Next Article in Journal
Antimicrobial Resistance of Erysipelothrix rhusiopathiae Strains Isolated from Geese to Antimicrobials Widely Used in Veterinary Medicine
Next Article in Special Issue
Hospital Antibiotic Consumption before and during the COVID-19 Pandemic in Hungary
Previous Article in Journal
Ceftobiprole Medocaril Is an Effective Post-Exposure Treatment in the Fischer 344 Rat Model of Pneumonic Tularemia
Previous Article in Special Issue
Do Patients’ Psychosocial Characteristics Impact Antibiotic Prescription Rates?
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Systematic Review

Physicochemical Characteristics of Antimicrobials and Practical Recommendations for Intravenous Administration: A Systematic Review

1
Department of Infectious Diseases, Luigi Sacco Hospital, ASST Fatebenefratelli-Sacco, University of Milan, 20157 Milan, Italy
2
Internal Medicine Unit, Luigi Sacco Hospital, ASST Fatebenefratelli-Sacco, Department of Biomedical and Clinical Sciences, University of Milan, 20157 Milan, Italy
3
Emergency Department and Vascular Access Team ASST Lodi, 26900 Lodi, Italy
4
Unit of Clinical Pharmacology, Luigi Sacco Hospital, ASST Fatebenefratelli-Sacco, University of Milan, 20157 Milan, Italy
*
Author to whom correspondence should be addressed.
These authors contributed equally to this work.
Antibiotics 2023, 12(8), 1338; https://doi.org/10.3390/antibiotics12081338
Submission received: 10 June 2023 / Revised: 11 August 2023 / Accepted: 17 August 2023 / Published: 19 August 2023

Abstract

:
Most antimicrobial drugs need an intravenous (IV) administration to achieve maximum efficacy against target pathogens. IV administration is related to complications, such as tissue infiltration and thrombo-phlebitis. This systematic review aims to provide practical recommendations about diluent, pH, osmolarity, dosage, infusion rate, vesicant properties, and phlebitis rate of the most commonly used antimicrobial drugs evaluated in randomized controlled studies (RCT) till 31 March 2023. The authors searched for available IV antimicrobial drugs in RCT in PUBMED EMBASE®, EBSCO® CINAHL®, and the Cochrane Controlled Clinical trials. Drugs’ chemical features were searched online, in drug data sheets, and in scientific papers, establishing that the drugs with a pH of <5 or >9, osmolarity >600 mOsm/L, high incidence of phlebitis reported in the literature, and vesicant drugs need the adoption of utmost caution during administration. We evaluated 931 papers; 232 studies were included. A total of 82 antimicrobials were identified. Regarding antibiotics, 37 reach the “caution” criterion, as well as seven antivirals, 10 antifungals, and three antiprotozoals. In this subgroup of antimicrobials, the correct vascular access device (VAD) selection is essential to avoid complications due to the administration through a peripheral vein. Knowing the physicochemical characteristics of antimicrobials is crucial to improve the patient’s safety significantly, thus avoiding administration errors and local side effects.

1. Introduction

It has been estimated that over 80% of hospitalized patients receive intravenous (IV) therapy [1]. This route of delivery has important advantages: it allows the administration of medications that cannot be orally absorbed, it permits reaching the highest drug’s bioavailability, and it can maintain a constant therapeutic dosage over time through continuous infusion. The most common drugs administered through vascular access devices (VADs) are fluids and nutrients, blood, or medications (especially antimicrobial agents and chemotherapy drugs) [2,3]. The catheter’s tip position differentiates these devices into two categories: central or peripheral (CVADs and PVADs. respectively). For CVADs, the catheter tip is located in the cavo-atrial junction or the lower third of the superior vena cava [3]. As regards the correct position of the tip for CVAD in the inferior vena cava, the literature does not provide clear recommendations. To date, two positions have been accepted, either near the right atrium or above the confluence of renal veins [4]. Devices with tips located in any other vein are considered PVADs. PVADs are represented by short peripheral catheters, long peripheral catheters, and midlines [5].
The appropriate type of VAD is selected according to the prescribed therapy, its duration, the patient’s characteristics, and the setting (inpatient or outpatient) [3]. Chemical characteristics of medications have a deep impact on VAD selection. CVAD tips are placed in large caliber veins guaranteeing the possibility of infusing any type of solution and drawing repeated blood samples. Furthermore, PVADs should not be utilized with low (<5) or high (>9) pH medications, high osmolarity drugs (>600 mOsm/L), and any other medication that can cause tissue damage in the event of leakage from the vascular lumen, such as vesicant drugs. Emphasizing the concept of a large caliber vein, the use of PVAD for the administration of drugs that are incompatible with a peripheral route is allowed in particular settings (such as the emergency department), provided it is for a limited period [6].
Peripheral veins are a low-flow system. Therefore, the administration of an irritant drug through a PVAD may damage the endothelial layer of the intima causing thrombosis, and may be associated with inflammatory processes involving the tunica media with the occurrence of edema, infiltration, and more serious damage up to the vein wall rupture. The events described above represent the pathological correlates of thrombophlebitis [7].
Moreover, using vesicant drugs, the potential dislocation of the catheter can lead to tissue damage of different entities (from mild effects to tissue necrosis) in case of escape to subcutaneous tissues. It is very important to note that contact between subcutaneous tissues and the drug does not occur only in the event of a massive leakage due to mechanical events (such as catheter dislocation) but also due to altered permeability of the venous walls due to an inflammatory process affecting them [8]. It, therefore, appears clear that the use of vesicant drugs is particularly delicate and worthy of attention. On this topic, several institutions have drafted lists of drugs that should be delivered via CVADs for their harmful effect. These lists include vesicant chemotherapy drugs, parenteral nutrition with high osmolarity, some antibiotics, some antivirals, vasoactive amines, and many other commonly used medications. These lists should be available in every hospital unit and used as a guide in VAD selection [6,9,10].
Of all drugs, antibiotics are among the most commonly used medication in the world [11]. In recent years, the emergence of antimicrobial-resistant bacteria has led to the development of new molecules or the reuse of old ones, and the majority of them need to be administered intravenously [12]. Data about preferred line administration (central or peripheral), dosage, pH, osmolarity, diluent, and infusion rate of antimicrobials are difficult to find in the literature and are often contrasting when available due to the lack of standardized protocols in this setting.
The incorrect choice of a VAD could increase the risk of complications due to “chemically induced” phenomena (such as phlebitis or thrombophlebitis and tissue lesions).
The present systematic review aims to collect practical recommendations about diluent, pH, osmolarity, dosage, infusion rate, vesicant drugs, and phlebitis rate and advise caution (red flag) of the most commonly used antimicrobial drugs evaluated in randomized controlled trials till 31 March 2023, to help the institutions in constructing antimicrobial drugs policies about safe IV administration.

2. Materials and Methods

This systematic review was performed following the preferred reporting items for systematic reviews and meta-analyses (PRISMA) [13]. This systematic review and meta-analysis was registered on PROSPERO (CRD42023434665).
We searched for available IV antimicrobial drugs in randomized controlled trials (RCT) in PUBMED® EMBASE®, EBSCO® CINAHL®, and the Cochrane Controlled Clinical trials.
Search strings were developed with the assistance of a medical librarian and MesH term browser [https://meshb.nlm.nih.gov/ (accessed on 31 March 2023)] and contained terms and synonyms for “antimicrobial agents” (Anti-Infective Agent; Anti-Microbial Agent; Anti-Microbial; Agents; Anti-infective Agents; Antimicrobial Agent; Antimicrobial Agents; Microbicide; Microbicides) or “antibiotics” (Anti-Bacterial Agent; Anti-Bacterial Compound; Anti-Bacterial Compounds; Anti-Mycobacterial Agent; Anti-Mycobacterial Agents; Antibacterial Agent; Antibacterial Agents; Antibiotic; Antibiotics; Antimycobacterial Agent; Antimycobacterial Agents; Bacteriocidal Agent; Bacteriocidal Agents; Bacteriocide; Bacteriocides) or “antivirals” (Antiviral; Antiviral Agent; Antiviral Drug; Antiviral Drugs; Antivirals) or “antimycotics” or “antifungals” or “antiprotozoals” and “new” and “intravenous”.
No MesH terms were found for “antimycotics”, “antifungals”, “antiprotozoals” “new”, and “intravenous”.
Only RCTs till 31 March 2023 were analyzed.
The exclusion criteria were:
  • In vitro and/or animal studies,
  • Papers not written in English;
  • Papers not about antimicrobial agents;
  • Papers about non-IV antimicrobial agents;
  • Papers about antimicrobial drugs withdrawn due to adverse events or “out-of-market”;
  • Papers about antimicrobial agents under investigation in phase II or III or waiting for approval.
All the papers that did not match the exclusion criteria were analyzed.
According to the literature, the authors have entered the warning of a “red flag” for solutions with a pH < 5 or >9, for solutions with osmolarity >600 mOsm/L, and for antimicrobial agents with a reported incidence of thrombophlebitis if infused in peripheral veins ≥5% or with vesicant properties [14].
Two authors (M.Q., F.B.) independently screened all papers for eligibility based on titles and abstracts through Covidence software. Relevant studies were then reviewed independently as full text for final inclusion. A third investigator (A.G.) resolved any inclusion disagreements. Finally, a hand search through the reference lists of included articles was conducted, and expert recommendations were screened for inclusion as well.
Considering that not all RCT reviewed reported the incidence of thrombophlebitis, after identifying the antimicrobial drugs, we searched for each drug’s chemical features in https://www.drugs.com/ (accessed on 31 March 2023), https://www.fda.gov/Drugs/ (accessed on 31 March 2023), drug data sheets and recently published scientific papers on the topic.
Three authors (F.B., A.F., and D.C.) reviewed the drug list, compared the various available sources, and resolved controversial data.

3. Results

A total of 931 papers were found, and 392 articles were removed before screening because they were not related to antimicrobial therapy. During the screening phase, 21 papers were excluded because they had been conducted on animals. A total of 216 articles treated non-IV antimicrobial agents. At last, we erased from our group 37 articles about antimicrobial agents under investigation in phases II and III or waiting for approval, and 33 papers about antimicrobial drugs were withdrawn due to adverse events or being “out-of-market”. A total of 232 papers were eventually analyzed in our systematic review (Figure 1).
A total of 82 antimicrobials (61 antibiotics, eight antivirals, 10 antifungals, and three antiprotozoals) were identified.

3.1. Antibiotics

Thirty-seven of the identified antibiotics meet the identified criteria to be considered at risk (high phlebitis reports (≥5%), very high/low pH, high osmolarity values, or vesicant properties). Among these, 14 have an extreme pH, 10 have a high report of phlebitis in the literature, and 12 have both characteristics. Notably, only Vancomycin has to be considered a vesicant drug. None have osmolarity values >600 mOsm/L, 24 can be infused through PVADs safely. Most of the antibiotics (64%) require dextrose 5% in water (D5W) or normal saline 0.9% NaCl (0.9% NaCl) as diluent. Six drugs need to be administered only with D5W, while saline infusion with 0.9% NaCl is essential for 14 of them. The infusion time is between a minimum of 15 min and a maximum of 3 h.
For further details on pH, osmolarity, dosage, infusion rate, and the “red flag” for each studied antimicrobial, see Table 1.

3.2. Antivirals

Seven antivirals meet the aforementioned precautionary criteria, one (Zanamivir) for low pH, two for high risk of phlebitis (Foscarnet both by induction and by maintenance), Ganciclovir and Oseltamivir for extreme pH and high risk of phlebitis, Remdesivir for extreme pH and vesicant characteristics, and Acyclovir for the presence of all the dangerous characteristics. Acyclovir and Foscarnet could be diluted either with D5W or 0.9% NaCl. The remaining antivirals need to be administered only with 0.9% NaCl. The infusion time is between a minimum of 30 min and a maximum of 2 h.
For further details on pH, osmolarity, dosage, infusion rate, and the “red flag” for each studied antimicrobial, see Table 2.

3.3. Antifungals

All antifungals reach the “red flag” criteria. Notably, only Amphotericin B has to be considered a vesicant drug. Five antifungals require D5W or 0.9% NaCl as diluent. Amphotericin B and Amphotericin B liposomal need to be administered only with D5W. Saline infusion with 0.9% NaCl is fundamental for Caspofungin, Fluconazole, and Posaconazole. The infusion time is between a minimum of 30 min and a maximum of 4 h.
For further details on pH, osmolarity, dosage, infusion rate, and the “red flag” about each studied antimicrobial, see Table 3.

3.4. Antiprotozoals

Eflornithine for the high rate of phlebitis described in the literature and Quinine for extreme pH need a cautious approach. The former must be administered with a 0.9% NaCl solution; Quinine can be infused with both 0.9% NaCl solution and D5W. Artesunate can be administered via PVADs diluted in a 12 mL trisodium phosphate (Na3PO4) solution through a 1–2-min infusion.
For further details on pH, osmolarity, dosage, infusion rate, and the “red flag” for each studied antimicrobial, see Table 4.

4. Discussion

Safe administration is a cornerstone of pharmacological treatment. VAD failure due to the development of complications (such as inflammatory events or leakage of the infusate from the venous wall) can lead to serious problems: tissue damage, delay in the administration of therapy, increased costs, prolongation of hospitalization or claims for compensation [242]. In 2022, the UK National Health Service Resolution published an analysis of extravasation-related litigation claims, which stated that the cost to the health system of compensation and treatment for extravasation amounted to £16 million over a ten-year observation period [243].
The use of peripheral catheters for the administration of intravenous therapy is the most used strategy worldwide. However, despite the undoubted advantages (cost containment, ease of use, and simplicity of management), this approach is weighed down by a considerable amount of complications [244].
For example, in a meta-analysis conducted in 2019, 35, studies were included (20.697 catheters used in 15.791 patients), and the incidence of phlebitis was 30.7 per 100 catheters (95% confidence interval: 27.2, 34.2). According to this study, longer dwelling time, antibiotics infusion, female gender, forearm insertion, infectious diseases, and the use of Teflon cannulae were the most important risk factors for phlebitis development [245]. Thus, a multifactorial approach is needed to address this issue. Several factors must be considered: patient conditions, number and quality of suitable veins, choice of vascular device, correct use of the device, and effective monitoring system. However, it is also important to consider the chemical characteristics of the drugs used. PH and osmolarity are well-recognized risk factors [246,247].
For these reasons, the authors decided to build up, through a systematic review, a list of the most commonly used antivirals, antifungals, antiprotozoals, and antimicrobial drugs commercialized or available soon. We collected data on diluent, pH, osmolarity, dosage, infusion rate, vesicant drugs, phlebitis rate, and presence/absence of “red flag” criteria for each studied medication in the hope that our efforts could help the institution to construct antimicrobial drugs policy about safe IV administration.
The results show that several antimicrobials have chemical characteristics that necessitate infusion through a CVAD due to their potentially dangerous effect on patients’ venous patrimony.
Surprisingly, only 39.3% of the antibiotics and 33.3% of the antiprotozoal have characteristics fully compatible with the use of a peripheral route, and this percentage decreases dramatically in the antiviral (12.5%) and antifungal (0%) groups.
Regarding the pH, high percentages of drugs with values <5 and >9 were found for each category, 60.7% for antibiotics, 87.5% for antivirals, and 70% and 33.3% for antifungals and antiprotozoals, respectively. It is important to remember that the pH values are scarcely modifiable by clinicians and that, as reported in the literature, the exposure of the vessel walls to pH values different from the blood’s pH, produces alterations of the endothelium with the consequent development of inflammatory phenomena and damage of the vessel wall integrity.
It is interesting to note that the majority of antimicrobials reported (75%) should be administered with rapid infusion times (below 60 min). It is, therefore, possible to speculate that even local contact is minimized due to the rapid transit of the solution (a phenomenon known as hemodilution) [248]. On the other hand, the endothelial damage caused by pH values could be exacerbated by the infusion rate, which, as emerges in the literature, is responsible for a certain amount of venous wall stress [249]. Furthermore, it is important to underline that if hemodilution could be a protective factor, it is also true that this is scarcely effective in low-flow systems (such as the superficial veins of the forearm) [250].
As regards osmolarity, the threshold beyond which a drug is not considered suitable for PVADs remains unclear [3]. However, administration of hypertonic IV solutions in a low-flow system, as peripheral veins are, is associated with osmotic changes that may damage the endothelial layer of the intima resulting in several adverse events such as “phlebitis”, “phlebothrombosis”, or “thrombophlebitis” [7,251]. Moreover, none of the antimicrobials examined have osmolarity >600 MOsm/L.
The overall percentage of antimicrobials requiring utmost caution is almost 70%, and in the “real world”, the choice to use a CVAD for administration should be the clear consequence.
Nevertheless, the authors are aware that the choice between PVADs and CVADs is often not simple in daily practice. It is essential to consider various elements: treatment duration, the conditions of the patient’s venous patrimony, and drug characteristics. In daily clinical practice, however, the immediate availability and placement of a CVAD is not always guaranteed, especially in small hospitals. Drugs that should preferably be delivered via a CVAD may be administered via a peripheral catheter pending the placement of a central access, especially in emergencies or to avoid delays in the start of proper antibiotic therapy.
Fortunately, in the last twenty years, the development and spread of peripherally inserted central catheters (PICCs) have revolutionized and redefined the world of CVAD, thanks to the low-risk insertion maneuver, thus avoiding life-threatening complications and the increase of health care professionals (both nurses and physicians) trained to insert.
In this changing scenario, an increase in the use of CVAD (especially PICCs) must lead to the necessary structural changes in healthcare facilities to ensure the effective and safe use of these devices (use of specific and standardized procedures and specifically trained personnel).
Therefore, the authors agree with the ERPIUP consensus regarding the correct indication of a peripheral catheter [6] and hope that the development of specific vascular access teams can also be effective in choosing the most appropriate device to use, as widely demonstrated in the most recent literature [252,253,254,255].
Although the physicochemical characteristics of chemotherapeutic drugs are well described in the literature, data are lacking for most antimicrobials, and it is very difficult to retrieve information on pH, osmolarity, required diluent, and infusion rate of each antimicrobial. Even when available, these data are often conflicting, comparing different documents. In the authors’ opinion, this constitutes a limitation of this review. However, this weakness underlines the need to standardize this information to obtain homogeneity in future guidelines.
Another limitation derives from the lack of pathophysiological description of phlebitis reported, making it impossible to discriminate between events of chemical origin from infective phlebitis or mechanical phlebitis. Like the previous limit, this also highlights the heterogeneity of the data available in the literature and the need for future developments on this issue.
Finally, we have to point out that commercially available antimicrobials are often realized by various pharmaceutical producers with the addition of different adjuvants or with structural modifications that can alter the biochemical characteristics of the administered drug, thus leading to minor or major vesicant properties and the ability to cause phlebitis. Therefore, the physicochemical characteristics of an original antimicrobial are usually different from that of the commercially available drug. This factor represents a further limitation of our study.

5. Conclusions

IV therapy is essential in everyday clinical practice. Although IV therapy is widely used, it is also known to be related to several complications. For this reason, the physicochemical properties of the delivered medication play a central role in VAD-related complications, especially when a vesicant or an irritant solution is delivered through the wrong vascular device. Knowledge of the physicochemical characteristics of the drug is fundamental in the selection of a suitable VAD to reduce the risk of vascular damage. All limitations considered, the list we created, in addition to the already available lists of other IV drugs, could be a useful tool to guide clinicians and institutions to improve the selection of the most appropriate VAD, thus avoiding administration errors or the onset of local side effects such as phlebitis and thrombosis.

Author Contributions

F.B.: Methodology, Data curation, Writing—Original draft preparation, Investigation, Validation, Reviewing and Editing, Supervision; M.Q.: Methodology, Data curation, Writing—Original draft preparation, Investigation, Validation, Reviewing and Editing, Supervision. A.G. (Antonio Gidaro): Conceptualization, Visualization, Methodology, Writing. D.C.: Data curation, Reviewing, Validation. C.G.: Supervision. M.C.: Data curation, Investigation. E.M. and L.L.C.: Data curation. D.G.: Visualization, Methodology, Writing. S.A.: Supervision. C.C.: Supervision. A.G. (Andrea Gori): Supervision. A.F.: Methodology, Data curation, Writing—Original draft preparation, Investigation, Validation, Reviewing and Editing, Supervision. All authors have read and agreed to the published version of the manuscript.

Funding

This research received no external funding.

Institutional Review Board Statement

The study was conducted following the Declaration of Helsinki.

Informed Consent Statement

Not applicable.

Data Availability Statement

Data is contained within the article. The data presented in this study are available in the present article.

Conflicts of Interest

The authors declare no conflict of interest.

References

  1. Dychter, S.S.; Gold, D.A.; Carson, D.; Haller, M. Intravenous Therapy: A Review of Complications and Economic Considerations of Peripheral Access. J. Infus. Nurs. 2012, 35, 84–91. [Google Scholar] [CrossRef] [PubMed]
  2. Anderson, R.; Doyle, G.R.; McCutcheon, J.A. Clinical Procedures for Safer Patient Care—Thompson Rivers University Edition. 2018. Available online: https://pressbooks.bccampus.ca/clinicalproceduresforsaferpatientcaretrubsc (accessed on 31 March 2023).
  3. Gorski, L.A.; Hadaway, L.; Hagle, M.E.; Broadhurst, D.; Clare, S.; Kleidon, T.; Meyer, B.M.; Nickel, B.; Rowley, S.; Sharpe, E.; et al. Infusion Therapy Standards of Practice, 8th Edition. J. Infus. Nurs. 2021, 44, S1–S224. [Google Scholar] [CrossRef] [PubMed]
  4. Brescia, F.; Pittiruti, M.; Ostroff, M.; Spencer, T.R.; Dawson, R.B. The SIF protocol: A seven-step strategy to minimize complications potentially related to the insertion of femorally inserted central catheters. J. Vasc. Access, 2021; Online ahead of print. [Google Scholar] [CrossRef]
  5. Qin, K.R.; Pittiruti, M.; Nataraja, R.M.; Pacilli, M. Long peripheral catheters and midline catheters: Insights from a survey of vascular access specialists. J. Vasc. Access 2020, 22, 905–910. [Google Scholar] [CrossRef] [PubMed]
  6. Pittiruti, M.; Van Boxtel, T.; Scoppettuolo, G.; Carr, P.; Konstantinou, E.; Ortiz Miluy, G.; Lamperti, M.; Goossens, G.A.; Simcock, L.; Dupont, C.; et al. European recommendations on the proper indication and use of peripheral venous access devices (the ERPIUP consensus): A WoCoVA project. J. Vasc. Access 2021, 24, 165–182. [Google Scholar] [CrossRef]
  7. Lewis, G.B.H.; Hecker, J.F. Infusion Thrombophlebitis. BJA Br. J. Anaesth. 1985, 57, 220–233. [Google Scholar] [CrossRef] [PubMed]
  8. Helm, R.E.; Klausner, J.D.; Klemperer, J.D.; Flint, L.M.; Huang, E. Accepted but unacceptable: Peripheral IV catheter failure. J. Infus. Nurs. 2015, 38, 189–203. [Google Scholar] [CrossRef] [PubMed]
  9. Cardenas-Garcia, J.; Schaub, K.F.; Belchikov, Y.G.; Narasimhan, M.; Koenig, S.J.; Mayo, P.H. Safety of peripheral intravenous administration of vasoactive medication. J. Hosp. Med. 2015, 10, 581–585. [Google Scholar] [CrossRef]
  10. Loubani, O.M.; Green, R.S. A systematic review of extravasation and local tissue injury from administration of vaso-pressors through peripheral intravenous catheters and central venous catheters. J. Crit. Care 2015, 30, 653.e9–653.e17. [Google Scholar] [CrossRef]
  11. Browne, A.J.; Chipeta, M.G.; Haines-Woodhouse, G.; Kumaran, E.P.; Hamadani, B.H.K.; Zaraa, S.; Henry, N.J.; Deshpande, A.; Reiner, R.C.; Day, N.P.; et al. Global antibiotic consumption and usage in humans, 2000–2018: A spatial modelling study. Lancet Planet. Health 2021, 5, e893–e904. [Google Scholar] [CrossRef]
  12. World Health Organization. 2021 Antibacterial Agents in Clinical and Preclinical Development: An Overview and Analysis; World Health Organization: Geneva, Switzerland, 2022. [Google Scholar]
  13. Moher, D.; Liberati, A.; Tetzlaff, J.; Altman, D.G.; PRISMA Group. Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement. PLoS Med. 2009, 151, 264–269. [Google Scholar] [CrossRef]
  14. Pittiruti, M.; Scoppettuolo, G. Manuale Gavecelt Dei Picc E Dei Midline Indicazioni, Impianto, Gestione; Elsevier: Amsterdam, The Netherlands, 2016. [Google Scholar]
  15. Niederman, M.S.; Alder, J.; Bassetti, M.; Boateng, F.; Cao, B.; Corkery, K.; Dhand, R.; Kaye, K.S.; Lawatscheck, R.; McLeroth, P.; et al. Inhaled amikacin adjunctive to intravenous standard-of-care antibiotics in mechanically ventilated patients with Gram-negative pneumonia (INHALE): A double-blind, randomised, placebo-controlled, phase 3, superiority trial. Lancet Infect. Dis. 2020, 20, 330–340. [Google Scholar] [CrossRef]
  16. Gupta, A.; Swaroop, C.; Agarwala, S.; Pandey, R.M.; Bakhshi, S. Randomized controlled trial comparing oral amoxicillin-clavulanate and ofloxacin with intravenous ceftriaxone and amikacin as outpatient therapy in pediatric low-risk febrile neutropenia. J. Pediatr. Hematol. Oncol. 2009, 31, 635–641. [Google Scholar] [CrossRef]
  17. Behre, G.; Link, H.; Maschmeyer, G.; Meyer, P.; Paaz, U.; Wilhelm, M.; Hiddemann, W. Meropenem monotherapy versus combination therapy with ceftazidime and amikacin for empirical treatment of febrile neutropenic patients. Ann. Hematol. 1998, 76, 73–80. [Google Scholar] [CrossRef]
  18. Solberg, C.O.; Sjursen, H. Safety and efficacy of meropenem in patients with septicaemia: A randomised comparison with ceftazidime, alone or combined with amikacin. J. Antimicrob. Chemother. 1995, 36 (Suppl. A), 157–166. [Google Scholar] [CrossRef]
  19. Maller, R.; Emanuelsson, B.M.; Isaksson, B.; Nilsson, L. Amikacin once daily: A new dosing regimen based on drug pharmacokinetics. Scand. J. Infect. Dis. 1990, 22, 575–579. [Google Scholar] [CrossRef] [PubMed]
  20. Vick-Fragoso, R.; Hernández-Oliva, G.; Cruz-Alcázar, J.; Amábile-Cuevas, C.F.; Arvis, P.; Reimnitz, P.; Bogner, J.R.; STIC Study Group. Efficacy and safety of sequential intravenous/oral moxifloxacin vs intravenous/oral amoxicillin/clavulanate for complicated skin and skin structure infections. Infection 2009, 37, 407–417. [Google Scholar] [CrossRef] [PubMed]
  21. Graham, D.R.; Talan, D.A.; Nichols, R.L.; Lucasti, C.; Corrado, M.; Morgan, N.; Fowler, C.L. Once-daily, high-dose levofloxacin versus ticarcillin-clavulanate alone or followed by amoxicillin-clavulanate for complicated skin and skin-structure infections: A randomized, open-label trial. Clin. Infect. Dis. 2002, 35, 381–389. [Google Scholar] [CrossRef] [PubMed]
  22. Bryan, J.P.; Rocha, H.; da Silva, H.R.; Taveres, A.; Sande, M.A.; Scheld, W.M. Comparison of ceftriaxone and ampicillin plus chloramphenicol for the therapy of acute bacterial meningitis. Antimicrob. Agents Chemother. 1985, 28, 361–368. [Google Scholar] [CrossRef] [PubMed]
  23. Louie, T.J.; Binns, B.A.; Baskett, T.F.; Ross, J.; Koss, J. Cefotaxime, cefazolin, or ampicillin prophylaxis of febrile morbidity in emergency cesarean sections. Clin. Ther. 1982, 5 (Suppl. A), 83–96. [Google Scholar] [PubMed]
  24. Bracero, L.A. Ampicillin/sulbactam versus cefotetan for the prevention of infection following cesarean delivery in high-risk patients: A randomized double-blind trial. Gynecol. Obstet. Investig. 1997, 44, 21–25. [Google Scholar] [CrossRef]
  25. Blackwell, B.G.; Leggett, J.E.; Johnson, C.A.; Zimmerman, S.W.; Craig, W.A. Ampicillin and sulbactam pharmacokinetics and pharmacodynamics in continuous ambulatory peritoneal dialysis (CAPD). Perit. Dial. Int. 1990, 10, 221–226. [Google Scholar] [CrossRef]
  26. Furtado, R.H.M.; Berwanger, O.; Fonseca, H.A.; Corrêa, T.D.; Ferraz, L.R.; Lapa, M.G.; Zampieri, F.G.; Veiga, V.C.; Azevedo, L.C.P.; Rosa, R.G.; et al. Azithromycin in addition to standard of care versus standard of care alone in the treatment of patients admitted to the hospital with severe COVID-19 in Brazil (COALITION II): A randomised clinical trial. Lancet 2020, 396, 959–967. [Google Scholar] [CrossRef]
  27. Nunes, C.R.; Procianoy, R.S.; Corso, A.L.; Silveira, R.C. Use of Azithromycin for the Prevention of Lung Injury in Mechanically Ventilated Preterm Neonates: A Randomized Controlled Trial. Neonatology 2020, 17, 522–528. [Google Scholar] [CrossRef]
  28. Saiman, L.; Anstead, M.; Mayer-Hamblett, N.; Lands, L.C.; Kloster, M.; Hocevar-Trnka, J.; Goss, C.H.; Rose, L.M.; Burns, J.L.; Marshall, B.C.; et al. Effect of azithromycin on pulmonary function in patients with cystic fibrosis uninfected with Pseudomonas aeruginosa: A randomized controlled trial. JAMA 2010, 303, 1707–1715. [Google Scholar] [CrossRef]
  29. Tamm, M.; Todisco, T.; Feldman, C.; Garbino, J.; Blasi, F.; Hogan, P.; de Caprariis, P.J.; Hoepelman, I.M. Clinical and bacteriological outcomes in hospitalised patients with community-acquired pneumonia treated with azithromycin plus ceftriaxone, or ceftriaxone plus clarithromycin or erythromycin: A prospective, randomised, multicentre study. Clin. Microbiol. Infect. 2007, 13, 162–171. [Google Scholar] [CrossRef]
  30. Paladino, J.A.; Gudgel, L.D.; Forrest, A.; Niederman, M.S. Cost-effectiveness of IV-to-oral switch therapy: Azithromycin vs cefuroxime with or without erythromycin for the treatment of community-acquired pneumonia. Chest 2002, 122, 1271–1279. [Google Scholar] [CrossRef]
  31. Dryden, M.; Zhang, Y.; Wilson, D.; Iaconis, J.P.; Gonzalez, J. A Phase III, randomized, controlled, non-inferiority trial of ceftaroline fosamil 600 mg every 8 h versus vancomycin plus aztreonam in patients with complicated skin and soft tissue infection with systemic inflammatory response or underlying comorbidities. J. Antimicrob. Chemother. 2016, 71, 3575–3584. [Google Scholar] [CrossRef]
  32. Corey, G.R.; Wilcox, M.; Talbot, G.H.; Friedland, H.D.; Baculik, T.; Witherell, G.W.; Critchley, I.; Das, A.F.; Thye, D. Integrated analysis of CANVAS 1 and 2: Phase 3, multicenter, randomized, double-blind studies to evaluate the safety and efficacy of ceftaroline versus vancomycin plus aztreonam in complicated skin and skin-structure infection. Clin. Infect. Dis. 2010, 51, 641–650. [Google Scholar] [CrossRef]
  33. Sisson, T.L.; Jungbluth, G.L.; Hopkins, N.K. A pharmacokinetic evaluation of concomitant administration of linezolid and aztreonam. J. Clin. Pharmacol. 1999, 39, 1277–1282. [Google Scholar] [CrossRef]
  34. Gerig, J.S.; Bolton, N.D.; Swabb, E.A.; Scheld, W.M.; Bolton, W.K. Effect of hemodialysis and peritoneal dialysis on aztreonam pharmacokinetics. Kidney Int. 1984, 26, 308–318. [Google Scholar] [CrossRef]
  35. Kaye, K.S.; Belley, A.; Barth, P.; Lahlou, O.; Knechtle, P.; Motta, P.; Velicitat, P. Effect of Cefepime/Enmetazobactam vs Piperacillin/Tazobactam on Clinical Cure and Microbiological Eradication in Patients With Complicated Urinary Tract Infection or Acute Pyelonephritis: A Randomized Clinical Trial. JAMA 2022, 328, 1304–1314. [Google Scholar] [CrossRef] [PubMed]
  36. Chuang, Y.Y.; Hung, I.J.; Yang, C.P.; Jaing, T.H.; Lin, T.Y.; Huang, Y.C. Cefepime versus ceftazidime as empiric monotherapy for fever and neutropenia in children with cancer. Pediatr. Infect. Dis. J. 2002, 21, 203–209. [Google Scholar] [CrossRef]
  37. Barie, P.S.; Vogel, S.B.; Dellinger, E.P.; Rotstein, O.D.; Solomkin, J.S.; Yang, J.Y.; Baumgartner, T.F. A randomized, double-blind clinical trial comparing cefepime plus metronidazole with imipenem-cilastatin in the treatment of complicated intra-abdominal infections. Cefepime Intra-abdominal Infection Study Group. Arch. Surg. 1997, 132, 1294–1302. [Google Scholar] [CrossRef] [PubMed]
  38. Okamoto, M.P.; Gill, M.A.; Nakahiro, R.K.; Chin, A.; Yellin, A.E.; Berne, T.V.; Sclar, D.A.; Knupp, C.A.; Heseltine, P.N.; Appleman, M.D. Tissue concentrations of cefepime in acute cholecystitis patients. Ther. Drug Monit. 1992, 14, 220–225. [Google Scholar] [CrossRef] [PubMed]
  39. Okamoto, M.P.; Chin, A.; Gill, M.A.; Yellin, A.E.; Berne, T.V.; Heseltine, P.N.; Appleman, M.D.; Knupp, C.A.; Sclar, D.A. Analysis of cefepime tissue penetration into human appendix. Pharmacotherapy 1991, 11, 53–58. [Google Scholar]
  40. Portsmouth, S.; van Veenhuyzen, D.; Echols, R.; Machida, M.; Ferreira, J.C.A.; Ariyasu, M.; Tenke, P.; Nagata, T.D. Cefiderocol versus imipenem-cilastatin for the treatment of complicated urinary tract infections caused by Gram-negative uropathogens: A phase 2, randomised, double-blind, non-inferiority trial. Lancet Infect. Dis. 2018, 18, 1319–1328. [Google Scholar] [CrossRef]
  41. Bassetti, M.; Echols, R.; Matsunaga, Y.; Ariyasu, M.; Doi, Y.; Ferrer, R.; Lodise, T.P.; Naas, T.; Niki, Y.; Paterson, D.L.; et al. Efficacy and safety of cefiderocol or best available therapy for the treatment of serious infections caused by carbapenem-resistant Gram-negative bacteria (CREDIBLE-CR): A randomised, open-label, multicentre, pathogen-focused, descriptive, phase 3 trial. Lancet Infect. Dis. 2021, 21, 226–240. [Google Scholar] [CrossRef]
  42. Berne, T.V.; Yellin, A.E.; Appleman, M.D.; Gill, M.A.; Chenella, F.C.; Heseltine, P.N. Controlled comparison of cefmetazole with cefoxitin for prophylaxis in elective cholecystectomy. Surg. Gynecol. Obstet. 1990, 170, 137–140. [Google Scholar]
  43. Lenfant, B.; Namour, F.; Logeais, C.; Coussediere, D.; Rivault, O.; Bryskier, A.; Surjus, A. Pharmacokinetics of cefodizime following single doses of 0.5, 1.0, 2.0, and 3.0 grams administered intravenously to healthy volunteers. Antimicrob. Agents Chemother. 1995, 39, 2037–2041. [Google Scholar] [CrossRef]
  44. Esposito, S.; Sardaro, C.; Gaeta, G.B.; Galante, D.; Giusti, G.; Basani, F. Cefodizime (HR221) versus norfloxacin for treatment of urinary tract infections. J. Chemother. 1991, 3, 42–44. [Google Scholar] [CrossRef]
  45. Qin, Y.; Zhang, J.; Wu, L.; Zhang, D.; Fu, L.; Xue, X. Comparison of the treatment efficacy between tigecycline plus high-dose cefoperazone-sulbactam and tigecycline monotherapy against ventilator-associated pneumonia caused by extensively drug-resistant Acinetobacter baumannii. Int. J. Clin. Pharmacol. Ther. 2018, 56, 120–129. [Google Scholar] [CrossRef] [PubMed]
  46. Patel, K.B.; Nicolau, D.P.; Nightingale, C.H.; Quintiliani, R. Comparative serum bactericidal activities of ceftizoxime and cefotaxime against intermediately penicillin-resistant Streptococcus pneumoniae. Antimicrob. Agents Chemother. 1996, 40, 2805–2808. [Google Scholar] [CrossRef] [PubMed]
  47. Berkeley, A.S.; Hirsch, J.C.; Freedman, K.S.; Ledger, W.J. Cefotaxime for cesarean section prophylaxis in labor. Intravenous administration vs. lavage. J. Reprod. Med. 1990, 35, 214–218. [Google Scholar] [PubMed]
  48. Hassler, D.; Zöller, L.; Haude, M.; Hufnagel, H.D.; Heinrich, F.; Sonntag, H.G. Cefotaxime versus penicillin in the late stage of Lyme disease--prospective, randomized therapeutic study. Infection 1990, 18, 16–20. [Google Scholar] [CrossRef] [PubMed]
  49. Gombert, M.E.; duBouchet, L.; Aulicino, T.M.; Berkowitz, L.B.; Macchia, R.J. Intravenous ciprofloxacin versus cefotaxime prophylaxis during transurethral surgery. Am. J. Med. 1989, 87, 250S–251S. [Google Scholar] [CrossRef] [PubMed]
  50. Berkeley, A.S.; Freedman, K.S.; Ledger, W.J.; Orr, J.W.; Benigno, B.B.; Gordon, S.F.; McGregor, J.A.; Galask, R.P.; Sevin, B.U. Comparison of cefotetan and cefoxitin prophylaxis for abdominal and vaginal hysterectomy. Am. J. Obstet. Gynecol. 1988, 158 Pt 2, 706–709. [Google Scholar] [CrossRef]
  51. McGregor, J.A.; French, J.I.; Makowski, E. Single-dose cefotetan versus multidose cefoxitin for prophylaxis in cesarean section in high-risk patients. Am. J. Obstet. Gynecol. 1986, 154, 955–960. [Google Scholar] [CrossRef]
  52. Morris, W.T. Effectiveness of ceftriaxone versus cefoxitin in reducing chest and wound infections after upper abdominal operations. Am. J. Surg. 1994, 167, 391–395. [Google Scholar] [CrossRef]
  53. Cheng, K.; Pypstra, R.; Yan, J.L.; Hammond, J. Summary of the safety and tolerability of two treatment regimens of ceftaroline fosamil: 600 mg every 8 h versus 600 mg every 12 h. J. Antimicrob. Chemother. 2019, 74, 1086–1091. [Google Scholar] [CrossRef]
  54. Korczowski, B.; Antadze, T.; Giorgobiani, M.; Stryjewski, M.E.; Jandourek, A.; Smith, A.; O’Neal, T.; Bradley, J.S. A Multicenter, Randomized, Observer-blinded, Active-controlled Study to Evaluate the Safety and Efficacy of Ceftaroline Versus Comparator in Pediatric Patients With Acute Bacterial Skin and Skin Structure Infection. Pediatr. Infect. Dis. J. 2016, 35, e239–e247. [Google Scholar] [CrossRef]
  55. Blumer, J.L.; Ghonghadze, T.; Cannavino, C.; O’Neal, T.; Jandourek, A.; Friedland, H.D.; Bradley, J.S. A Multicenter, Randomized, Observer-blinded, Active-controlled Study Evaluating the Safety and Effectiveness of Ceftaroline Compared With Ceftriaxone Plus Vancomycin in Pediatric Patients With Complicated Community-acquired Bacterial Pneumonia. Pediatr. Infect. Dis. J. 2016, 35, 760–766. [Google Scholar] [CrossRef] [PubMed]
  56. Edeki, T.; Kujacic, M.; Broadhurst, H.; Li, J.; Sunzel, M. Safety, local tolerability and pharmacokinetics of ceftaroline fosamil administered in a reduced infusion volume. Br. J. Clin. Pharmacol. 2014, 78, 1291–1297. [Google Scholar] [CrossRef] [PubMed]
  57. Riccobene, T.A.; Rekeda, L.; Rank, D.; Llorens, L. Evaluation of the effect of a supratherapeutic dose of intravenous ceftaroline fosamil on the corrected QT interval. Antimicrob. Agents Chemother. 2013, 57, 1777–1783. [Google Scholar] [CrossRef] [PubMed]
  58. DiMondi, V.P.; Drew, R.H.; Chen, L.F. Ceftaroline fosamil for treatment of community-acquired pneumonia: Findings from FOCUS 1 and 2 and potential role in therapy. Expert. Rev. Anti Infect. Ther. 2011, 9, 567–572. [Google Scholar] [CrossRef]
  59. Corrado, M.L. Integrated safety summary of CANVAS 1 and 2 trials: Phase III, randomized, double-blind studies evaluating ceftaroline fosamil for the treatment of patients with complicated skin and skin structure infections. J. Antimicrob. Chemother. 2010, 65 (Suppl. 4), iv67–iv71. [Google Scholar] [CrossRef]
  60. Wilcox, M.H.; Corey, G.R.; Talbot, G.H.; Thye, D.; Friedland, D.; Baculik, T.; CANVAS 2 Investigators. CANVAS 2: The second Phase III, randomized, double-blind study evaluating ceftaroline fosamil for the treatment of patients with complicated skin and skin structure infections. J. Antimicrob. Chemother. 2010, 65 (Suppl. 4), iv53–iv65. [Google Scholar] [CrossRef]
  61. Corey, G.R.; Wilcox, M.H.; Talbot, G.H.; Thye, D.; Friedland, D.; Baculik, T.; CANVAS 1 Investigators. CANVAS 1: The first Phase III, randomized, double-blind study evaluating ceftaroline fosamil for the treatment of patients with complicated skin and skin structure infections. J. Antimicrob. Chemother. 2010, 65 (Suppl. 4), iv41–iv51. [Google Scholar] [CrossRef]
  62. Talbot, G.H.; Thye, D.; Das, A.; Ge, Y. Phase 2 study of ceftaroline versus standard therapy in treatment of complicated skin and skin structure infections. Antimicrob. Agents Chemother. 2007, 51, 3612–3616. [Google Scholar] [CrossRef]
  63. Carmeli, Y.; Armstrong, J.; Laud, P.J.; Newell, P.; Stone, G.; Wardman, A.; Gasink, L.B. Ceftazidime-avibactam or best available therapy in patients with ceftazidime-resistant Enterobacteriaceae and Pseudomonas aeruginosa complicated urinary tract infections or complicated intra-abdominal infections (REPRISE): A randomised, pathogen-directed, phase 3 study. Lancet Infect. Dis. 2016, 16, 661–673. [Google Scholar] [CrossRef]
  64. Tsang, K.W.; Chan, W.M.; Ho, P.L.; Chan, K.; Lam, W.K.; Ip, M.S. A comparative study on the efficacy of levofloxacin and ceftazidime in acute exacerbation of bronchiectasis. Eur. Respir. J. 1999, 14, 1206–1209. [Google Scholar] [CrossRef]
  65. Kashuba, A.D.; Ballow, C.H.; Forrest, A. Development and evaluation of a Bayesian pharmacokinetic estimator and optimal, sparse sampling strategies for ceftazidime. Antimicrob. Agents Chemother. 1996, 40, 1860–1865. [Google Scholar] [CrossRef] [PubMed]
  66. Paladino, J.A. Pharmacoeconomic comparison of sequential IV/oral ciprofloxacin versus ceftazidime in the treatment of nosocomial pneumonia. Can. J. Hosp. Pharm. 1995, 48, 276–283. [Google Scholar]
  67. Levine, D.P.; McNeil, P.; Lerner, S.A. Randomized, double-blind comparative study of intravenous ciprofloxacin versus ceftazidime in the treatment of serious infections. Am. J. Med. 1989, 87, 160S–163S. [Google Scholar] [CrossRef] [PubMed]
  68. Menon, L.; Ernst, J.A.; Sy, E.R.; Flores, D.; Pacia, A.; Lorian, V. Sequential intravenous/oral ciprofloxacin compared with intravenous ceftazidime in the treatment of serious lower respiratory tract infections. Am. J. Med. 1989, 87, 119S–120S. [Google Scholar] [CrossRef] [PubMed]
  69. Rodriguez, W.J.; Khan, W.N.; Gold, B.; Feris, J.; Puig, J.; Sturla, C. Ceftazidime in the treatment of meningitis in infants and children over one month of age. Am. J. Med. 1985, 79, 52–55. [Google Scholar] [CrossRef]
  70. Stack, B.H.R. Ceftazidime compared with gentamicin and carbenicillin in patients with cystic fibrosis, pulmonary pseudomonas infection, and an exacerbation of respiratory symptoms. British Thoracic Society Research Committee. Thorax 1985, 40, 358–363. [Google Scholar] [CrossRef]
  71. Keeton, G.R.; Kehoe, B.; Phillips, S.W.; Daya, H. Ceftazidime and cefamandole in the treatment of pneumonia. J. Antimicrob. Chemother. 1983, 12 (Suppl. A), 27–30. [Google Scholar] [CrossRef]
  72. Bradley, J.S.; Roilides, E.; Broadhurst, H.; Cheng, K.; Huang, L.M.; MasCasullo, V.; Newell, P.; Stone, G.G.; Tawadrous, M.; Wajsbrot, D.; et al. Safety and Efficacy of Ceftazidime-Avibactam in the Treatment of Children ≥3 Months to <18 Years With Complicated Urinary Tract Infection: Results from a Phase 2 Randomized, Controlled Trial. Pediatr. Infect. Dis. J. 2019, 38, 920–928. [Google Scholar] [CrossRef]
  73. Bradley, J.S.; Broadhurst, H.; Cheng, K.; Mendez, M.; Newell, P.; Prchlik, M.; Stone, G.G.; Talley, A.K.; Tawadrous, M.; Wajsbrot, D.; et al. Safety and Efficacy of Ceftazidime-Avibactam Plus Metronidazole in the Treatment of Children ≥3 Months to <18 Years With Complicated Intra-Abdominal Infection: Results From a Phase 2, Randomized, Controlled Trial. Pediatr. Infect. Dis. J. 2019, 38, 816–824. [Google Scholar] [CrossRef]
  74. Regnier, B. Comparative study of intravenous ceftriaxone followed by oral cefixime versus ceftriaxone alone in the treatment of severe upper urinary tract infections. Presse Med. 1989, 18, 1617–1621. [Google Scholar]
  75. Rothwell, D.L.; Bremner, D.A.; Taylor, K.M. Treatment of complicated urinary tract infections with the long acting cephalosporin, ceftriaxone. N. Z. Med. J. 1983, 96, 392–394. [Google Scholar]
  76. Arjyal, A.; Basnyat, B.; Nhan, H.T.; Koirala, S.; Giri, A.; Joshi, N.; Shakya, M.; Pathak, K.R.; Mahat, S.P.; Prajapati, S.P.; et al. Gatifloxacin versus ceftriaxone for uncomplicated enteric fever in Nepal: An open-label, two-centre, randomised controlled trial. Lancet Infect. Dis. 2016, 16, 535–545. [Google Scholar] [CrossRef]
  77. Jimenez-Cruz, F.; Jasovich, A.; Cajigas, J.; Jiang, Q.; Imbeault, D.; Woods, G.L.; Gesser, R.M.; Protocol 021 Study Group. A prospective, multicenter, randomized, double-blind study comparing ertapenem and ceftriaxone followed by appropriate oral therapy for complicated urinary tract infections in adults. Urology 2002, 60, 16–22. [Google Scholar] [CrossRef]
  78. Dattwyler, R.J.; Luft, B.J.; Kunkel, M.J.; Finkel, M.F.; Wormser, G.P.; Rush, T.J.; Grunwaldt, E.; Agger, W.A.; Franklin, M.; Oswald, D.; et al. Ceftriaxone compared with doxycycline for the treatment of acute disseminated Lyme disease. N. Engl. J. Med. 1997, 337, 289–294. [Google Scholar] [CrossRef]
  79. Solomkin, J.; Hershberger, E.; Miller, B.; Popejoy, M.; Friedland, I.; Steenbergen, J.; Yoon, M.; Collins, S.; Yuan, G.; Barie, P.S.; et al. Ceftolozane/Tazobactam Plus Metronidazole for Complicated Intra-abdominal Infections in an Era of Multidrug Resistance: Results From a Randomized, Double-Blind, Phase 3 Trial (ASPECT-cIAI). Clin. Infect. Dis. 2015, 60, 1462–1471. [Google Scholar] [CrossRef]
  80. Walters, D.J.; Solomkin, J.S.; Paladino, J.A. Cost effectiveness of ciprofloxacin plus metronidazole versus imipenem-cilastatin in the treatment of intra-abdominal infections. Pharmacoeconomics 1999, 16 Pt 2, 551–561. [Google Scholar] [CrossRef]
  81. Strenkoski-Nix, L.C.; Forrest, A.; Schentag, J.J.; Nix, D.E. Pharmacodynamic interactions of ciprofloxacin, piperacillin, and piperacillin/tazobactam in healthy volunteers. J. Clin. Pharmacol. 1998, 38, 1063–1071. [Google Scholar] [CrossRef]
  82. Bailey, R.R.; Begg, E.J.; Smith, A.H.; Robson, R.A.; Lynn, K.L.; Chambers, S.T.; Barclay, M.L.; Hornibrook, J. Prospective, randomized, controlled study comparing two dosing regimens of gentamicin/oral ciprofloxacin switch therapy for acute pyelonephritis. Clin. Nephrol. 1996, 46, 183–186. [Google Scholar]
  83. Thadepalli, H.; Mathai, D.; Scotti, R.; Bansal, M.B.; Savage, E. Ciprofloxacin monotherapy for acute pelvic infections: A comparison with clindamycin plus gentamicin. Obstet. Gynecol. 1991, 78, 696–702. [Google Scholar]
  84. Roach, M.B.; Figueroa, T.E.; McBride, D.; George, W.J.; Neal, D.E., Jr. Ciprofloxacin versus gentamicin in prophylaxis against bacteremia in transrectal prostate needle biopsy. Urology 1991, 38, 84–87. [Google Scholar] [CrossRef]
  85. Apuzzio, J.J.; Stankiewicz, R.; Ganesh, V.; Jain, S.; Kaminski, Z.; Louria, D. Comparison of parenteral ciprofloxacin with clindamycin-gentamicin in the treatment of pelvic infection. Am. J. Med. 1989, 87, 148S–151S. [Google Scholar] [CrossRef]
  86. Kusachi, S.; Sumiyama, Y.; Takahashi, Y.; Kato, K.; Mashita, K.; Takeyama, H.; Oda, S.; Kobayashi, S. Evaluation of the efficacy and safety of intravenous ciprofloxacin versus meropenem in the treatment of postoperative infection. J. Infect. Chemother. 2012, 18, 152–159. [Google Scholar] [CrossRef]
  87. Tazuma, S.; Igarashi, Y.; Tsuyuguchi, T.; Ohara, H.; Inui, K.; Ohya, T.; BTI Therapy Research Group. Clinical efficacy of intravenous ciprofloxacin in patients with biliary tract infection: A randomized controlled trial with carbapenem as comparator. J. Gastroenterol. 2009, 44, 781–792. [Google Scholar] [CrossRef]
  88. Paladino, J.A.; Gilliland-Johnson, K.K.; Adelman, M.H.; Cohn, S.M. Pharmacoeconomics of ciprofloxacin plus metronidazole vs. piperacillin-tazobactam for complicated intra-abdominal infections. Surg. Infect. 2008, 9, 325–333. [Google Scholar] [CrossRef]
  89. Peterson, J.; Kaul, S.; Khashab, M.; Fisher, A.C.; Kahn, J.B. A double-blind, randomized comparison of levofloxacin 750 mg once-daily for five days with ciprofloxacin 400/500 mg twice-daily for 10 days for the treatment of complicated urinary tract infections and acute pyelonephritis. Urology 2008, 71, 17–22. [Google Scholar] [CrossRef]
  90. Spyridaki, A.; Raftogiannis, M.; Antonopoulou, A.; Tsaganos, T.; Routsi, C.; Baziaka, F.; Karagianni, V.; Mouktaroudi, M.; Koutoukas, P.; Pelekanou, A.; et al. Effect of clarithromycin in inflammatory markers of patients with ventilator-associated pneumonia and sepsis caused by Gram-negative bacteria: Results from a randomized clinical study. Antimicrob. Agents Chemother. 2012, 56, 3819–3825. [Google Scholar] [CrossRef]
  91. Giamarellos-Bourboulis, E.J.; Pechère, J.C.; Routsi, C.; Plachouras, D.; Kollias, S.; Raftogiannis, M.; Zervakis, D.; Baziaka, F.; Koronaios, A.; Antonopoulou, A.; et al. Effect of clarithromycin in patients with sepsis and ventilator-associated pneumonia. Clin. Infect. Dis. 2008, 46, 1157–1164. [Google Scholar] [CrossRef]
  92. Whitby, M.; Johnson, B.C.; Atkinson, R.L.; Stuart, G. The comparative efficacy of intravenous cefotaxime and trimethoprim/sulfamethoxazole in preventing infection after neurosurgery: A prospective, randomized study. Brisbane Neurosurgical Infection Group. Br. J. Neurosurg. 2000, 14, 13–18. [Google Scholar] [CrossRef]
  93. Carrothers, T.J.; Chittenden, J.T.; Critchley, I. Dalbavancin Population Pharmacokinetic Modeling and Target Attainment Analysis. Clin. Pharmacol. Drug Dev. 2020, 9, 21–31. [Google Scholar] [CrossRef]
  94. Dunne, M.W.; Puttagunta, S.; Giordano, P.; Krievins, D.; Zelasky, M.; Baldassarre, J. A Randomized Clinical Trial of Single-Dose Versus Weekly Dalbavancin for Treatment of Acute Bacterial Skin and Skin Structure Infection. Clin. Infect. Dis. 2016, 62, 545–551. [Google Scholar] [CrossRef]
  95. Raad, I.; Darouiche, R.; Vazquez, J.; Lentnek, A.; Hachem, R.; Hanna, H.; Goldstein, B.; Henkel, T.; Seltzer, E. Efficacy and safety of weekly dalbavancin therapy for catheter-related bloodstream infection caused by gram-positive pathogens. Clin. Infect. Dis. 2005, 40, 374–380. [Google Scholar] [CrossRef]
  96. Shaw, E.; Miró, J.M.; Puig-Asensio, M.; Pigrau, C.; Barcenilla, F.; Murillas, J.; Garcia-Pardo, G.; Espejo, E.; Padilla, B.; Garcia-Reyne, A.; et al. Daptomycin plus fosfomycin versus daptomycin monotherapy in treating MRSA: Protocol of a multicentre, randomised, phase III trial. BMJ Open 2015, 5, e006723. [Google Scholar] [CrossRef]
  97. Wang, Z.; Grasela, D.M.; Krishna, G. Retrospective analysis of electrocardiographic changes after administration of oral or intravenous garenoxacin in five phase I, placebo-controlled studies in healthy volunteers. Clin. Ther. 2007, 29, 1098–1106. [Google Scholar] [CrossRef]
  98. Bassetti, M.; Righi, E.; Pecori, D.; Tillotson, G. Delafloxacin: An improved fluoroquinolone developed through advanced molecular engineering. Future Microbiol. 2018, 13, 1081–1094. [Google Scholar] [CrossRef]
  99. Kingsley, J.; Mehra, P.; Lawrence, L.E.; Henry, E.; Duffy, E.; Cammarata, S.K.; Pullman, J. A randomized, double-blind, Phase 2 study to evaluate subjective and objective outcomes in patients with acute bacterial skin and skin structure infections treated with delafloxacin, linezolid or vancomycin. J. Antimicrob. Chemother. 2016, 71, 821–829. [Google Scholar] [CrossRef]
  100. Litwin, J.S.; Benedict, M.S.; Thorn, M.D.; Lawrence, L.E.; Cammarata, S.K.; Sun, E. A thorough QT study to evaluate the effects of therapeutic and supratherapeutic doses of delafloxacin on cardiac repolarization. Antimicrob. Agents Chemother. 2015, 59, 3469–3473. [Google Scholar] [CrossRef]
  101. O’Riordan, W.; Mehra, P.; Manos, P.; Kingsley, J.; Lawrence, L.; Cammarata, S. A randomized phase 2 study comparing two doses of delafloxacin with tigecycline in adults with complicated skin and skin-structure infections. Int. J. Infect. Dis. 2015, 30, 67–73. [Google Scholar] [CrossRef]
  102. Redman, R.; Damiao, R.; Kotey, P.; Kaniga, K.; Davies, T.; Naber, K.G. Safety and efficacy of intravenous doripenem for the treatment of complicated urinary tract infections and pyelonephritis. J. Chemother. 2010, 22, 384–391. [Google Scholar] [CrossRef]
  103. Wagenlehner, F.M.; Wagenlehner, C.; Redman, R.; Weidner, W.; Naber, K.G. Urinary bactericidal activity of Doripenem versus that of levofloxacin in patients with complicated urinary tract infections or pyelonephritis. Antimicrob. Agents Chemother. 2009, 53, 1567–1573. [Google Scholar] [CrossRef]
  104. Réa-Neto, A.; Niederman, M.; Lobo, S.M.; Schroeder, E.; Lee, M.; Kaniga, K.; Ketter, N.; Prokocimer, P.; Friedland, I. Efficacy and safety of doripenem versus piperacillin/tazobactam in nosocomial pneumonia: A randomized, open-label, multicenter study. Curr. Med. Res. Opin. 2008, 24, 2113–2126. [Google Scholar] [CrossRef]
  105. Merchant, S.; Gast, C.; Nathwani, D.; Lee, M.; Quintana, A.; Ketter, N.; Friedland, I.; Ingham, M. Hospital resource utilization with doripenem versus imipenem in the treatment of ventilator-associated pneumonia. Clin. Ther. 2008, 30, 717–733. [Google Scholar] [CrossRef] [PubMed]
  106. Nguyen, V.X.; Nix, D.E.; Gillikin, S.; Schentag, J.J. Effect of oral antacid administration on the pharmacokinetics of intravenous doxycycline. Antimicrob. Agents Chemother. 1989, 33, 434–436. [Google Scholar] [CrossRef]
  107. Solomkin, J.S.; Gardovskis, J.; Lawrence, K.; Montravers, P.; Sway, A.; Evans, D.; Tsai, L. IGNITE4: Results of a Phase 3, Randomized, Multicenter, Prospective Trial of Eravacycline vs Meropenem in the Treatment of Complicated Intraabdominal Infections. Clin. Infect. Dis. 2019, 69, 921–929. [Google Scholar] [CrossRef] [PubMed]
  108. Deane, A.M.; Wong, G.L.; Horowitz, M.; Zaknic, A.V.; Summers, M.J.; Di Bartolomeo, A.E.; Sim, J.A.; Maddox, A.F.; Bellon, M.S.; Rayner, C.K.; et al. Randomized double-blind crossover study to determine the effects of erythromycin on small intestinal nutrient absorption and transit in the critically ill. Am. J. Clin. Nutr. 2012, 95, 1396–1402. [Google Scholar] [CrossRef]
  109. Boivin, M.A.; Carey, M.C.; Levy, H. Erythromycin accelerates gastric emptying in a dose-response manner in healthy subjects. Pharmacotherapy 2003, 23, 5–8. [Google Scholar] [CrossRef] [PubMed]
  110. Majumdar, A.K.; Musson, D.G.; Birk, K.L.; Kitchen, C.J.; Holland, S.; McCrea, J.; Mistry, G.; Hesney, M.; Xi, L.; Li, S.X.; et al. Pharmacokinetics of ertapenem in healthy young volunteers. Antimicrob. Agents Chemother. 2002, 46, 3506–3511. [Google Scholar] [CrossRef]
  111. Rosso-Fernández, C.; Sojo-Dorado, J.; Barriga, A.; Lavín-Alconero, L.; Palacios, Z.; López-Hernández, I.; Merino, V.; Camean, M.; Pascual, A.; Rodríguez-Baño, J.; et al. Fosfomycin versus meropenem in bacteraemic urinary tract infections caused by extended-spectrum β-lactamase-producing Escherichia coli (FOREST): Study protocol for an investigator-driven randomised controlled trial. BMJ Open 2015, 5, e007363. [Google Scholar] [CrossRef]
  112. Tong, S.Y.C.; Lye, D.C.; Yahav, D.; Sud, A.; Robinson, J.O.; Nelson, J.; Archuleta, S.; Roberts, M.A.; Cass, A.; Paterson, D.L.; et al. Effect of Vancomycin or Daptomycin With vs Without an Antistaphylococcal β-Lactam on Mortality, Bacteremia, Relapse, or Treatment Failure in Patients With MRSA Bacteremia: A Randomized Clinical Trial. JAMA 2020, 323, 527–537. [Google Scholar] [CrossRef]
  113. LaCreta, F.P.; Kaul, S.; Kollia, G.D.; Duncan, G.; Randall, D.M.; Grasela, D.M. Interchangeability of 400-mg intravenous and oral gatifloxacin in healthy adults. Pharmacotherapy 2000, 20 Pt 2, 59S–66S. [Google Scholar] [CrossRef]
  114. Gajjar, D.A.; LaCreta, F.P.; Uderman, H.D.; Kollia, G.D.; Duncan, G.; Birkhofer, M.J.; Grasela, D.M. A dose-escalation study of the safety, tolerability, and pharmacokinetics of intravenous gatifloxacin in healthy adult men. Pharmacotherapy 2000, 20 Pt 2, 49S–58S. [Google Scholar] [CrossRef]
  115. McNamara, D.R.; Nafziger, A.N.; Menhinick, A.M.; Bertino, J.S., Jr. A dose-ranging study of gentamicin pharmacokinetics: Implications for extended interval aminoglycoside therapy. J. Clin. Pharmacol. 2001, 41, 374–377. [Google Scholar] [CrossRef] [PubMed]
  116. Apuzzio, J.J.; Kaminski, Z.; Gamesh, V.; Louria, D.B. Comparative clinical evaluation of ticarcillin plus clavulanic acid versus clindamycin plus gentamicin in treatment of post-cesarean endomyometritis. Am. J. Med. 1985, 79, 164–167. [Google Scholar] [CrossRef] [PubMed]
  117. El-Chaar, G.M.; Supaswud-Franks, T.; Venugopalan, L.; Kohn, N.; Castro-Alcaraz, S. Extended-interval gentamicin administration in neonates: A simplified approach. J. Perinatol. 2016, 36, 660–665. [Google Scholar] [CrossRef] [PubMed]
  118. Nichols, R.L.; Smith, J.W.; Geckler, R.W.; Wilson, S.E. Meropenem versus imipenem/cilastatin in the treatment of hospitalized patients with skin and soft tissue infections. South Med. J. 1995, 88, 397–404, Erratum in South Med. J. 1995, 88, 634. [Google Scholar] [CrossRef]
  119. Rizk, M.L.; Rhee, E.G.; Jumes, P.A.; Gotfried, M.H.; Zhao, T.; Mangin, E.; Bi, S.; Chavez-Eng, C.M.; Zhang, Z.; Butterton, J.R. Intrapulmonary Pharmacokinetics of Relebactam, a Novel β-Lactamase Inhibitor, Dosed in Combination with Imipenem-Cilastatin in Healthy Subjects. Antimicrob. Agents Chemother. 2018, 62, e01411–e01417. [Google Scholar] [CrossRef]
  120. Manes, G.; Rabitti, P.G.; Menchise, A.; Riccio, E.; Balzano, A.; Uomo, G. Prophylaxis with meropenem of septic complications in acute pancreatitis: A randomized, controlled trial versus imipenem. Pancreas 2003, 27, e79–e83. [Google Scholar] [CrossRef] [PubMed]
  121. Hou, F.; Wu, G.; Zheng, B. A randomized, controlled clinical trial of meropenem and imipenem/cilastatin in the treatment of acute bacterial infections. Zhonghua Nei Ke Za Zhi 2001, 40, 589–593. [Google Scholar]
  122. Titov, I.; Wunderink, R.G.; Roquilly, A.; Rodríguez Gonzalez, D.; David-Wang, A.; Boucher, H.W.; Kaye, K.S.; Losada, M.C.; Du, J.; Tipping, R.; et al. A Randomized, Double-blind, Multicenter Trial Comparing Efficacy and Safety of Imipenem/Cilastatin/Relebactam Versus Piperacillin/Tazobactam in Adults With Hospital-acquired or Ventilator-associated Bacterial Pneumonia (RESTORE-IMI 2 Study). Clin. Infect. Dis. 2021, 73, e4539–e4548. [Google Scholar] [CrossRef]
  123. File, T.M., Jr.; Alexander, E.; Goldberg, L.; Das, A.F.; Sandrock, C.; Paukner, S.; Moran, G.J. Lefamulin efficacy and safety in a pooled phase 3 clinical trial population with community-acquired bacterial pneumonia and common clinical comorbidities. BMC Pulm. Med. 2021, 21, 154. [Google Scholar] [CrossRef]
  124. File, T.M.; Goldberg, L.; Das, A.; Sweeney, C.; Saviski, J.; Gelone, S.P.; Seltzer, E.; Paukner, S.; Wicha, W.W.; Talbot, G.H.; et al. Efficacy and Safety of Intravenous-to-oral Lefamulin, a Pleuromutilin Antibiotic, for the Treatment of Community-acquired Bacterial Pneumonia: The Phase III Lefamulin Evaluation Against Pneumonia (LEAP 1) Trial. Clin. Infect. Dis. 2019, 69, 1856–1867, Erratum in Clin. Infect. Dis. 2020, 70, 2459. [Google Scholar] [CrossRef]
  125. Connolly, L.E.; Riddle, V.; Cebrik, D.; Armstrong, E.S.; Miller, L.G. A Multicenter, Randomized, Double-Blind, Phase 2 Study of the Efficacy and Safety of Plazomicin Compared with Levofloxacin in the Treatment of Complicated Urinary Tract Infection and Acute Pyelonephritis. Antimicrob. Agents Chemother. 2018, 62, e01989-17. [Google Scholar] [CrossRef]
  126. Ren, H.; Li, X.; Ni, Z.H.; Niu, J.Y.; Cao, B.; Xu, J.; Cheng, H.; Tu, X.W.; Ren, A.M.; Hu, Y.; et al. Treatment of complicated urinary tract infection and acute pyelonephritis by short-course intravenous levofloxacin (750 mg/day) or conventional intravenous/oral levofloxacin (500 mg/day): Prospective, open-label, randomized, controlled, multicenter, non-inferiority clinical trial. Int. Urol. Nephrol. 2017, 49, 499–507. [Google Scholar] [CrossRef]
  127. Cao, G.; Zhang, J.; Wu, X.; Yu, J.; Chen, Y.; Ye, X.; Zhu, D.; Zhang, Y.; Guo, B.; Shi, Y. Pharmacokinetics and pharmacodynamics of levofloxacin injection in healthy Chinese volunteers and dosing regimen optimization. J. Clin. Pharm. Ther. 2013, 38, 394–400. [Google Scholar] [CrossRef]
  128. Chow, A.T.; Fowler, C.; Williams, R.R.; Morgan, N.; Kaminski, S.; Natarajan, J. Safety and pharmacokinetics of multiple 750-milligram doses of intravenous levofloxacin in healthy volunteers. Antimicrob. Agents Chemother. 2001, 45, 2122–2125. [Google Scholar] [CrossRef]
  129. Chien, S.C.; Rogge, M.C.; Gisclon, L.G.; Curtin, C.; Wong, F.; Natarajan, J.; Williams, R.R.; Fowler, C.L.; Cheung, W.K.; Chow, A.T. Pharmacokinetic profile of levofloxacin following once-daily 500-milligram oral or intravenous doses. Antimicrob. Agents Chemother. 1997, 41, 2256–2260. [Google Scholar] [CrossRef] [PubMed]
  130. Shorr, A.F.; Lodise, T.P.; Corey, G.R.; De Anda, C.; Fang, E.; Das, A.F.; Prokocimer, P. Analysis of the phase 3 ESTABLISH trials of tedizolid versus linezolid in acute bacterial skin and skin structure infections. Antimicrob. Agents Chemother. 2015, 59, 864–871. [Google Scholar] [CrossRef]
  131. Moran, G.J.; Fang, E.; Corey, G.R.; Das, A.F.; De Anda, C.; Prokocimer, P. Tedizolid for 6 days versus linezolid for 10 days for acute bacterial skin and skin-structure infections (ESTABLISH-2): A randomised, double-blind, phase 3, non-inferiority trial. Lancet Infect. Dis. 2014, 14, 696–705. [Google Scholar] [CrossRef]
  132. Damle, B.; Labadie, R.R.; Cuozzo, C.; Alvey, C.; Choo, H.W.; Riley, S.; Kirby, D. Lack of an effect of standard and supratherapeutic doses of linezolid on QTc interval prolongation. Antimicrob. Agents Chemother. 2011, 55, 4302–4307. [Google Scholar] [CrossRef]
  133. Itani, K.M.; Weigelt, J.; Li, J.Z.; Duttagupta, S. Linezolid reduces length of stay and duration of intravenous treatment compared with vancomycin for complicated skin and soft tissue infections due to suspected or proven methicillin-resistant Staphylococcus aureus (MRSA). Int. J. Antimicrob. Agents. 2005, 26, 442–448. [Google Scholar] [CrossRef]
  134. Beringer, P.; Nguyen, M.; Hoem, N.; Louie, S.; Gill, M.; Gurevitch, M.; Wong-Beringer, A. Absolute bioavailability and pharmacokinetics of linezolid in hospitalized patients given enteral feedings. Antimicrob. Agents Chemother. 2005, 49, 3676–3681. [Google Scholar] [CrossRef]
  135. Saiman, L.; Goldfarb, J.; Kaplan, S.A.; Wible, K.; Edge-Padbury, B.; Naberhuis-Stehouwer, S.; Bruss, J.B. Safety and tolerability of linezolid in children. Pediatr. Infect. Dis. J. 2003, 22 (Suppl. 9), S193–S200. [Google Scholar] [CrossRef]
  136. Yogev, R.; Patterson, L.E.; Kaplan, S.L.; Adler, S.; Morfin, M.R.; Martin, A.; Edge-Padbury, B.; Naberhuis-Stehouwer, S.; Bruss, J.B. Linezolid for the treatment of complicated skin and skin structure infections in children. Pediatr. Infect. Dis. J. 2003, 22 (Suppl. 9), S172–S177. [Google Scholar] [CrossRef]
  137. Deville, J.G.; Adler, S.; Azimi, P.H.; Jantausch, B.A.; Morfin, M.R.; Beltran, S.; Edge-Padbury, B.; Naberhuis-Stehouwer, S.; Bruss, J.B. Linezolid versus vancomycin in the treatment of known or suspected resistant gram-positive infections in neonates. Pediatr. Infect. Dis. J. 2003, 22 (Suppl. 9), S158–S163. [Google Scholar] [CrossRef]
  138. Kaplan, S.L.; Deville, J.G.; Yogev, R.; Morfin, M.R.; Wu, E.; Adler, S.; Edge-Padbury, B.; Naberhuis-Stehouwer, S.; Bruss, J.B.; Linezolid Pediatric Study Group. Linezolid versus vancomycin for treatment of resistant Gram-positive infections in children. Pediatr. Infect. Dis. J. 2003, 22, 677–686. [Google Scholar] [CrossRef]
  139. Li, Z.; Willke, R.J.; Pinto, L.A.; Rittenhouse, B.E.; Rybak, M.J.; Pleil, A.M.; Crouch, C.W.; Hafkin, B.; Glick, H.A. Comparison of length of hospital stay for patients with known or suspected methicillin-resistant Staphylococcus species infections treated with linezolid or vancomycin: A randomized, multicenter trial. Pharmacotherapy 2001, 21, 263–274. [Google Scholar] [CrossRef]
  140. Harris, P.N.A.; Tambyah, P.A.; Lye, D.C.; Mo, Y.; Lee, T.H.; Yilmaz, M.; Alenazi, T.H.; Arabi, Y.; Falcone, M.; Bassetti, M.; et al. Effect of Piperacillin-Tazobactam vs Meropenem on 30-Day Mortality for Patients With E coli or Klebsiella pneumoniae Bloodstream Infection and Ceftriaxone Resistance: A Randomized Clinical Trial. JAMA 2018, 320, 984–994, Erratum in JAMA 2019, 321, 2370. [Google Scholar] [CrossRef]
  141. Berne, T.V.; Yellin, A.E.; Appleman, M.D.; Heseltine, P.N.; Gill, M.A. Meropenem versus tobramycin with clindamycin in the antibiotic management of patients with advanced appendicitis. J. Am. Coll. Surg. 1996, 182, 403–407. [Google Scholar]
  142. Kaye, K.S.; Bhowmick, T.; Metallidis, S.; Bleasdale, S.C.; Sagan, O.S.; Stus, V.; Vazquez, J.; Zaitsev, V.; Bidair, M.; Chorvat, E.; et al. Effect of Meropenem-Vaborbactam vs Piperacillin-Tazobactam on Clinical Cure or Improvement and Microbial Eradication in Complicated Urinary Tract Infection: The TANGO I Randomized Clinical Trial. JAMA 2018, 319, 788–799. [Google Scholar] [CrossRef]
  143. Breilh, D.; Jougon, J.; Djabarouti, S.; Gordien, J.B.; Xuereb, F.; Velly, J.F.; Arvis, P.; Landreau, V.; Saux, M.C. Diffusion of oral and intravenous 400 mg once-daily moxifloxacin into lung tissue at pharmacokinetic steady-state. J. Chemother. 2003, 15, 558–562. [Google Scholar] [CrossRef]
  144. Ballow, C.; Lettieri, J.; Agarwal, V.; Liu, P.; Stass, H.; Sullivan, J.T. Absolute bioavailability of moxifloxacin. Clin. Ther. 1999, 21, 513–522. [Google Scholar] [CrossRef]
  145. Wirth, S.; Emil, S.G.S.; Engelis, A.; Digtyar, V.; Criollo, M.; DiCasoli, C.; Stass, H.; Willmann, S.; Nkulikiyinka, R.; Grossmann, U.; et al. Moxifloxacin in Pediatric Patients With Complicated Intra-abdominal Infections: Results of the MOXIPEDIA Randomized Controlled Study. Pediatr. Infect. Dis. J. 2018, 37, e207–e213. [Google Scholar] [CrossRef] [PubMed]
  146. Zhao, C.; Li, J.; Hou, J.; Guo, M.; Zhang, Y.; Chen, Y. A randomized controlled clinical trial on etimicin, a new aminoglycoside antibiotic, versus netilmicin in the treatment of bacterial infections. Chin. Med. J. 2000, 113, 1026–1030. [Google Scholar] [PubMed]
  147. Corey, G.R.; Loutit, J.; Moeck, G.; Wikler, M.; Dudley, M.N.; O’Riordan, W.; SOLO I and SOLO II Investigators. Single Intravenous Dose of Oritavancin for Treatment of Acute Skin and Skin Structure Infections Caused by Gram-Positive Bacteria: Summary of Safety Analysis from the Phase 3 SOLO Studies. Antimicrob. Agents Chemother. 2018, 62, e01919-17. [Google Scholar] [CrossRef]
  148. Dougherty, J.A.; Sucher, A.J.; Chahine, E.B.; Shihadeh, K.C. Omadacycline: A New Tetracycline Antibiotic. Ann. Pharmacother. 2019, 53, 486–500. [Google Scholar] [CrossRef]
  149. Swarifi, R.; Lee, M.; Ojeda, L.; Tabib, M. Preliminary report comparing piperacillin and carbenicillin for complicated urinary tract infections. J. Urol. 1982, 128, 755–758. [Google Scholar] [CrossRef] [PubMed]
  150. Wagenlehner, F.M.E.; Cloutier, D.J.; Komirenko, A.S.; Cebrik, D.S.; Krause, K.M.; Keepers, T.R.; Connolly, L.E.; Miller, L.G.; Friedland, I.; Dwyer, J.P.; et al. Once-Daily Plazomicin for Complicated Urinary Tract Infections. N. Engl. J. Med. 2019, 380, 729–740. [Google Scholar] [CrossRef] [PubMed]
  151. Thwaites, G.E.; Scarborough, M.; Szubert, A.; Nsutebu, E.; Tilley, R.; Greig, J.; Wyllie, S.A.; Wilson, P.; Auckland, C.; Cairns, J.; et al. Adjunctive rifampicin for Staphylococcus aureus bacteraemia (ARREST): A multicentre, randomised, double-blind, placebo-controlled trial. Lancet 2018, 391, 668–678. [Google Scholar] [CrossRef]
  152. Edelstein, H.E.; Oster, S.E.; Chirurgi, V.A.; Karp, R.A.; Cassano, K.B.; McCabe, R.E. Intravenous or intramuscular teicoplanin once daily for skin and soft-tissue infections. DICP 1991, 25, 914–918. [Google Scholar] [CrossRef]
  153. Antony, K.K.; Lewis, E.W.; Kenny, M.T.; Dulworth, J.K.; Brackman, M.B.; Kuzma, R.; Yuh, L.; Eller, M.G.; Thompson, G.A. Pharmacokinetics and bioavailability of a new formulation of teicoplanin following intravenous and intramuscular administration to humans. J. Pharm. Sci. 1991, 80, 605–607. [Google Scholar] [CrossRef]
  154. Antrum, R.M.; Bibby, S.R.; Ramsden, C.H.; Kester, R.C. Teicoplanin: Part 2. Evaluation of its use in the biliary system. Drugs Exp. Clin. Res. 1989, 15, 25–27. [Google Scholar]
  155. Antrum, R.M.; Bibby, S.R.; Ramsden, C.H.; Kester, R.C. Teicoplanin: Part 1. An evaluation of the concentrations seen in serum and the subcutaneous fat of the relatively ischaemic lower limb following a single intravenous bolus. Drugs Exp. Clin. Res. 1989, 15, 21–23. [Google Scholar]
  156. Shaw, J.P.; Seroogy, J.; Kaniga, K.; Higgins, D.L.; Kitt, M.; Barriere, S. Pharmacokinetics, serum inhibitory and bactericidal activity, and safety of telavancin in healthy subjects. Antimicrob. Agents Chemother. 2005, 49, 195–201. [Google Scholar] [CrossRef] [PubMed]
  157. Lv, X.; Alder, J.; Li, L.; O’Riordan, W.; Rybak, M.J.; Ye, H.; Zhang, R.; Zhang, Z.; Zhu, X.; Wilcox, M.H. Efficacy and Safety of Tedizolid Phosphate versus Linezolid in a Randomized Phase 3 Trial in Patients with Acute Bacterial Skin and Skin Structure Infection. Antimicrob. Agents Chemother. 2019, 63, e02252-18. [Google Scholar] [CrossRef] [PubMed]
  158. Bhavnani, S.M.; Rubino, C.M.; Hammel, J.P.; Forrest, A.; Dartois, N.; Cooper, C.A.; Korth-Bradley, J.; Ambrose, P.G. Pharmacological and patient-specific response determinants in patients with hospital-acquired pneumonia treated with tigecycline. Antimicrob. Agents Chemother. 2012, 56, 1065–1072. [Google Scholar] [CrossRef]
  159. Rubino, C.M.; Forrest, A.; Bhavnani, S.M.; Dukart, G.; Cooper, A.; Korth-Bradley, J.; Ambrose, P.G. Tigecycline population pharmacokinetics in patients with community- or hospital-acquired pneumonia. Antimicrob. Agents Chemother. 2010, 54, 5180–5186. [Google Scholar] [CrossRef]
  160. Fomin, P.; Koalov, S.; Cooper, A.; Babinchak, T.; Dartois, N.; De Vane, N.; Castaing, N.; Tellado, J.; 301 and 306 Study Groups. The efficacy and safety of tigecycline for the treatment of complicated intra-abdominal infections—The European experience. J. Chemother. 2008, 20 (Suppl. 1), 12–19. [Google Scholar] [CrossRef] [PubMed]
  161. Gwee, A.; Cranswick, N.; McMullan, B.; Perkins, E.; Bolisetty, S.; Gardiner, K.; Daley, A.; Ward, M.; Chiletti, R.; Donath, S.; et al. Continuous Versus Intermittent Vancomycin Infusions in Infants: A Randomized Controlled Trial. Pediatrics 2019, 143, e20182179. [Google Scholar] [CrossRef] [PubMed]
  162. Caparas, J.V.; Hu, J.P. Safe administration of vancomycin through a novel midline catheter: A randomized, prospective clinical trial. J. Vasc. Access 2014, 15, 251–256. [Google Scholar] [CrossRef] [PubMed]
  163. Hill, L.F.; Clements, M.N.; Turner, M.A.; Donà, D.; Lutsar, I.; Jacqz-Aigrain, E.; Heath, P.T.; Roilides, E.; Rawcliffe, L.; Alonso-Diaz, C.; et al. Optimised versus standard dosing of vancomycin in infants with Gram-positive sepsis (NeoVanc): A multicentre, randomised, open-label, phase 2b, non-inferiority trial. Lancet Child Adolesc. Health 2022, 6, 49–59. [Google Scholar] [CrossRef] [PubMed]
  164. Liesveld, J.L.; Abboud, C.N.; Ifthikharuddin, J.J.; Lancet, J.E.; Wedow, L.A.; Oliva, J.; Stamm, C.G.; Nichols, D. Oral valacyclovir versus intravenous acyclovir in preventing herpes simplex virus infections in autologous stem cell transplant recipients. Biol. Blood Marrow Transplant. 2002, 8, 662–665. [Google Scholar] [CrossRef]
  165. Wutzler, P.; De Clercq, E.; Wutke, K.; Färber, I. Oral brivudin vs. intravenous acyclovir in the treatment of herpes zoster in immunocompromised patients: A randomized double-blind trial. J. Med. Virol. 1995, 46, 252–257. [Google Scholar] [CrossRef] [PubMed]
  166. Ljungman, P.; Lönnqvist, B.; Ringdén, O.; Skinhöj, P.; Gahrton, G. A randomized trial of oral versus intravenous acyclovir for treatment of herpes zoster in bone marrow transplant recipients. Nordic Bone Marrow Transplant Group. Bone Marrow Transplant. 1989, 4, 613–615. [Google Scholar]
  167. Peacock, J.E., Jr.; Kaplowitz, L.G.; Sparling, P.F.; Durack, D.T.; Gnann, J.W., Jr.; Whitley, R.J.; Lovett, M.; Bryson, Y.J.; Klein, R.J.; Friedman-Kien, A.E.; et al. Intravenous acyclovir therapy of first episodes of genital herpes: A multicenter double-blind, placebo-controlled trial. Am. J. Med. 1988, 85, 301–306. [Google Scholar] [CrossRef]
  168. Shepp, D.H.; Dandliker, P.S.; Meyers, J.D. Current therapy of varicella zoster virus infection in immunocompromised patients. A comparison of acyclovir and vidarabine. Am. J. Med. 1988, 85, 96–98. [Google Scholar]
  169. Shepp, D.H.; Dandliker, P.S.; Meyers, J.D. Treatment of varicella-zoster virus infection in severely immunocompromised patients. A randomized comparison of acyclovir and vidarabine. N. Engl. J. Med. 1986, 314, 208–212. [Google Scholar] [CrossRef]
  170. van den Broek, P.J.; van der Meer, J.W.; Mulder, J.D.; Versteeg, J.; Mattie, H. Limited value of acyclovir in the treatment of uncomplicated herpes zoster: A placebo-controlled study. Infection 1984, 12, 338–341. [Google Scholar] [CrossRef]
  171. Balfour, H.H., Jr.; McMonigal, K.A.; Bean, B. Acyclovir therapy of varicella-zoster virus infections in immunocompromised patients. J. Antimicrob. Chemother. 1983, 12 (Suppl. B), 169–179. [Google Scholar] [CrossRef]
  172. McGill, J.; MacDonald, D.R.; Fall, C.; McKendrick, G.D.; Copplestone, A. Intravenous acyclovir in acute herpes zoster infection. J. Infect. 1983, 6, 157–161. [Google Scholar] [CrossRef]
  173. Mindel, A.; Adler, M.W.; Sutherland, S.; Fiddian, A.P. Intravenous acyclovir in genital herpes. An interim report. Am. J. Med. 1982, 73, 347–350. [Google Scholar] [CrossRef]
  174. Bean, B.; Braun, C.; Balfour, H.H., Jr. Acyclovir therapy for acute herpes zoster. Lancet 1982, 2, 118–121. [Google Scholar] [CrossRef]
  175. Wade, J.C.; Newton, B.; McLaren, C.; Flournoy, N.; Keeney, R.E.; Meyers, J.D. Intravenous acyclovir to treat mucocutaneous herpes simplex virus infection after marrow transplantation: A double-blind trial. Ann. Intern. Med. 1982, 96, 265–269. [Google Scholar] [CrossRef]
  176. Mitchell, C.D.; Bean, B.; Gentry, S.R.; Groth, K.E.; Boen, J.R.; Balfour, H.H., Jr. Acyclovir therapy for mucocutaneous herpes simplex infections in immunocompromised patients. Lancet 1981, 1, 1389–1392. [Google Scholar] [CrossRef]
  177. Wolf, D.L.; Rodríguez, C.A.; Mucci, M.; Ingrosso, A.; Duncan, B.A.; Nickens, D.J. Pharmacokinetics and renal effects of cidofovir with a reduced dose of probenecid in HIV-infected patients with cytomegalovirus retinitis. J. Clin. Pharmacol. 2003, 43, 43–51. [Google Scholar] [CrossRef]
  178. Feinberg, J. Update on treatment of CMV retinitis. AIDS Clin. Care 1995, 7, 71–73,75,78. [Google Scholar]
  179. Safrin, S.; Crumpacker, C.; Chatis, P.; Davis, R.; Hafner, R.; Rush, J.; Kessler, H.A.; Landry, B.; Mills, J. A controlled trial comparing foscarnet with vidarabine for acyclovir-resistant mucocutaneous herpes simplex in the acquired immunodeficiency syndrome. The AIDS Clinical Trials Group. N. Engl. J. Med. 1991, 325, 551–555. [Google Scholar] [CrossRef]
  180. Cheung, T.W.; Jayaweera, D.T.; Pearce, D.; Benson, P.; Nahass, R.; Olson, C.; Wool, G.M. Safety of oral versus intravenous hydration during induction therapy with intravenous foscarnet in AIDS patients with cytomegalovirus infections. Int. J. STD AIDS 2000, 11, 640–647. [Google Scholar] [CrossRef]
  181. Palestine, A.G.; Polis, M.A.; De Smet, M.D.; Baird, B.F.; Falloon, J.; Kovacs, J.A.; Davey, R.T.; Zurlo, J.J.; Zunich, K.M.; Davis, M.; et al. A randomized, controlled trial of foscarnet in the treatment of cytomegalovirus retinitis in patients with AIDS. Ann. Intern. Med. 1991, 115, 665–673. [Google Scholar] [CrossRef]
  182. Immonen, A.; Vapalahti, M.; Tyynelä, K.; Hurskainen, H.; Sandmair, A.; Vanninen, R.; Langford, G.; Murray, N.; Ylä-Herttuala, S. AdvHSV-tk gene therapy with intravenous ganciclovir improves survival in human malignant glioma: A randomised, controlled study. Mol. Ther. 2004, 10, 967–972. [Google Scholar] [CrossRef]
  183. Macdonald, P.S.; Keogh, A.M.; Marshman, D.; Richens, D.; Harvison, A.; Kaan, A.M.; Spratt, P.M. A double-blind placebo-controlled trial of low-dose ganciclovir to prevent cytomegalovirus disease after heart transplantation. J. Heart Lung Transplant. 1995, 14 Pt 1, 32–38. [Google Scholar]
  184. Brennan, B.J.; Davies, B.; Cirrincione-Dall, G.; Morcos, P.N.; Beryozkina, A.; Chappey, C.; Aceves Baldó, P.; Lennon-Chrimes, S.; Rayner, C.R. Safety, tolerability, and pharmacokinetics of intravenous oseltamivir: Single- and multiple-dose phase I studies with healthy volunteers. Antimicrob. Agents Chemother. 2012, 56, 4729–4737. [Google Scholar] [CrossRef]
  185. van Duijnhoven, W.; Van Dromme, I.; Haesendonckx, S.; Witek, J.; Leopold, L. The Hospital Recovery Scale: A clinically useful endpoint in patients hospitalized with influenza. Contemp. Clin. Trials. 2022, 123, 106952. [Google Scholar] [CrossRef] [PubMed]
  186. Davey RTJr Fernández-Cruz, E.; Markowitz, N.; Pett, S.; Babiker, A.G.; Wentworth, D.; Khurana, S.; Engen, N.; Gordin, F.; Jain, M.K.; Kan, V.; et al. Anti-influenza hyperimmune intravenous immunoglobulin for adults with influenza A or B infection (FLU-IVIG): A double-blind, randomised, placebo-controlled trial. Lancet Respir. Med. 2019, 7, 951–963. [Google Scholar] [CrossRef] [PubMed]
  187. Beigel, J.H.; Tomashek, K.M.; Dodd, L.E.; Mehta, A.K.; Zingman, B.S.; Kalil, A.C.; Hohmann, E.; Chu, H.Y.; Luetkemeyer, A.; Kline, S.; et al. Remdesivir for the Treatment of COVID-19—Final Report. N. Engl. J. Med. 2020, 383, 1813–1826. [Google Scholar] [CrossRef]
  188. Spinner, C.D.; Gottlieb, R.L.; Criner, G.J.; Arribas López, J.R.; Cattelan, A.M.; Soriano Viladomiu, A.; Ogbuagu, O.; Malhotra, P.; Mullane, K.M.; Castagna, A.; et al. Effect of Remdesivir vs Standard Care on Clinical Status at 11 Days in Patients With Moderate COVID-19: A Randomized Clinical Trial. JAMA 2020, 324, 1048–1057. [Google Scholar] [CrossRef]
  189. ACTIV-3–Therapeutics for Inpatients with COVID-19 (TICO) Study Group. Tixagevimab-cilgavimab for treatment of patients hospitalised with COVID-19: A randomised, double-blind, phase 3 trial. Lancet Respir. Med. 2022, 10, 972–984, Erratum in Lancet Respir. Med. 2022, Epub ahead of print. [Google Scholar] [CrossRef]
  190. Ali, K.; Azher, T.; Baqi, M.; Binnie, A.; Borgia, S.; Carrier, F.M.; Cavayas, Y.A.; Chagnon, N.; Cheng, M.P.; Conly, J.; et al. Remdesivir for the treatment of patients in hospital with COVID-19 in Canada: A randomized controlled trial. CMAJ 2022, 194, E242–E251. [Google Scholar] [CrossRef]
  191. Goldman, J.D.; Lye, D.C.B.; Hui, D.S.; Marks, K.M.; Bruno, R.; Montejano, R.; Spinner, C.D.; Galli, M.; Ahn, M.Y.; Nahass, R.G.; et al. Remdesivir for 5 or 10 Days in Patients with Severe COVID-19. N. Engl. J. Med. 2020, 383, 1827–1837. [Google Scholar] [CrossRef]
  192. Wolfe, C.R.; Tomashek, K.M.; Patterson, T.F.; Gomez, C.A.; Marconi, V.C.; Jain, M.K.; Yang, O.O.; Paules, C.I.; Palacios, G.M.R.; Grossberg, R.; et al. Baricitinib versus dexamethasone for adults hospitalised with COVID-19 (ACTT-4): A randomised, double-blind, double placebo-controlled trial. Lancet Respir. Med. 2022, 10, 888–899. [Google Scholar] [CrossRef]
  193. Rosas, I.O.; Diaz, G.; Gottlieb, R.L.; Lobo, S.M.; Robinson, P.; Hunter, B.D.; Cavalcante, A.W.; Overcash, J.S.; Hanania, N.A.; Skarbnik, A.; et al. Tocilizumab and remdesivir in hospitalized patients with severe COVID-19 pneumonia: A randomized clinical trial. Intensive Care Med. 2021, 47, 1258–1270. [Google Scholar] [CrossRef]
  194. ACTIV-3/TICO Study Group; Barkauskas, C.; Mylonakis, E.; Poulakou, G.; Young, B.E.; Vock, D.M.; Siegel, L.; Engen, N.; Grandits, G.; Mosaly, N.R.; et al. Efficacy and Safety of Ensovibep for Adults Hospitalized With COVID-19: A Randomized Controlled Trial. Ann. Intern. Med. 2022, 175, 1266–1274. [Google Scholar] [CrossRef]
  195. ACTIV-3/TICO LY-CoV555 Study Group; Lundgren, J.D.; Grund, B.; Barkauskas, C.E.; Holland, T.L.; Gottlieb, R.L.; Sandkovsky, U.; Brown, S.M.; Knowlton, K.U.; Self, W.H.; et al. A Neutralizing Monoclonal Antibody for Hospitalized Patients with COVID-19. N. Engl. J. Med. 2021, 384, 905–914. [Google Scholar] [CrossRef] [PubMed]
  196. Temesgen, Z.; Burger, C.D.; Baker, J.; Polk, C.; Libertin, C.R.; Kelley, C.F.; Marconi, V.C.; Orenstein, R.; Catterson, V.M.; Aronstein, W.S.; et al. Lenzilumab in hospitalised patients with COVID-19 pneumonia (LIVE-AIR): A phase 3, randomised, placebo-controlled trial. Lancet Respir. Med. 2022, 10, 237–246. [Google Scholar] [CrossRef] [PubMed]
  197. Nickols, N.G.; Mi, Z.; DeMatt, E.; Biswas, K.; Clise, C.E.; Huggins, J.T.; Maraka, S.; Ambrogini, E.; Mirsaeidi, M.S.; Levin, E.R.; et al. Effect of Androgen Suppression on Clinical Outcomes in Hospitalized Men With COVID-19: The HITCH Randomized Clinical Trial. JAMA Netw. Open 2022, 5, e227852. [Google Scholar] [CrossRef] [PubMed]
  198. Kalil, A.C.; Mehta, A.K.; Patterson, T.F.; Erdmann, N.; Gomez, C.A.; Jain, M.K.; Wolfe, C.R.; Ruiz-Palacios, G.M.; Kline, S.; Regalado Pineda, J.; et al. Efficacy of interferon beta-1a plus remdesivir compared with remdesivir alone in hospitalised adults with COVID-19: A double-bind, randomised, placebo-controlled, phase 3 trial. Lancet Respir. Med. 2021, 9, 1365–1376. [Google Scholar] [CrossRef]
  199. Shida, Y.; Hara, K.; Nohda, S.; Soutome, T.; Hirama, T. The pharmacokinetic and safety profiles of zanamivir after single and repeat intravenous administration in healthy Japanese males. J. Clin. Pharm. Ther. 2013, 38, 236–240. [Google Scholar] [CrossRef] [PubMed]
  200. White, M.H.; Bowden, R.A.; Sandler, E.S.; Graham, M.L.; Noskin, G.A.; Wingard, J.R.; Goldman, M.; van Burik, J.A.; McCabe, A.; Lin, J.S.; et al. Randomized, double-blind clinical trial of amphotericin B colloidal dispersion vs. amphotericin B in the empirical treatment of fever and neutropenia. Clin. Infect. Dis. 1998, 27, 296–302. [Google Scholar] [CrossRef] [PubMed]
  201. Rhein, J.; Huppler Hullsiek, K.; Tugume, L.; Nuwagira, E.; Mpoza, E.; Evans, E.E.; Kiggundu, R.; Pastick, K.A.; Ssebambulidde, K.; Akampurira, A.; et al. Adjunctive sertraline for HIV-associated cryptococcal meningitis: A randomised, placebo-controlled, double-blind phase 3 trial. Lancet Infect. Dis. 2019, 19, 843–851. [Google Scholar] [CrossRef]
  202. Sundar, S.; Jha, T.K.; Thakur, C.P.; Sinha, P.K.; Bhattacharya, S.K. Injectable paromomycin for Visceral leishmaniasis in India. N. Engl. J. Med. 2007, 356, 2571–2581. [Google Scholar] [CrossRef]
  203. Winston, D.J.; Hathorn, J.W.; Schuster, M.G.; Schiller, G.J.; Territo, M.C. A multicenter, randomized trial of fluconazole versus amphotericin B for empiric antifungal therapy of febrile neutropenic patients with cancer. Am. J. Med. 2000, 108, 282–289. [Google Scholar] [CrossRef]
  204. Saag, M.S.; Powderly, W.G.; Cloud, G.A.; Robinson, P.; Grieco, M.H.; Sharkey, P.K.; Thompson, S.E.; Sugar, A.M.; Tuazon, C.U.; Fisher, J.F.; et al. Comparison of amphotericin B with fluconazole in the treatment of acute AIDS-associated cryptococcal meningitis. The NIAID Mycoses Study Group and the AIDS Clinical Trials Group. N. Engl. J. Med. 1992, 326, 83–89. [Google Scholar] [CrossRef]
  205. Benjamin, D.K., Jr.; Kaufman, D.A.; Hope, W.W.; Smith, P.B.; Arrieta, A.; Manzoni, P.; Kovanda, L.L.; Lademacher, C.; Isaacson, B.; Jednachowski, D.; et al. A Phase 3 Study of Micafungin Versus Amphotericin B Deoxycholate in Infants With Invasive Candidiasis. Pediatr. Infect. Dis. J. 2018, 37, 992–998, Erratum in Pediatr. Infect. Dis. J. 2018, 37, 1198. [Google Scholar] [CrossRef] [PubMed]
  206. Meunier, F. Fluconazole treatment of fungal infections in the immunocompromised host. Semin. Oncol. 1990, 17 (Suppl. 6), 19–23. [Google Scholar] [PubMed]
  207. Mandhaniya, S.; Swaroop, C.; Thulkar, S.; Vishnubhatla, S.; Kabra, S.K.; Xess, I.; Bakhshi, S. Oral voriconazole versus intravenous low dose amphotericin B for primary antifungal prophylaxis in pediatric acute leukemia induction: A prospective, randomized, clinical study. J. Pediatr. Hematol. Oncol. 2011, 33, e333–e341. [Google Scholar] [CrossRef] [PubMed]
  208. Cornely, O.A.; Meems, L.; Herbrecht, R.; Viscoli, C.; van Amsterdam, R.G.; Ruhnke, M. Randomised, multicentre trial of micafungin vs. an institutional standard regimen for salvage treatment of invasive aspergillosis. Mycoses 2015, 58, 58–64. [Google Scholar] [CrossRef] [PubMed]
  209. Bodey, G.P.; Anaissie, E.J.; Elting, L.S.; Estey, E.; O’Brien, S.; Kantarjian, H. Antifungal prophylaxis during remission induction therapy for acute leukemia fluconazole versus intravenous amphotericin B. Cancer 1994, 73, 2099–2106. [Google Scholar] [CrossRef]
  210. Thakur, C.P.; Thakur, S.; Narayan, S.; Sinha, A. Comparison of treatment regimens of kala-azar based on culture & sensitivity of amastigotes to sodium antimony gluconate. Indian J. Med. Res. 2008, 127, 582–588. [Google Scholar]
  211. Walsh, T.J.; Pappas, P.; Winston, D.J.; Lazarus, H.M.; Petersen, F.; Raffalli, J.; Yanovich, S.; Stiff, P.; Greenberg, R.; Donowitz, G.; et al. Voriconazole compared with liposomal amphotericin B for empirical antifungal therapy in patients with neutropenia and persistent fever. N. Engl. J. Med. 2002, 346, 225–234, Erratum in N. Engl. J. Med. 2007, 356, 760. [Google Scholar] [CrossRef]
  212. Burza, S.; Mahajan, R.; Kazmi, S.; Alexander, N.; Kumar, D.; Kumar, V.; Lasry, E.; Harshana, A.; de Lima Pereira, A.; Das, P.; et al. AmBisome Monotherapy and Combination AmBisome-Miltefosine Therapy for the Treatment of Visceral Leishmaniasis in Patients Coinfected With Human Immunodeficiency Virus in India: A Randomized Open-Label, Parallel-Arm, Phase 3 Trial. Clin. Infect. Dis. 2022, 75, 1423–1432. [Google Scholar] [CrossRef]
  213. Nath, C.E.; Shaw, P.J.; Gunning, R.; McLachlan, A.J.; Earl, J.W. Amphotericin B in children with malignant disease: A comparison of the toxicities and pharmacokinetics of amphotericin B administered in dextrose versus lipid emulsion. Antimicrob. Agents Chemother. 1999, 43, 1417–1423. [Google Scholar] [CrossRef]
  214. Liu, P.; Mould, D.R. Population pharmacokinetic analysis of voriconazole and anidulafungin in adult patients with invasive aspergillosis. Antimicrob. Agents Chemother. 2014, 58, 4718–4726. [Google Scholar] [CrossRef]
  215. Reboli, A.C.; Rotstein, C.; Pappas, P.G.; Chapman, S.W.; Kett, D.H.; Kumar, D.; Betts, R.; Wible, M.; Goldstein, B.P.; Schranz, J.; et al. Anidulafungin versus fluconazole for invasive candidiasis. N. Engl. J. Med. 2007, 356, 2472–2482. [Google Scholar] [CrossRef] [PubMed]
  216. DeMuria, D.; Forrest, A.; Rich, J.; Scavone, J.M.; Cohen, L.G.; Kazanjian, P.H. Pharmacokinetics and bioavailability of fluconazole in patients with AIDS. Antimicrob. Agents Chemother. 1993, 37, 2187–2192. [Google Scholar] [CrossRef] [PubMed]
  217. Momper, J.D.; Capparelli, E.V.; Wade, K.C.; Kantak, A.; Dhanireddy, R.; Cummings, J.J.; Nedrelow, J.H.; Hudak, M.L.; Mundakel, G.T.; Natarajan, G.; et al. Population Pharmacokinetics of Fluconazole in Premature Infants with Birth Weights Less than 750 Grams. Antimicrob. Agents Chemother. 2016, 60, 5539–5545. [Google Scholar] [CrossRef] [PubMed]
  218. de Wet, N.; Llanos-Cuentas, A.; Suleiman, J.; Baraldi, E.; Krantz, E.F.; Della Negra, M.; Diekmann-Berndt, H. A randomized, double-blind, parallel-group, dose-response study of micafungin compared with fluconazole for the treatment of esophageal candidiasis in HIV-positive patients. Clin. Infect. Dis. 2004, 39, 842–849. [Google Scholar] [CrossRef] [PubMed]
  219. Meunier, F.; Aoun, M.; Gerard, M. Therapy for oropharyngeal candidiasis in the immunocompromised host: A randomized double-blind study of fluconazole vs. ketoconazole. Rev. Infect. Dis. 1990, 12 (Suppl. 3), S364–S368. [Google Scholar] [CrossRef]
  220. Zhang, J.; Zhang, Y.; Wu, D.; Cao, G.; Hamed, K.; Desai, A.; Aram, J.A.; Guo, X.; Fayyad, R.; Cornely, O.A. Clinical experience with isavuconazole in healthy volunteers and patients with invasive aspergillosis in China, and the results from an exposure-response analysis. Mycoses 2021, 64, 445–456. [Google Scholar] [CrossRef]
  221. Schmitt-Hoffmann, A.; Roos, B.; Maares, J.; Heep, M.; Spickerman, J.; Weidekamm, E.; Brown, T.; Roehrle, M. Multiple-dose pharmacokinetics and safety of the new antifungal triazole BAL4815 after intravenous infusion and oral administration of its prodrug, BAL8557, in healthy volunteers. Antimicrob. Agents Chemother. 2006, 50, 286–293. [Google Scholar] [CrossRef]
  222. Schmitt-Hoffmann, A.; Roos, B.; Spickermann, J.; Heep, M.; Peterfaí, E.; Edwards, D.J.; Stoeckel, K. Effect of mild and moderate liver disease on the pharmacokinetics of isavuconazole after intravenous and oral administration of a single dose of the prodrug BAL8557. Antimicrob. Agents Chemother. 2009, 53, 4885–4890. [Google Scholar] [CrossRef]
  223. Zhao, Q.; Zhou, H.; Pesco-Koplowitz, L. Pharmacokinetics of intravenous itraconazole followed by itraconazole oral solution in patients with human immunodeficiency virus infection. J. Clin. Pharmacol. 2001, 41, 1319–1328. [Google Scholar] [CrossRef]
  224. Zhou, H.; Goldman, M.; Wu, J.; Woestenborghs, R.; Hassell, A.E.; Lee, P.; Baruch, A.; Pesco-Koplowitz, L.; Borum, J.; Wheat, L.J. A pharmacokinetic study of intravenous itraconazole followed by oral administration of itraconazole capsules in patients with advanced human immunodeficiency virus infection. J. Clin. Pharmacol. 1998, 38, 593–602. [Google Scholar] [CrossRef]
  225. Krishna, G.; Moton, A.; Ma, L.; Savant, I.; Martinho, M.; Seiberling, M.; McLeod, J. Effects of oral posaconazole on the pharmacokinetic properties of oral and intravenous midazolam: A phase I, randomized, open-label, crossover study in healthy volunteers. Clin. Ther. 2009, 31, 286–298. [Google Scholar] [CrossRef] [PubMed]
  226. Epstein, D.J.; Seo, S.K.; Huang, Y.T.; Park, J.H.; Klimek, V.M.; Berman, E.; Tallman, M.S.; Frattini, M.G.; Papanicolaou, G.A. Micafungin versus posaconazole prophylaxis in acute leukemia or myelodysplastic syndrome: A randomized study. J. Infect. 2018, 77, 227–234. [Google Scholar] [CrossRef]
  227. Kersemaekers, W.M.; van Iersel, T.; Nassander, U.; O’Mara, E.; Waskin, H.; Caceres, M.; van Iersel, M.L. Pharmacokinetics and safety study of posaconazole intravenous solution administered peripherally to healthy subjects. Antimicrob. Agents Chemother. 2015, 59, 1246–1251, Erratum in Antimicrob. Agents Chemother. 2016, 60, 4426. [Google Scholar] [CrossRef]
  228. Li, H.; Wei, Y.; Zhang, S.; Xu, L.; Jiang, J.; Qiu, Y.; Mangin, E.; Zhao, X.M.; Xie, S. Pharmacokinetics and Safety of Posaconazole Administered by Intravenous Solution and Oral Tablet in Healthy Chinese Subjects and Effect of Food on Tablet Bioavailability. Clin. Drug Investig. 2019, 39, 1109–1116. [Google Scholar] [CrossRef]
  229. Purkins, L.; Wood, N.; Greenhalgh, K.; Eve, M.D.; Oliver, S.D.; Nichols, D. The pharmacokinetics and safety of intravenous voriconazole—A novel wide-spectrum antifungal agent. Br. J. Clin. Pharmacol. 2003, 56 (Suppl. 1), 2–9. [Google Scholar] [CrossRef] [PubMed]
  230. Watts, R.E.; Odedra, A.; Marquart, L.; Webb, L.; Abd-Rahman, A.N.; Cascales, L.; Chalon, S.; Rebelo, M.; Pava, Z.; Collins, K.A.; et al. Safety and parasite clearance of artemisinin-resistant Plasmodium falciparum infection: A pilot and a randomised volunteer infection study in Australia. PLoS Med. 2020, 17, e1003203. [Google Scholar] [CrossRef]
  231. Priotto, G.; Kasparian, S.; Ngouama, D.; Ghorashian, S.; Arnold, U.; Ghabri, S.; Karunakara, U. Nifurtimox-eflornithine combination therapy for second-stage Trypanosoma brucei gambiense sleeping sickness: A randomized clinical trial in Congo. Clin. Infect. Dis. 2007, 45, 1435–1442. [Google Scholar] [CrossRef]
  232. Pépin, J.; Khonde, N.; Maiso, F.; Doua, F.; Jaffar, S.; Ngampo, S.; Mpia, B.; Mbulamberi, D.; Kuzoe, F. Short-course eflornithine in Gambian trypanosomiasis: A multicentre randomized controlled trial. Bull. World Health Organ. 2000, 78, 1284–1295. [Google Scholar]
  233. Adam, I.; Idris, H.M.; Mohamed-Ali, A.A.; Aelbasit, I.A.; Elbashir, M.I. Comparison of intramuscular artemether and intravenous quinine in the treatment of Sudanese children with severe falciparum malaria. East Afr. Med. J. 2002, 79, 621–625. [Google Scholar] [CrossRef]
  234. Barennes, H.; Pussard, E.; Mahaman Sani, A.; Clavier, F.; Kahiatani, F.; Granic, G.; Henzel, D.; Ravinet, L.; Verdier, F. Efficacy and pharmacokinetics of a new intrarectal quinine formulation in children with Plasmodium falciparum malaria. Br. J. Clin. Pharmacol. 1996, 41, 389–395. [Google Scholar] [CrossRef]
  235. Seaton, R.A.; Trevett, A.J.; Wembri, J.P.; Nwokolo, N.; Naraqi, S.; Black, J.; Laurenson, I.F.; Kevau, I.; Saweri, A.; Lalloo, D.G.; et al. Randomized comparison of intramuscular artemether and intravenous quinine in adult, Melanesian patients with severe or complicated, Plasmodium falciparum malaria in Papua New Guinea. Ann. Trop. Med. Parasitol. 1998, 92, 133–139. [Google Scholar] [CrossRef] [PubMed]
  236. Krisin Basri, H.; Fryauff, D.J.; Barcus, M.J.; Bangs, M.J.; Ayomi, E.; Marwoto, H.; Elyazar, I.R.; Richie, T.L.; Baird, J.K. Malaria in a cohort of Javanese migrants to Indonesian Papua. Ann. Trop. Med. Parasitol. 2003, 97, 543–556. [Google Scholar] [CrossRef] [PubMed]
  237. Watt, G.; Na-Nakorn, A.; Bateman, D.N.; Plubha, N.; Mothanaprakoon, P.; Edstein, M.; Webster, H.K. Amplification of quinine cardiac effects by the resistance-reversing agent prochlorperazine in falciparum malaria. Am. J. Trop. Med. Hyg. 1993, 49, 645–649. [Google Scholar] [CrossRef]
  238. Adam, I.; Ibrahim, M.H.; Aelbasit, I.A.; Elbashir, M.I. Low-dose quinine for treatment of chloroquine-resistant falciparum malaria in Sudanese pregnant women. EMHJ-East. Mediterr. Health J. 2004, 10, 554–559. [Google Scholar] [CrossRef]
  239. Assimadi, J.K.; Gbadoé, A.D.; Agbodjan-Djossou, O.; Ayéwada, K.; Goeh-Akué, E.; Kusiaku, K.; Dogba, A.; Adjogblé, K.; Gayibor, A. Treatment of cerebral malaria in African children by intravenous quinine: Comparison of a loading dose regimen to a regimen without a loading dose. Arch. Pediatr. 2002, 9, 587–594. [Google Scholar] [CrossRef]
  240. Barennes, H.; Kahiatani, D.; Clavier, F.; Meynard, D.; Njifountawaouo, S.; Barennes-Rasoanandrasana, F.; Amadou, M.; Soumana, M.; Mahamansani, A.; Granic, G.; et al. Rectal quinine, an alternative to parenteral injections for the treatment of childhood malaria. Clinical, parasitological and pharmacological study. Med. Trop. 1995, 55, 91–94. [Google Scholar]
  241. Ibrahim, M.H.; Elbashir, M.I.; Naser, A.; Aelbasit, I.A.; Kheir, M.M.; Adam, I. Low-dose quinine is effective in the treatment of chloroquine-resistant Plasmodium falciparum malaria in eastern Sudan. Ann. Trop. Med. Parasitol. 2004, 98, 441–445. [Google Scholar] [CrossRef]
  242. Marsh, N.; Larsen, E.N.; Takashima, M.; Kleidon, T.; Keogh, S.; Ullman, A.J.; Mihala, G.; Chopra, V.; Rickard, C.M. Peripheral intravenous catheter failure: A secondary analysis of risks from 11,830 catheters. Int. J. Nurs. Stud. 2021, 124, 104095. [Google Scholar] [CrossRef]
  243. NHS Resolution. Did You Know? Extravasation. Published Online 1 March 2022. Available online: https://resolution.nhs.uk/wp-content/uploads/2023/05/Did-You-Know-Extravasation.pdf (accessed on 9 June 2023).
  244. Yasuda, H.; Yamamoto, R.; Hayashi, Y.; Kotani, Y.; Kishihara, Y.; Kondo, N.; Sekine, K.; Shime, N.; Morikane, K.; Abe, T.; et al. Occurrence and incidence rate of peripheral intravascular catheter-related phlebitis and complications in critically ill patients: A prospective cohort study (AMOR-VENUS study). J. Intensive Care 2021, 9, 3. [Google Scholar] [CrossRef]
  245. Lv, L.; Zhang, J. The incidence and risk of infusion phlebitis with peripheral intravenous catheters: A meta-analysis. J. Vasc. Access 2019, 21, 342–349. [Google Scholar] [CrossRef]
  246. Marsh, N.; Webster, J.; Ullman, A.J.; Mihala, G.; Cooke, M.; Chopra, V.; Rickard, C.M. Peripheral intravenous catheter non-infectious complications in adults: A systematic review and meta-analysis. J. Adv. Nurs. 2020, 76, 3346–3362. [Google Scholar] [CrossRef]
  247. Ballesteros-Peña, S.; Fernández-Aedo, I.; Vallejo-De la Hoz, G.; Tønnesen, J.; Miguelez, C. Identification of potentially irritating intravenous medications. Enfermería Intensiv. 2022, 33, 132–140. [Google Scholar] [CrossRef]
  248. Roethlisberger, D.; Mahler, H.C.; Altenburger, U.; Pappenberger, A. If Euhydric and Isotonic Do Not Work, What Are Acceptable pH and Osmolality for Parenteral Drug Dosage Forms? J. Pharm. Sci. 2017, 106, 446–456. [Google Scholar] [CrossRef]
  249. Piper, R.; Carr, P.J.; Kelsey, L.J.; Bulmer, A.C.; Keogh, S.; Doyle, B.J. The mechanistic causes of peripheral intravenous catheter failure based on a parametric computational study. Sci. Rep. 2018, 8, 3441. [Google Scholar] [CrossRef]
  250. Foor, J.S.; Moureau, N.L.; Gibbons, D.; Gibson, S.M. Investigative study of hemodilution ratio: 4Vs for vein diameter, valve, velocity, and volumetric blood flow as factors for optimal forearm vein selection for intravenous infusion. J. Vasc. Access 2022, 11297298221095287. [Google Scholar] [CrossRef]
  251. Gidaro, A.; Vailati, D.; Gemma, M.; Lugli, F.; Casella, F.; Cogliati, C.; Canelli, A.; Cremonesi, N.; Monolo, D.; Cordio, G.; et al. Retrospective survey from vascular access team Lombardy net in COVID-19 era. J. Vasc. Access 2022, 23, 532–537. [Google Scholar] [CrossRef]
  252. National Infusion and Vascular Access Society (NIVAS). The Benefits of a Nursing Led Vascular Access Service Team. Published June 2022. Available online: https://nivas.org.uk/contentimages/main/NIVAS-White-paper-for-standardisation-of-vascular-access-teams-within-the-NHS_FINAL-27.06.22.pdf (accessed on 12 July 2022).
  253. Carr, P.J.; Moureau, N.L. Specialized Vascular Access Teams. In Vessel Health and Preservation: The Right Approach for Vascular Access; Moureau, N., Ed.; Springer: Cham, Switzerland, 2019. [Google Scholar] [CrossRef]
  254. Barton, A. The benefits of vascular access service teams. Br. J. Nurs. 2022, 31, S3. [Google Scholar] [CrossRef]
  255. Elli, S.; Bellani, G.; Lucchini, A. How to insert a PICC: Practical tips for the intensive care physician. AboutOpen 2021, 9, 11–14. [Google Scholar] [CrossRef]
Figure 1. PRISMA flow diagram of our systematic review.
Figure 1. PRISMA flow diagram of our systematic review.
Antibiotics 12 01338 g001
Table 1. List of antibiotics identified through our systematic review, with their physicochemical characteristics and practical recommendations for intravenous administration. (Phlebitis: Yes = incidence ≥ 5%; No = incidence < 5%; NA: not available; P: preferred; 0.9% NaCl: sodium chloride 0.9%; D5W: dextrose 5% in water). Red flag and vesicant properties: Red: central line preferred; Green: peripheral line preferred.
Table 1. List of antibiotics identified through our systematic review, with their physicochemical characteristics and practical recommendations for intravenous administration. (Phlebitis: Yes = incidence ≥ 5%; No = incidence < 5%; NA: not available; P: preferred; 0.9% NaCl: sodium chloride 0.9%; D5W: dextrose 5% in water). Red flag and vesicant properties: Red: central line preferred; Green: peripheral line preferred.
Antibiotics
NameRed Flag and Vesicant PropertiespHmOsm/LPhlebitis (Incidence ≥ 5%)DiluentDosageInfusion Rate
Amikacin [15,16,17,18,19] 3.5–5.5312–383No0.9% NaCl/D5W15 mg/kgOver 30–60 min
Amoxicillin/clavulanate [20,21] 8.9290–442No0.9% NaCl1–2 g q 8 hAt least 30 min
Ampicillin [22,23] 8–10238–372Yes0.9% NaCl2 g q 4 hOver 15 min
Ampicillin/Sulbactam [24,25] 8–10320–400Yes0.9% NaCl3 g q 6 hOver 30 min
Azithromycin [26,27,28,29,30] 6.4–6.8280–321Yes0.9% NaCl/D5W500 mg q 24 hAt least 60 min
Aztreonam [31,32,33,34] 6315–352No0.9% NaCl/D5W2 g q 6–8 hOver 20–60 min
Cefazolin [23] 6315–352No0.9% NaCl1–2 g q 8 hOver 30 min
Cefepime [35,36,37,38,39] 4–6362–396No0.9% NaCl/D5W1–2 g q 8–12 hOver 30 min
Cefiderocol [40,41] 5.2–5.8NAYes0.9% NaCl2 g q 6–8 hAt least 180 min
Cefmetazole [42] 5.5–7.5300No0.9% NaCl1–2 g q 12 hOver 30–60 min
Cefodizime [43,44] 4.5–6.5280–320No0.9% NaCl/D5W1–3 g q 8–12 hOver 30–60 min
Cefoperazone [45] 6–8265–335No0.9% NaCl/D5W2–4 g/day divided q 12 hOver 30–60 min
Cefotaxime [23,46,47,48,49] 5.2–5.4339–411No0.9% NaCl/D5W2 g q 6–8 hAt least 15 min
Cefotetan [24,50,51] 4–6.5300No0.9% NaCl/D5W1–2 g q 12 hAt least 20 min
Cefoxitin [23,42,50,51,52] 4–7.5240–360No0.9% NaCl/D5W2 g q 6–8 hOver 30–60 min
Ceftaroline [31,32,53,54,55,56,57,58,59,60,61,62] 4.8–6.5265Yes0.9% NaCl/D5W600 mg q 8–12 hAt least 30–60 min
Ceftazidime/Avibactam [17,18,36,63,64,65,66,67,68,69,70,71,72,73] 6.7335–386No0.9% NaCl/D5W2.5 g q 8 hAt least 120 min
Ceftizoxime [46] 5.5–7.5300–360No0.9% NaCl/D5W1–2 g q 8–12 hOver 30–60 min
Ceftriaxone [16,22,29,54,74,75,76,77,78] 6.6–6.7423No0.9% NaCl2 g q 12–24 hAt least 30 min
Ceftolozane/Tazobactam [79] 5.9–6.1307–520No0.9% NaCl/D5W1.5 g q 8 hAt least 60 min
Cefuroxime [30] 5.2–8.5270–357No0.9% NaCl/D5W0.75–1.5 g q 8 hOver 15–60 min
Ciprofloxacin [49,65,66,67,80,81,82,83,84,85,86,87,88,89] 3.3–4.6285Yes0.9% NaCl/D5W400 mg q 8–12 hOver 60 min
Clarithromycin [29,90,91] 5.2–5.4275–301No0.9% NaCl/D5W500 mg q 12 hAt least 60 min
Chloramphenicol [22] 7–8.5600No0.9% NaCl/D5W50–100 mg/kg/dayOver 30–60 min
Trimethoprim/sulfamethoxazole [92] 8.6316–417Yes0.9% NaCl/D5W5–20 mg TMP/kg q 6–12 hOver 60–90 min
Dalbavancin [93,94,95] 4.5246NoD5W1.5 g single doseAt least 30 min
Daptomycin [96,97] 4.7–6.8263–364No0.9% NaCl4–12 mg/kg q 24 hOver 30 min
Delafloxacin [98,99,100,101] NANAYes0.9% NaCl/D5W300 mg q 12 hOver 60 min
Doripenem [102,103,104,105] 4.5–5.5NAYes0.9% NaCl/D5W500 mg q 8 hOver 60 min
Doxycycline [78,106] 1.8–3.3292–310No0.9% NaCl/D5W100 mg q 12 hAt least 60 min
Eravacycline [107] NANAYes0.9% NaCl1 mg/kg q 12 hAt least 60 min
Erythromycin [29,30,108,109] 6.5–7.7266–305Yes0.9% NaCl15–20 mg/kg/dayAt least 60 min
Ertapenem [77,110] 7.5293–395No0.9% NaCl1 g q 24 hAt least 30 min
Fosfomycin [96,111] 7.7501–579NoD5W12–24 g/dayAt least 60 min
Flucloxacilllin [112] 4.5–6.5NANo0.9% NaCl/D5W1–2 g q 4–6 hAt least 20 min
Garenoxacin [97] NANAYesD5W400–600 mg/dayAt least 60 min
Gatifloxacin [76,113,114] 3.5–5.5NAYesD5W400 mg q 24 hAt least 60 min
Gentamicin [69,82,83,84,85,115,116,117] 3–5.5280–318No0.9% NaCl/D5W5 mg/kg/dayOver 30 min
Imipenem/cil/rel [37,40,80,105,118,119,120,121,122] 6.5–7.5310–396YesD5W1.25 q 6 hAt least 30 min
Lefamulin [123,124] 4.5–5.5280–340Yes0.9% NaCl150 mg q 12 hAt least 60 min
Levofloxacin [63,89,103,125,126,127,128,129,21] 3.8–5.8250–323Yes0.9% NaCl/D5W750 mg q 24 hOver 60 min
Linezolid [33,101,130,131,132,133,134,135,136,137,138,139] 4.8283–309No0.9% NaCl/D5W600 mg q 12 hAt least 30–120 min
Meropenem [86,107,111,120,121,140,141] 7.8–7.9301–451No0.9% NaCl/D5W1–2 g q 8 hAt least 30 min
Meropenem/Vaborbactam [142] NANAYes0.9% NaCl/D5W2 g q 8 hAt least 180 min
Metronidazole [37,72,80,88] 5–7310No0.9% NaCl/D5W15 mg/kg then 7.5 mg/kg q 6 hOver 60 min
Moxifloxacin [20,143,144,145] 4.1–4.6270–320No0.9% NaCl/D5W400 mg q 24 hOver 60 min
Netilmicin [146] 6.5–7.5274–306No0.9% NaCl/D5W1.7–2 mg/kg/dayAt least 120 min
Ofloxacin [16] 3.8–5.8252Yes0.9% NaCl/D5W200–400 mg q 12 hAt least 30 min
Oritavancin [147] 3.6–3.8300YesD5W1.2 g single doseOver 60–180 min
Omadacyclin [148] 4.2259–279Yes0.9% NaCl/D5W100–300 mg q 12 hOver 30–60 min
Oxacillin [112] 6–8.5270–398Yes0.9% NaCl/D5W2 g q 4 hOver 30–60 min
Piperacilline/tazobactam [35,81,88,104,122,140,141,149] 6.2–6.7270–355No0.9% NaCl/D5W4.5 g q 6–8 hAt least 30 min
Plazomicin [125,150] 6.5NANo0.9% NaCl15 mg/kg q 24 hAt least 30 min
Rifampicin [151] 7.8–8.8264–300No0.9% NaCl/D5W10 mg/kg/dayAt least 180 min
Teicoplanin [152,153,154,155] 7.5–7.7282–304No0.9% NaCl/D5W6–12 mg/kg q 12–24 hAt least 30 min
Telavancin [156] 4.5300No0.9% NaCl/D5W10 mg/kg/dayAt least 60 min
Tedizolid [131,157] 7.4–8.1298No0.9% NaCl200 mg q 24 hOver 60 min
Ticarcillin/clavulanic acid [116,21] 6–8573Yes0.9% NaCl3.2 g q 8 hAt least 30 min
Tigecycline [45,101,158,159,160] 5–5.4259–296No0.9% NaCl/D5W100 mg/dayOver 30–60 min
Tobramycin [142] 3–6.5290–316No0.9% NaCl/D5W5.1–7 mg/kg/dayOver 30–60 min
Vancomycin [31,55,112,133,139,139,161,162,163]Vesicant drug2.5–4.5235–300Yes0.9% NaCl/D5W15–20 mg/kg q 8–12 hAt least 60 min
Table 2. List of antivirals identified through our systematic review, with their physicochemical characteristics and practical recommendations for intravenous administration. (Phlebitis: Yes = incidence ≥ 5%; No = incidence < 5%; NA: not available; P: preferred; 0.9% NaCl: sodium chloride 0.9%; D5W: dextrose 5% in water). Red flag and vesicant properties: Red: central line preferred.
Table 2. List of antivirals identified through our systematic review, with their physicochemical characteristics and practical recommendations for intravenous administration. (Phlebitis: Yes = incidence ≥ 5%; No = incidence < 5%; NA: not available; P: preferred; 0.9% NaCl: sodium chloride 0.9%; D5W: dextrose 5% in water). Red flag and vesicant properties: Red: central line preferred.
Antibiotics
NameRed Flag and Vesicant PropertiespHmOsm/LPhlebitis (Incidence ≥ 5%)DiluentDosageInfusion Rate
Acyclovir [164,165,166,167,168,169,170,171,172,173,174,175,176]Vesicant drug10.5–11.6285–323Yes0.9% NaCl/D5W5–12.5 mg/kg q 8 hAt least 60 min
Cidofovir [177,178] 7.4–8.5290No0.9% NaCl5 mg/kg once weekly × 2 weeks, then once every other weekOver 60 min
Foscarnet (induction) [179,180,181] 7.4271–315Yes0.9% NaCl/D5W90 mg/kg q 12 hOver 90–120 min
Foscarnet (mainteinance) [179,180,181] 7.4271–315Yes0.9% NaCl/D5W90–120 mg/kg q 24 hOver 120 min
Ganciclovir [182,183] 11290–320Yes0.9% NaCl5 mg/kg q 12 hAt least 60 min
Oseltamivir [184,185] 4NAYes0.9% NaCl100 mg q 12 hAt least 120 min
Remdesivir [186,187,188,189,190,191,192,193,194,195,196,197,198]Vesicant drug3NANA0.9% NaCl200–100 mg/dayAt least 30–120 min
Zanamivir [185,199] 4.5–6.5NANo0.9% NaCl600 mg q 12 hOver 30 min
Table 3. List of antifungals identified through our systematic review, with their physicochemical characteristics and practical recommendations for intravenous administration. (Phlebitis: Yes = incidence ≥ 5%; No = incidence < 5%; NA: not available; P: preferred; 0.9% NaCl: sodium chloride 0.9%; D5W: dextrose 5% in water). Red flag and vesicant properties: Red: central line preferred.
Table 3. List of antifungals identified through our systematic review, with their physicochemical characteristics and practical recommendations for intravenous administration. (Phlebitis: Yes = incidence ≥ 5%; No = incidence < 5%; NA: not available; P: preferred; 0.9% NaCl: sodium chloride 0.9%; D5W: dextrose 5% in water). Red flag and vesicant properties: Red: central line preferred.
Antifungals
NameRed Flag and Vesicant PropertiespHmOsm/LPhlebitis (Incidence ≥ 5%)DiluentDosageInfusion Rate
Amphotericin B [200,201,202,203,204,205,206,207,208,209,210,211,212,213]Vesicant drug5.7256YesD5W0.3–1 mg/kg/dayAt least 240 min
AmphotericinB (liposomal) [200,211,212,213]Vesicant drug5–6280–309YesD5W3–5 mg/kg/dayAt least 120 min
Anidulafungin [214,215] 3.5–5.5209–269Yes0.9% NaCl/D5W200–100 mg q 24 hMax speed: 1.1 mg/min
Caspofungin [208] 6.6256–298Yes0.9% NaCl70–50 mg q 24 hAt least 60 min
Fluconazole [203,204,206,209,215,216,217,218] 4–8299–316No0.9% NaCl100–800 mg/dayOver 60–120 min
Isavuconazole [219,220,221] 1.9–2.6NAYes0.9% NaCl/D5W372 mg q 8 h–24 hOver 60 min
Itraconazole [222,223] 4.8315Yes0.9% NaCl/D5W200 mg q 12 h–24 hAt least 30 min
Micafungin [205,208,217,224] 4.3–5.9281–307Yes0.9% NaCl/D5W100–150 mg q 24 hAt least 60 min
Posaconazole [225,226,227,228] 2.6281–292Yes0.9% NaCl300 mg q 12 h–q 24 hAt least 30 min
Voriconazole [214,229] 4.4–5.5191–242No0.9% NaCl/D5W6–4 mg/kg q 12 hOver 60–180 min
Table 4. Our systematic review identifies antiprotozoals with their physicochemical characteristics and practical recommendations for intravenous administration. (Phlebitis: Yes = incidence ≥ 5%; No = incidence < 5%; NA: not available; P: preferred; 0.9% NaCl: sodium chloride 0.9%; D5W: dextrose 5% in water, Na3PO4: trisodium phosphate). Red flag and vesicant properties: Red: central line preferred; Green: peripheral line preferred.
Table 4. Our systematic review identifies antiprotozoals with their physicochemical characteristics and practical recommendations for intravenous administration. (Phlebitis: Yes = incidence ≥ 5%; No = incidence < 5%; NA: not available; P: preferred; 0.9% NaCl: sodium chloride 0.9%; D5W: dextrose 5% in water, Na3PO4: trisodium phosphate). Red flag and vesicant properties: Red: central line preferred; Green: peripheral line preferred.
Antiprotozoals
NameRed Flag and Vesicant PropertiespHmOsm/LPhlebitis (Incidence ≥ 5%)DiluentDosageInfusion Rate
Artesunate [230] 7.2–7.7305–317No12 mL Na3PO42–4 mg/kg/day1–2 min
Eflornithine [231,232] NANAYes0.9% NaCl100 mg/kg q 6 h60 min
Quinine [233,234,235,236,237,238,239,240,241] 1.5–3NANA0.9% NaCl/D5W20 mg/kg then 10 mg/kg q 8 hOver 240 min
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

Share and Cite

MDPI and ACS Style

Borgonovo, F.; Quici, M.; Gidaro, A.; Giustivi, D.; Cattaneo, D.; Gervasoni, C.; Calloni, M.; Martini, E.; La Cava, L.; Antinori, S.; et al. Physicochemical Characteristics of Antimicrobials and Practical Recommendations for Intravenous Administration: A Systematic Review. Antibiotics 2023, 12, 1338. https://doi.org/10.3390/antibiotics12081338

AMA Style

Borgonovo F, Quici M, Gidaro A, Giustivi D, Cattaneo D, Gervasoni C, Calloni M, Martini E, La Cava L, Antinori S, et al. Physicochemical Characteristics of Antimicrobials and Practical Recommendations for Intravenous Administration: A Systematic Review. Antibiotics. 2023; 12(8):1338. https://doi.org/10.3390/antibiotics12081338

Chicago/Turabian Style

Borgonovo, Fabio, Massimiliano Quici, Antonio Gidaro, Davide Giustivi, Dario Cattaneo, Cristina Gervasoni, Maria Calloni, Elena Martini, Leyla La Cava, Spinello Antinori, and et al. 2023. "Physicochemical Characteristics of Antimicrobials and Practical Recommendations for Intravenous Administration: A Systematic Review" Antibiotics 12, no. 8: 1338. https://doi.org/10.3390/antibiotics12081338

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop