; Chaure, N.; Kartha, M. Surfactants assisted solvothermal derived titania nanoparticles: Synthesis and simulation. J. Mater. Sci. Mater. Electron. 2017, 28, 7784–7796. [Google Scholar] [CrossRef]
- Yin, X.-T.; Tao, L. Fabrication and gas sensing properties of Au-loaded SnO2 composite nanoparticles for low concentration hydrogen. J. Alloy. Compd. 2017, 727, 254–259. [Google Scholar] [CrossRef]
- Khan, M.M.; Adil, S.F.; Al-Mayouf, A. Metal oxides as photocatalysts. J. Saudi Chem. Soc. 2015, 19, 462–464. [Google Scholar] [CrossRef] [Green Version]
- Yin, X.-T.; Tao, L.; Wang, G.-C.; Zhou, Q.; He, W.; Wang, Q. Effects of oxygen and carbon monoxide species on the gas sensing properties of SnO2 nanoparticles. J. Nanoelectron. Optoelectron. 2017, 12, 748–751. [Google Scholar] [CrossRef]
- Wei, K.; Zhao, S.; Zhang, W.; Zhong, X.; Li, T.; Cui, B.; Gao, S.; Wei, D.; Shen, Y. Controllable Synthesis of Zn-Doped α-Fe2O3 Nanowires for H2S Sensing. Nanomaterials 2019, 9, 994. [Google Scholar] [CrossRef] [PubMed]
- Ge, J.L.; Zhang, Y.F.; Heo, Y.J.; Park, S.J. Advanced design and synthesis of composite photocatalysts for the remediation of wastewater: A review. Catalysts 2019, 9, 122. [Google Scholar] [CrossRef]
- Zhou, Q.; Xu, L.; Umar, A.; Chen, W.; Kumar, R. Highly sensitive carbon monoxide (CO) gas sensors based on Ni and Zn doped SnO2 nanomaterials. Sens. Actuators B Chem. 2018, 256, 656–664. [Google Scholar] [CrossRef]
- Dastan, D. Effect of preparation methods on the properties of titania nanoparticles: Solvothermal versus sol-gel. Appl. Phys. A 2017, 123, 1–13. [Google Scholar] [CrossRef]
- Yin, X.-T.; Zhou, W.-D.; Li, J.; Lv, P.; Wang, Q.; Wang, D.; Wu, F.-Y.; Dastan, D.; Garmestani, H.; Shi, Z.-C.; et al. Tin dioxide nanoparticles with high sensitivity and selectivity for gas sensors at sub-ppm level of hydrogen gas detection. J. Mater. Sci. Mater. Electron. 2019. [Google Scholar] [CrossRef]
- Nikolaou, P.; Vassilakopoulou, A.; Papadatos, D.; Topoglidis, E.; Koutselas, I. A chemical sensor for CBr4 based on quasi-2D and 3D hybrid organic–inorganic perovskites immobilized on TiO2 films. Mater. Chem. Front. 2018, 2, 730–740. [Google Scholar] [CrossRef]
- Ismael, M.; Wark, M. Perovskite-type LaFeO3: Photoelectrochemical properties and photocatalytic degradation of organic pollutants under visible light irradiation. Catalysts 2019, 9, 342. [Google Scholar] [CrossRef]
- Peng, K.; Fu, L.J.; Yang, H.; Ouyang, J. Perovskite LaFeO3/montmorillonite nanocomposites: Synthesis, interface characteristics and enhanced photocatalytic activity. Sci. Rep. 2016, 6, 19723. [Google Scholar] [CrossRef]
- Wu, Y.; Wang, H.; Tu, W.G.; Liu, Y.; Tan, Y.Z.; Yuan, X.Z.; Chew, J.W. Quasi-polymeric construction of stable perovskite-type LaFeO3/g-C3N4 heterostructured photocatalyst for improved Z-scheme photocatalytic activity via solid p-n heterojunction interfacial effect. J. Hazard. Mater. 2018, 347, 412–422. [Google Scholar] [CrossRef]
- Díez-Garcia, M.I.; Gjmez, R. Metal doping to enhance the photoelectrochemical behavior of LaFeO3 photocathodes. ChemSusChem 2017, 10, 2457–2463. [Google Scholar] [CrossRef]
- Shin, T.H.; Ida, S.; Ishihara, T. Doped CeO2–LaFeO3 composite oxide as an active anode for direct hydrocarbon-type solid oxide fuel cells. J. Am. Chem. Soc. 2011, 133, 19399–19407. [Google Scholar] [CrossRef]
- Dacquin, J.P.; Lancelot, C.; Dujardin, C.; Cordier-Robert, C.; Granger, P. Support-induced effects of LaFeO3 perovskite on the catalytic performances of supported Pt catalysts in DeNOx applications. J. Phys. Chem. C 2011, 115, 1911–1921. [Google Scholar] [CrossRef]
- Zhang, L.; Xu, T.H.; Guo, Q.Y.; Ling, Z.; Zou, R.J.; Wu, Q. Enhanced photocatalytic efficiencies over A- or B-sites substituted LaFeO3/silica fiber composites. J. Phys. Chem. Sol. 2017, 110, 136–144. [Google Scholar] [CrossRef]
- Xu, K.; Feng, J. Superior photocatalytic performance of LaFeO3/g-C3N4 heterojunction nanocomposites under visible light irradiation. RSC Adv. 2017, 7, 45369–45376. [Google Scholar] [CrossRef]
- Armstrong, E.N.; Striker, T.; Ramaswamy, V.; Ruud, J.A.; Wachsman, E.D. NOx adsorption behavior of LaFeO3 and LaMnO3+δ and its influence on potentiometric sensor response. Sens. Actuators B 2011, 158, 159–170. [Google Scholar] [CrossRef]
- Toan, N.N.; Saukko, S.; Lantto, V. Gas sensing with semiconducting perovskite oxide LaFeO3. Physica B 2003, 327, 279–282. [Google Scholar] [CrossRef]
- Wang, Y.X.; Sun, H.Q.; Ang, H.M.; Tade, M.O.; Wang, S.B. 3D-hierarchically structured MnO2 for catalytic oxidation of phenol solutions by activation of peroxymonosulfate: Structure dependence and mechanism. Appl. Catal. B Environ. 2015, 164, 159–167. [Google Scholar] [CrossRef]
- Gao, X.M.; Shang, Y.Y.; Gao, K.L.; Fu, F. Plasmon sensitized heterojunction 2D ultrathin Ag/AgI-δ-Bi2O3 for enhanced photocatalytic nitrogen fixation. Nanomaterials 2019, 9, 781. [Google Scholar] [CrossRef]
- Li, F.; Liu, Y.; Liu, R.; Sun, Z.; Zhao, D.; Kou, C. Preparation of Ca-doped LaFeO3 nanopowders in a reverse microemulsion and their visible light photocatalytic activity. Mater. Lett. 2010, 64, 223–225. [Google Scholar] [CrossRef]
- Saddat, M.; Kakhki, E.; Yavari, Z.; Saffari, J.; Ali, S.; Kakhki, E. Perovskite-type LaFeO3 and LaFeO3-CNTs nanocrystals as active anode for methanol oxidation in alkaline solutions. J. Electr. Eng. 2016, 4, 88–99. [Google Scholar]
- Pasinski, D.; Zych, E.; Sokolnicki, J. The effect of N3− substitution for O2− on optical properties of YAG:Ce3+ phosphor. J. Alloy. Compd. 2016, 668, 194–199. [Google Scholar] [CrossRef]
- Velichkova, M.M.; Lazarova, T.; Tumbalev, V.; Ivanov, G.; Kovacheva, D.; Stefanov, P.A. Naydenov, Complete oxidation of hydrocarbons on YFeO3 and LaFeO3 catalysts. Chem. Eng. J. 2013, 231, 236–244. [Google Scholar] [CrossRef]
- Faye, J.; Baylet, A.; Trentesaux, M.; Royer, S.; Dumeignil, F.; Duprez, D.; Valange, S.; Tatibouet, J. Influence of lanthanum stoichiometry in La1−xFeO3−δ perovskites on their structure and catalytic performance in CH4 total oxidation. Appl. Catal. B Environ. 2012, 126, 134–143. [Google Scholar] [CrossRef]
- Thirumalairajan, S.; Girija, K.; Mastelaro, V.R.; Ponpandian, N. Photocatalytic degradation of organic dyes under visible light irradiation by floral-like LaFeO3 nanostructures comprised of nanosheet petals. New J. Chem. 2014, 38, 5480–5490. [Google Scholar] [CrossRef]
- Sathish, M.; Viswanathan, B.; Viswanath, R.P.; Gopinath, C.S. Synthesis, Characterization, Electronic Structure, and Photocatalytic Activity of Nitrogen-Doped TiO2 Nanocatalyst. Chem. Mater. 2005, 17, 6349–6353. [Google Scholar] [CrossRef]
- Chen, X.; Burda, C. Photoelectron Spectroscopic Investigation of Nitrogen-Doped Titania Nanoparticles. J. Phys. Chem. B 2004, 108, 15446–15449. [Google Scholar] [CrossRef]
- Liang, Y.; Fang, B. Hydrothermal synthesis of SnO2 nanorods: Morphology dependence, growth mechanism and surface properties. Mater. Res. Bull. 2013, 48, 4118–4124. [Google Scholar] [CrossRef]
- Yang, J.; Hu, R.S.; Meng, W.W.; Du, Y.F. A novel p-LaFeO3/n-Ag3PO4 heterojunction photocatalyst for phenol degradation under visible light irradiation. Chem. Commun. 2016, 52, 2620–2623. [Google Scholar] [CrossRef]
- Attri, P.; Kim, Y.H.; Park, D.H.; Park, J.H.; Hong, Y.J.; Uhm, H.S.; Kim, K.-N.; Fridman, A.; Choi, E.H. Generation mechanism of hydroxyl radical species and its lifetime prediction during the plasma-initiated ultraviolet (UV) photolysis. Sci. Rep. 2015, 5, 9332. [Google Scholar] [CrossRef]
- Zheng, X.K.; Yuan, J.J.; Shen, J.; Liang, J.X.; Che, J.F.; Tang, B.; He, G.Y.; Chen, H.Q. A carnation-like rGO/Bi2O2CO3/BiOCl composite: Efficient photocatalyst for the degradation of ciprofloxacin. J. Mater. Sci. Mater. Electron. 2019, 30, 5986–5994. [Google Scholar] [CrossRef]
- Yin, X.-T.; Guo, X.-M. Sensitivity and selectivity of (Au, Pt, Pd)-loaded and (In, Fe)-doped SnO2 sensors for H2 and CO detection. J. Mater. Sci. Mater. Electron. 2014, 25, 4960–4966. [Google Scholar] [CrossRef]
- Zhou, Q.; Xu, L.N.; Umar, A.; Chen, W.G.; Kumar, R. Pt nanoparticles decorated SnO2 nanoneedles for efficient CO gas Sensing Applications. Sens. Actuators B 2018, 256, 656–664. [Google Scholar] [CrossRef]
- Katsuki, A.; Fukui, K. H2 selective gas sensor based on SnO2. Sens. Actuators B 1998, 52, 30–37. [Google Scholar] [CrossRef]
- Yin, X.-T.; Lv, P.; Li, J. Study on simultaneous detection of CO and H2 with (Pd, Fe)-modified SnO2 and Pt-loaded SnO2 sensors. J. Mater. Sci. Mater. Electron. 2018, 29, 18935–18940. [Google Scholar] [CrossRef]
- Shimizu, Y.; Matsunaga, N.; Hyodo, T.; Egashira, M. Improvement of SO2 sensing properties of WO3 by noble metal loading. Sens. Actuators B 2001, 77, 35–40. [Google Scholar] [CrossRef]
- Shen, S.; Zhong, W.; Wang, Z.G.; Lin, Z.; Feng, S. β-FeSe nanorods composited g-C3N4 with enhanced photocatalytic efficiency. R. Soc. Open Sci. 2019, 6, 181886. [Google Scholar] [CrossRef]
- Di, L.; Yang, H.; Xian, T.; Chen, X. Enhanced photocatalytic activity of NaBH4 reduced BiFeO3 nanoparticles for rhodamine B decolorization. Materials 2017, 10, 1118. [Google Scholar] [CrossRef]
- Qiu, L.; Zhou, Z.; Qiu, X.; Duo, S. Synthesis and photocatalytic degradation performance of g-C3N4/CQDs/SAPO-5 ternary composite. Key Eng. Mater. 2018, 768, 201–205. [Google Scholar] [CrossRef]
- Zhou, D.; Yang, H.; Tu, Y.; Tian, Y.; Cai, Y.; Hu, Z.; Zhu, X. In situ fabrication of Bi2Ti2O7/TiO2 heterostructure submicron fibers for enhanced photocatalytic activity. Nanoscale Res. Lett. 2016, 11, 193. [Google Scholar] [CrossRef]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yin, X.-T.; Dastan, D.; Wu, F.-Y.; Li, J. Facile Synthesis of SnO2/LaFeO3−XNX Composite: Photocatalytic Activity and Gas Sensing Performance. Nanomaterials 2019, 9, 1163. https://doi.org/10.3390/nano9081163
Yin X-T, Dastan D, Wu F-Y, Li J. Facile Synthesis of SnO2/LaFeO3−XNX Composite: Photocatalytic Activity and Gas Sensing Performance. Nanomaterials. 2019; 9(8):1163. https://doi.org/10.3390/nano9081163
Chicago/Turabian StyleYin, Xi-Tao, Davoud Dastan, Fa-Yu Wu, and Jing Li. 2019. "Facile Synthesis of SnO2/LaFeO3−XNX Composite: Photocatalytic Activity and Gas Sensing Performance" Nanomaterials 9, no. 8: 1163. https://doi.org/10.3390/nano9081163