High-Power Large-Energy Raman Soliton Generations Within a Mode-Locked Yb-Doped Fiber Laser Based on High-Damage-Threshold CVD-MoS2 as Modulator
Abstract
:1. Introduction
2. Fabrication and Characterization of the MoS2 Modulator
3. Experimental Setup
4. Results and Discussion
4.1. Single-Pulse Raman Soliton
4.2. Dual-Pulse Raman Soliton
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Schliesser, A.; Picqué, N.; Hänsch, T.W. Mid-infrared frequency combs. Nat. Photon. 2012, 6, 440–449. [Google Scholar] [CrossRef] [Green Version]
- Udem, T.; Holzwarth, R.; Hänsch, T.W. Optical frequency metrology. Nature 2002, 416, 233–237. [Google Scholar] [CrossRef]
- Fermann, M.E.; Hartl, I. Ultrafast fibre lasers. Nat. Photon. 2013, 7, 868–874. [Google Scholar] [CrossRef]
- Martinez, A.; Sun, Z. Nanotube and graphene saturable absorbers for fibre lasers. Nat. Photon. 2013, 7, 842–845. [Google Scholar] [CrossRef]
- Grelu, P.; Akhmediev, N. Dissipative solitons for mode-locked lasers. Nat. Photon. 2012, 6, 84–92. [Google Scholar] [CrossRef]
- Sun, Z.; Hasan, T.; Torrisi, F.; Popa, D.; Privitera, G.; Wang, F.; Bonaccorso, F.; Basko, D.M.; Ferrari, A.C. Graphene mode-locked ultrafast laser. ACS Nano 2010, 4, 803–810. [Google Scholar] [CrossRef]
- Oktem, B.; Ülgüdür, C.; Ilday, F.Ö. Soliton-similariton fibre laser. Nat. Photon. 2010, 4, 307–311. [Google Scholar] [CrossRef]
- Lecaplain, C.; Grelu, P.; Soto-Crespo, J.M.; Akhmediev, N. Dissipative rogue waves generated by chaotic pulse bunching in a mode-locked laser. Phys. Rev. Lett. 2012, 108, 233901. [Google Scholar] [CrossRef]
- Schröder, J.; Coen, S.; Vanholsbeeck, F.; Sylvestre, T. Passively mode-locked Raman fiber laser with 100 GHz repetition rate. Opt. Lett. 2006, 31, 3489–3491. [Google Scholar] [CrossRef]
- Chestnut, D.A.; Taylor, J.R. Wavelength-versatile subpicosecond pulsed lasers using Raman gain in figure-of eight fiber geometries. Opt. Lett. 2005, 30, 2982–2984. [Google Scholar] [CrossRef]
- Chamorovskiy, A.; Rantamäki, A.; Sirbu, A.; Mereuta, A.; Kapon, E.; Okhotnikov, O.G. 1.38-µm mode-locked Raman fiber laser pumped by semiconductor disk laser. Opt. Express 2010, 18, 23872–23877. [Google Scholar] [CrossRef]
- Runge, A.F.; Aguergaray, C.; Broderick, N.G.; Erkintalo, M. Raman rogue waves in a partially mode-locked fiber. Opt. Lett. 2014, 39, 319–322. [Google Scholar] [CrossRef]
- Kharenko, D.S.; Podivilov, E.V.; Apolonski, A.A.; Babin, S.A. 20 nJ 200 fs all-fiber highly chirped dissipative soliton oscillator. Opt. Lett. 2012, 37, 4104–4106. [Google Scholar] [CrossRef]
- Bednyakova, A.E.; Babin, S.A.; Kharenko, D.S.; Podivilov, E.V.; Fedoruk, M.P.; Kalashnikov, V.L.; Apolonski, A. Evolution of dissipative solitons in a fiber laser oscillator in the presence of strong Raman scattering. Opt. Express 2013, 21, 20556–20564. [Google Scholar] [CrossRef]
- Zhao, L.; Yao, P.J.; Gu, C.; Xu, L.X. Raman-assisted passively mode-locked fiber laser. Chin. Phys. Lett. 2018, 35, 044201. [Google Scholar] [CrossRef]
- Ma, P.F.; Lin, W.; Zhang, H.N.; Xu, S.H.; Yang, Z.M. Nonlinear absorption properties of Cr2Ge2Te6 and its application as an ultra-fast optical modulator. Nanomaterials 2019, 9, 789. [Google Scholar] [CrossRef]
- Choi, S.Y.; Cho, D.K.; Song, Y.W.; Oh, K.; Kim, K.; Rotermund, F.; Yeom, D.I. Graphene-filled hollow optical fiber saturable absorber for efficient soliton fiber laser mode locking. Opt. Express 2012, 20, 5652–5657. [Google Scholar] [CrossRef]
- Niu, K.D.; Sun, R.Y.; Chen, Q.Y.; Man, B.Y.; Zhang, H.N. Passively mode-locked Er-doped fiber laser based on SnS2 nanosheets as a saturable absorber. Photon. Res. 2018, 6, 72–76. [Google Scholar] [CrossRef]
- Liu, H.; Luo, A.P.; Wang, F.Z.; Tang, R.; Liu, M.; Luo, Z.C.; Xu, W.C.; Zhao, C.J.; Zhang, H. Femtosecond pulse erbium-doped fiber laser by a few-layer MoS2 saturable absorber. Opt. Lett. 2014, 39, 4591–4594. [Google Scholar] [CrossRef]
- Xu, N.N.; Ming, N.; Han, X.L.; Man, B.Y.; Zhang, H. Large-energy passively Q-switched Er-doped fiber laser based on CVD-Bi2Se3 as saturable absorber. Opt. Mater. Express 2019, 9, 373–383. [Google Scholar] [CrossRef]
- Jhon, Y.I.; Koo, J.; Anasori, B.; Seo, M.; Lee, J.H.; Gogotsi, Y.; Jhon, Y.M. Metallic MXene saturable absorber for femtosecond mode-locked lasers. Adv. Mater. 2017, 29, 1702496. [Google Scholar] [CrossRef]
- Ming, N.; Tao, S.N.; Yang, W.Q.; Chen, Q.Y.; Sun, R.Y.; Wang, C.; Wang, S.Y.; Man, B.Y.; Zhang, H.N. Mode-locked Er-doped fiber laser based on PbS/CdS core/shell quantum dots as saturable absorber. Opt. Express 2018, 26, 9017–9026. [Google Scholar] [CrossRef]
- Shi, Y.H.; Long, H.; Liu, S.X.; Tsang, Y.H.; Wen, Q. Ultrasmall 2D NbSe2 based quantum dots used for low threshold ultrafast lasers. J. Mater. Chem. C 2018, 6, 12638–12642. [Google Scholar] [CrossRef]
- Kang, Z.; Liu, M.Y.; Li, Z.W.; Li, S.Q.; Jia, Z.X.; Liu, C.Z.; Qin, W.P.; Qin, G.S. Passively Q-switched erbium doped fiber laser using a gold nanostars based saturable absorber. Photon. Res. 2018, 6, 549–553. [Google Scholar] [CrossRef]
- Zhang, H.N.; Liu, J. Gold nanobipyramids as saturable absorbers for passively Q-switched laser generation in the 1.1 μm region. Opt. Lett. 2016, 41, 1150–1152. [Google Scholar] [CrossRef]
- Kang, Z.; Liu, M.Y.; Gao, X.J.; Li, N.; Yin, S.Y.; Qin, G.S.; Qin, W.P. Mode-locked thulium-doped fiber laser at 1982 nm by using a gold nanorods saturable absorber. Laser Phys. Lett. 2015, 12, 045105. [Google Scholar] [CrossRef]
- Castellani, C.E.S.; Kelleher, E.J.R.; Travers, J.C.; Popa, D.; Hasan, T.; Sun, Z.; Flahaut, E.; Ferrari, A.C.; Popov, S.V.; Taylor, J.R. Ultrafast Raman laser mode-locked by nanotubes. Opt. Lett. 2011, 36, 3996–3998. [Google Scholar] [CrossRef] [Green Version]
- Zhang, L.; Wang, G.Z.; Hu, J.M.; Wang, J.H.; Fan, J.T.; Wang, J.; Feng, Y. Linearly polarized 1180-nm Raman fiber laser mode locked by graphene. IEEE Photon. J. 2012, 4, 1809–1815. [Google Scholar] [CrossRef]
- Dhanabalan, S.C.; Ponraj, J.S.; Guo, Z.N.; Li, S.J.; Bao, Q.L.; Zhang, H. Emerging trends in phosphorene fabrication towards next generation devices. Adv. Sci. 2017, 4, 1600305. [Google Scholar] [CrossRef]
- He, J.S.; Tao, L.L.; Zhang, H.; Zhou, B.; Li, J.B. Emerging 2D materials beyond graphene for ultrashort pulse generation in fiber lasers. Nanoscale 2019, 11, 2577–2593. [Google Scholar] [CrossRef]
- Guo, B. 2D noncarbon materials-based nonlinear optical devices for ultrafast photonics. Chin. Opt. Lett. 2018, 16, 020004. [Google Scholar] [CrossRef]
- Du, J.; Wang, Q.K.; Jiang, G.B.; Xu, C.W.; Zhao, C.J.; Xiang, Y.J.; Chen, Y.; Wen, S.C.; Zhang, H. Ytterbium-doped fiber laser passively mode locked by few-layer Molybdenum Disulfide (MoS2) saturable absorber functioned with evanescent field interaction. Sci. Rep. 2014, 4, 6346. [Google Scholar] [CrossRef]
- Hu, Q.Y.; Zhang, X.Y.; Liu, Z.J.; Li, P.; Li, M.; Cong, Z.H.; Qin, Z.G.; Chen, X.H. High-order harmonic mode-locked Yb-doped fiber laser based on a SnSe2 saturable absorber. Opt. Laser Technol. 2019, 119, 105639. [Google Scholar] [CrossRef]
- Zhan, Y.J.; Liu, Z.; Najmaei, S.; Ajayan, P.M.; Lou, J. Large-area vapor-phase growth and characterization of MoS2 atomic layers on a SiO2 substrate. Small 2012, 8, 966–971. [Google Scholar] [CrossRef]
- Nguyen, T.P.; Sohn, W.; Oh, J.H.; Jang, H.W.; Kim, S.Y. Size-dependent properties of two-dimensional MoS2 and WS2. J. Phys. Chem. C 2016, 120, 10078–10085. [Google Scholar] [CrossRef]
- Bao, Q.L.; Zhang, H.; Wang, Y.; Ni, Z.H.; Yan, Y.L.; Shen, Z.X.; Loh, K.P.; Tang, D.Y. Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers. Adv. Funct. Mater. 2009, 19, 3077–3083. [Google Scholar] [CrossRef]
- Marchena, M.; Song, Z.; Senaratne, W.; Li, C.; Liu, X.Y.; Baker, D.; Ferrer, J.C.; Mazumder, P.; Soni, K.; Lee, R.; et al. Direct growth of 2D and 3D graphene nano-structures over large glass substrates by tuning a sacrificial Cu-template layer. 2D Mater. 2017, 4, 025088. [Google Scholar] [CrossRef] [Green Version]
- Traynor, N.J.; Grudinin, A.B.; Pruneri, V.; Sysoliatin, A.A.; Semenov, V.A. Tunable source of picosecond pulses around 1550 nm for all-optical processing. Opt. Commun. 1997, 139, 237–240. [Google Scholar] [CrossRef]
Cavity Type | λF/λR (nm/nm) | Pave/mW | ηopo/% | f/MHz | RF/dB | Epulse/ nJ | Ref |
---|---|---|---|---|---|---|---|
Extra-cavity | 1555/1666 | 0.08 | ~ | 1.72 | ~35 | 0.047 | 27 |
Extra-cavity | 1120/1180 | 60 | 0.81 | 0.4 | 56 | 150 | 28 |
Intra-cavity | 1040.16/1086.31 | 17 | 4.78 | 19.6065 | 77 | 0.87 | 15 |
Intra-cavity | 1029.20/1085.85 | 80.11 | 4.95 | 0.6835 | ~45 | 117.4 | Our |
Intra-cavity | 1032.95/1081.85 | 89.33 | 5.16 | 0.6835 | ~50 | 130.7 | Our |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ma, P.; Lin, W.; Zhang, H.; Xu, S.; Yang, Z. High-Power Large-Energy Raman Soliton Generations Within a Mode-Locked Yb-Doped Fiber Laser Based on High-Damage-Threshold CVD-MoS2 as Modulator. Nanomaterials 2019, 9, 1305. https://doi.org/10.3390/nano9091305
Ma P, Lin W, Zhang H, Xu S, Yang Z. High-Power Large-Energy Raman Soliton Generations Within a Mode-Locked Yb-Doped Fiber Laser Based on High-Damage-Threshold CVD-MoS2 as Modulator. Nanomaterials. 2019; 9(9):1305. https://doi.org/10.3390/nano9091305
Chicago/Turabian StyleMa, Pengfei, Wei Lin, Huanian Zhang, Shanhui Xu, and Zhongmin Yang. 2019. "High-Power Large-Energy Raman Soliton Generations Within a Mode-Locked Yb-Doped Fiber Laser Based on High-Damage-Threshold CVD-MoS2 as Modulator" Nanomaterials 9, no. 9: 1305. https://doi.org/10.3390/nano9091305