Genetic Profiling and Comparison of Human and Animal Methicillin-Resistant Staphylococcus aureus (MRSA) Isolates from Serbia
Abstract
:1. Introduction
2. Results
2.1. Antibiotic Susceptibility Testing
2.2. Molecular Characterization
3. Discussion
4. Materials and Methods
4.1. Isolates
4.2. Identification of Methicillin-Resistant Staphylococcus aureus
4.3. Antibiotic Susceptibility Testing
4.4. Genotyping of MRSA
4.5. Detection of Virulence and Other Determinants
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Morgan, M. Methicillin-resistant Staphylococcus aureus and animals: Zoonosis or humanosis? J. Antimicrob. Chemother. 2008, 62, 1181–1187. [Google Scholar] [CrossRef] [PubMed]
- International Working Group on the Classification of Staphylococcal Cassette Chromosome Elements (IWG-SCC). Classification of Staphylococcal Cassette Chromosome mec (SCCmec): Guidelines for Reporting Novel SCCmec Elements. Antimicrob. Agents Chemother. 2009, 53, 4961–4967. [Google Scholar] [CrossRef] [PubMed]
- Monecke, S.; Slickers, P.; Gawlik, D.; Müller, E.; Reissig, A.; Ruppelt-Lorz, A.; de Jäckel, S.C.; Feßler, A.T.; Frank, M.; Hotzel, H.; Kadlec, K.; et al. Variability of SCCmec elements in livestock-associated CC398 MRSA. Vet. Microbiol. 2018, 217, 36–46. [Google Scholar] [CrossRef] [PubMed]
- Baig, S.; Johannesen, T.B.; Overballe-Petersen, S.; Larsen, J.; Larsen, A.R.; Stegger, M. Novel SCCmec type XIII (9A) identified in an ST152 methicillin-resistant Staphylococcus aureus. Infect. Genet. Evol. 2018, 61, 74–76. [Google Scholar] [CrossRef]
- Lakhundi, S.; Zhang, K. Methicillin-Resistant Staphylococcus aureus: Molecular Characterization, Evolution, and Epidemiology. Clin. Microbiol. Rev. 2018, 31, e00020-18. [Google Scholar] [CrossRef]
- Köck, R.; Becker, K.; Cookson, B.; van Gemert-Pijnen, J.E.; Harbarth, S.; Kluytmans, J.; Mielke, M.; Peters, G.; Skov, R.L.; Struelens, M.J.; et al. Methicillin-resistant Staphylococcus aureus (MRSA): Burden of disease and control challenges in Europe. Eur. Surveill. 2010, 15, 19688. [Google Scholar] [CrossRef]
- Malachowa, N.; DeLeo, F. Mobile genetic elements of Staphylococcus aureus. Cell. Mol. Life Sci. 2010, 67, 3057–3071. [Google Scholar] [CrossRef] [PubMed]
- Monecke, S.; Coombs, G.; Shore, A.C.; Coleman, D.C.; Akpaka, P.; Borg, M.; Chow, H.; Ip, M.; Jatzwauk, L.; Jonas, D.; et al. A Field Guide to Pandemic, Epidemic and Sporadic Clones of Methicillin-Resistant Staphylococcus aureus. PLoS ONE 2011, 6, e17936. [Google Scholar] [CrossRef]
- McDougal, L.K.; Fosheim, G.E.; Nicholson, A.; Bulens, S.N.; Limbago, B.M.; Shearer, J.E.S.; Summers, A.O.; Patel, J.B. Emergence of Resistance among USA300 Methicillin-Resistant Staphylococcus aureus Isolates Causing Invasive Disease in the United States. Antimicrob. Agents Chemother. 2010, 54, 3804–3811. [Google Scholar] [CrossRef]
- Uhlemann, A.C.; Otto, M.; Lowy, F.D.; DeLeo, F.R. Evolution of community- and healthcare-associated methicillin-resistant Staphylococcus aureus. Infect. Genet. Evol. 2013, 21, 563–574. [Google Scholar] [CrossRef]
- Morris, D.O.; Loeffler, A.; Davis, M.F.; Guardabassi, L.; Weese, J.S. Recommendations for approaches to meticillin-resistant staphylococcal infections of small animals: Diagnosis, therapeutic considerations and preventative measures. Clinical Consensus Guidelines of the World Association for Veterinary Dermatology. Vet. Dermatol. 2017, 28, 304.e69. [Google Scholar] [CrossRef]
- De Backer, S.; Xavier, B.B.; Vanjari, L.; Coppens, J.; Lammens, C.; Vemu, L.; Carevic, B.; Hryniewicz, W.; Jorens, P.; Kumar-Singh, S.; et al. Remarkable geographical variations between India and Europe in carriage of the staphylococcal surface protein-encoding sasX/sesI and in the population structure of methicillin-resistant Staphylococcus aureus belonging to clonal complex 8. Clin. Microbiol. Infect. 2018. [Google Scholar] [CrossRef]
- Cirkovic, I.; Stepanovic, S.; Skov, R.; Trajkovic, J.; Grgurevic, A.; Larsen, A.R. Carriage and genetic diversity of methicillin-resistant Staphylococcus aureus among patients and healthcare workers in a Serbian University Hospital. PLoS ONE 2015, 10, e0127347. [Google Scholar] [CrossRef]
- Cirkovic, I.; Djukic, S.; Carevic, B.; Mazic, N.; Mioljevic, V.; Stepanovic, S. Methicillin-resistant Staphylococcus aureus nasal carriage among hospitalized patients and healthcare workers in the Clinical Centre of Serbia. Arch. Biol Sci. 2014, 66, 87–92. [Google Scholar] [CrossRef]
- Cirkovic, I.; Sørum, M.; Radenkovic, D.; Vlahovic, M.S.; Larsen, A.R. National surveillance reveals findings of Panton-Valentine leukocidin positive meticillin-resistant Staphylococcus aureus in Serbia. J. Med. Microbiol. 2013, 62, 342–344. [Google Scholar] [CrossRef]
- Zutic, M.; Cirkovic, I.; Pavlovic, Lj.; Zutic, J.; Asanin, J.; Radanovic, O.; Pavlovic, N. Occurrence of methicillin-resistant Staphylococcus aureus in milk samples from Serbian cows with subclinical mastitis. Afr. J. Microbiol. Res. 2012, 6, 5887–5889. [Google Scholar] [CrossRef]
- Zutic, M.; Cirkovic, I.; Pavlovic, Lj.; Asanin, J.; Jovanovic, S.; Zutic, J.; Asanin, R. First isolation of methicillin-resistant Staphylococcus aureus from pigs’clinical samples in Serbia. Acta Vet. Brno. 2012, 81, 225–227. [Google Scholar] [CrossRef]
- Velebit, B.; Fetsch, A.; Mirilovic, M.; Teodorovic, V.; Jovanovic, M. MRSA in pigs in Serbia. Vet. Rec. 2010, 167, 183–184. [Google Scholar] [CrossRef]
- Sweeney, M.; Lubbers, B.; Schwarz, S.; Watts, J. Applying definitions for multidrug resistance extensive drug resistance and pandrug resistance to clinically significant livestock and companion animal bacterial pathogens. J. Antimicrob. Chemother. 2018, 73, 1460–1463. [Google Scholar] [CrossRef]
- Van Belkum, A.; Melles, D.C.; Nouwen, J.; van Leeuwen, W.B.; van Wamel, W.; Vos, M.C.; Wertheim, H.F.L.; Verbrugh, H.A. Co-evolutionary aspects of human colonisation and infection by Staphylococcus aureus. Infect. Genet. Evol. 2009, 9, 32–47. [Google Scholar] [CrossRef]
- Bierowiec, K.; Płoneczka-Janeczko, K.; Rypuła, K. Is the Colonisation of Staphylococcus aureus in Pets Associated with Their Close Contact with Owners? PLoS ONE 2016, 11, e0156052. [Google Scholar] [CrossRef]
- Guardabassi, L.; Larsen, J.; Weese, J.S.; Butaye, P.; Battisti, A.; Kluytmans, J.; Lloyd, D.H.; Skov, R.L. Public health impact and antimicrobial selection of meticillin-resistant staphylococci in animals. J. Glob. Antimicrob. Resist. 2013, 1, 55–62. [Google Scholar] [CrossRef]
- Guardabassi, L.; Schwarz, S.; Lloyd, D.H. Pet animals as reservoirs of antimicrobial-resistant bacteria: Review. J. Antimicrob. Chemother. 2004, 54, 321–332. [Google Scholar] [CrossRef] [Green Version]
- Loncaric, I.; Brunthaler, R.; Spergser, J. Suspected goat-to-human transmission of methicillin-resistant Staphylococcus aureus sequence type 398. J. Clin. Microbiol. 2013, 51, 1625–1626. [Google Scholar] [CrossRef]
- Loncaric, I.; Künzel, F.; Klang, A.; Wagner, R.; Licka, T.; Grunert, T.; Feßler, A.T.; Geier-Dömling, D.; Rosengarten, R.; Müller, E.; et al. Carriage of meticillin-resistant staphylococci between humans and animals on a small farm. Vet. Dermatol. 2016, 27, 191-e48. [Google Scholar] [CrossRef]
- Baldan, R.; Rancoita, P.M.V.; Di Serio, C.; Mazzotti, M.; Cichero, P.; Ossi, C.; Biancardi, A.; Nizzero, P.; Saracco, A.; Scarpellini, P.; et al. Epidemic MRSA clone ST22-IV is more resistant to multiple host- and environment-related stresses compared with ST228-I. J. Antimicrob. Chemother. 2015, 70, 757–765. [Google Scholar] [CrossRef]
- Asadollahi, P.; Farahani, N.N.; Mirzaii, M.; Khoramrooz, S.S.; van Belkum, A.; Asadollahi, K.; Dadashi, M.; Darban-Sarokhalil, D. Distribution of the Most Prevalent Spa Types among Clinical Isolates of Methicillin-Resistant and –Susceptible Staphylococcus aureus around the World: A Review. Front. Microbiol. 2018, 9, 163. [Google Scholar] [CrossRef]
- Smyth, D.S.; McDougal, L.K.; Gran, F.W.; Manoharan, A.; Enright, M.C.; Song, J.-H.; de Lencastre, H.; Robinson, D.A. Population Structure of a Hybrid Clonal Group of Methicillin-Resistant Staphylococcus aureus, ST239-MRSA-III. PLoS ONE 2010, 5, e8582. [Google Scholar] [CrossRef]
- Harris, S.R.; Feil, E.J.; Holden, M.T.G.; Quail, M.A.; Nickerson, E.K.; Chantratita, N.; Gardete, S.; Tavares, A.; Day, N.; Lindsay, J.A.; et al. Evolution of MRSA during hospital transmission and intercontinental spread. Science 2010, 327, 469–474. [Google Scholar] [CrossRef]
- Monecke, S.; Slickers, P.; Gawlik, D.; Müller, E.; Reissig, A.; Ruppelt-Lorz, A.; Akpaka, P.E.; Bandt, D.; Bes, M.; Boswihi, S.S.; et al. Molecular Typing of ST239-MRSA-III from Diverse Geographic Locations and the Evolution of the SCCmec III Element during Its Intercontinental Spread. Front. Microbiol. 2018, 9, 1436. [Google Scholar] [CrossRef]
- Stegger, M.; Wirth, T.; Andersen, P.S.; Skov, R.L.; De Grassi, A.; Simões, P.M.; Tristan, A.; Petersen, A.; Aziz, M.; Kiil, K.; et al. Origin and evolution of European community-acquired methicillin-resistant Staphylococcus aureus. MBio 2014, 5, e01044-14. [Google Scholar] [CrossRef]
- Larsen, A.R.; Böcher, S.; Stegger, M.; Goering, R.; Pallesen, L.V.; Skov, R. Epidemiology of European Community-Associated Methicillin-Resistant Staphylococcus aureus Clonal Complex 80 Type IV Strains Isolated in Denmark from 1993 to 2004. J. Clin. Microbiol. 2008, 46, 62–68. [Google Scholar] [CrossRef]
- Budimir, A.; Deurenberg, R.H.; Bosnjak, Z.; Stobberingh, E.E.; Cetkovic, H.; Kalenic, S. A variant of the Southern German clone of methicillin-resistant Staphylococcus aureus is predominant in Croatia. Clin. Microbiol. Infect. 2010, 16, 1077–1083. [Google Scholar] [CrossRef]
- Petersson, A.C.; Olsson-Liljequist, B.; Miorner, H.; Hæggman, S. Evaluating the usefulness of spa typing, in comparison with pulsed-field gel electrophoresis, for epidemiological typing of methicillin-resistant Staphylococcus aureus in a low-prevalence region in Sweden 2000–2004. Clin. Microbiol. Infect. 2010, 16, 456–462. [Google Scholar] [CrossRef]
- Strauß, L.; Stegger, M.; Akpaka, P.E.; Alabi, A.; Breurec, S.; Coombs, G.; Egyir, B.; Larsen, A.R.; Laurent, F.; Monecke, S.; et al. Origin, evolution, and global transmission of community-acquired Staphylococcus aureus ST8. PNAS 2017, 114, E10596–E10604. [Google Scholar] [CrossRef]
- Garofalo, A.; Giai, C.; Lattar, S.; Gardella, N.; Mollerach, M.; Kahl, B.C.; Becker, K.; Prince, A.S.; Sordelli, D.O.; Gómez, M.I. The Length of the Staphylococcus aureus Protein A Polymorphic Region Regulates Inflammation: Impact on Acute and Chronic Infection. J. Infect. Dis. 2012, 206, 81–90. [Google Scholar] [CrossRef]
- Rijnders, M.I.A.; Deurenberg, R.H.; Boumans, M.L.L.; Hoogkamp-Korstanje, J.A.A.; Beisser, P.S.; Stobberingh, E.E. The Antibiotic Resistance Surveillance Group. Population Structure of Staphylococcus aureus Strains Isolated from Intensive Care Unit Patients in The Netherlands over an 11-Year Period (1996 to 2006). J. Clin. Microbiol. 2009, 47, 4090–4095. [Google Scholar] [CrossRef]
- Cuny, C.; Layer, F.; Werner, G.; Harmsen, D.; Daniels-Haardt, I.; Jurke, A.; Mellmann, A.; Witte, W.; Köck, R. State-wide surveillance of antibiotic resistance patterns and spa types of methicillin-resistant Staphylococcus aureus from blood cultures in North Rhine-Westphalia, 2011–2013. Clin. Microbiol. Infect. 2015, 21, 750–757. [Google Scholar] [CrossRef]
- Aqel, A.A.; Alzoubi, H.M.; Vickers, A.; Pichon, B.; Kearns, A.M. Molecular epidemiology of nasal isolates of methicillin-resistant Staphylococcus aureus from Jordan. J. Infect. Public Health 2015, 8, 90–97. [Google Scholar] [CrossRef]
- Udo, E.E.; Boswihi, S.S.; Al-Sweih, N. High prevalence of toxic shock syndrome toxin–producing epidemic methicillin-resistant Staphylococcus aureus 15 (EMRSA-15) strains in Kuwait hospitals. New Microbes New Infect. 2016, 12, 24–30. [Google Scholar] [CrossRef]
- Franco, A.; Hasman, H.; Iurescia, M.; Lorenzetti, R.; Stegger, M.; Pantosti, A.; Feltrin, F.; Ianzano, A.; Porrero, M.C.; Liapi, M.; et al. Molecular characterization of spa type t127, sequence type 1 methicillin-resistant Staphylococcus aureus from pigs. J. Antimicrob. Chemother. 2011, 66, 1231–1235. [Google Scholar] [CrossRef]
- Hopman, J.; Peraza, G.T.; Espinosa, F.; Klaassen, C.; Velázquez, D.; Meis, J.; Voss, A. Methicillin-resistant Staphylococcus aureus without borders: USA300 in Cuba. BMC Proc. 2011, 5 (Suppl. 6), 172. [Google Scholar] [CrossRef]
- Wendlandt, S.; Kadlec, K.; Feßler, A.T.; Monecke, S.; Ehricht, R.; van de Giessen, A.W.; Hengeveld, P.D.; Huijsdens, X.; Schwarz, S.; van Duijkeren, E. Resistance phenotypes and genotypes of methicillin-resistant Staphylococcus aureus isolates from broiler chickens at slaughter and abattoir workers. J. Antimicrob. Chemother. 2013, 68, 2458–2463. [Google Scholar] [CrossRef]
- Butin, M.; Rasigade, J.P.; Martins-Simões, P.; Meugnier, H.; Lemriss, H.; Goering, R.V.; Kearns, A.; Deighton, M.A.; Denis, O.; Ibrahimi, A.; et al. Wide geographical dissemination of the multiresistant Staphylococcus capitis NRCS-A clone in neonatal intensive-care units. Clin. Microbiol. Infect. 2016, 22, 46–52. [Google Scholar] [CrossRef]
- Bartels, M.D.; Boye, K.; Oliveira, D.C.; Worning, P.; Goering, R.; Westh, H. Associations between dru Types and SCCmec Cassettes. PLoS ONE 2013, 8, e61860. [Google Scholar] [CrossRef]
- Goering, R.V.; Morrison, D.; Al-Doori, Z.; Edwards, G.F.S.; Gemmell, C.G. Usefulness of mec-associated direct repeat unit (dru) typing in the epidemiological analysis of highly clonal methicillin-resistant Staphylococcus aureus in Scotland. Clin. Microbiol. Infect. 2008, 14, 964–969. [Google Scholar] [CrossRef]
- Lim, K.T.; Yeo, C.C.; Suhaili, Z.; Thong, K.L. Comparison of Methicillin-Resistant and Methicillin-Sensitive Staphylococcus aureus Strains Isolated from a Tertiary Hospital in Terengganu, Malaysia. Jpn. J. Infect. Dis. 2012, 65, 502–509. [Google Scholar] [CrossRef]
- Shore, A.C.; Rossney, A.S.; Kinnevey, P.M.; Brennan, O.M.; Creamer, E.; Sherlock, O.; Dolan, A.; Cunney, R.; Sullivan, D.J.; Goering, R.V.; et al. Enhanced Discrimination of Highly Clonal ST22-Methicillin-Resistant Staphylococcus aureus IV Isolates Achieved by Combining spa, dru, and Pulsed-Field Gel Electrophoresis Typing Data. J. Clin. Microbiol. 2010, 48, 1839–1852. [Google Scholar] [CrossRef]
- Worthing, K.A.; Abraham, S.; Pang, S.; Coombs, G.W.; Saputra, S.; Jordan, D.; Wong, H.S.; Abraham, R.J.; Trott, D.J.; Norris, J.M. Molecular Characterization of Methicillin-Resistant Staphylococcus aureus Isolated from Australian Animals and Veterinarians. Microb. Drug. Resist. 2018, 24, 203–212. [Google Scholar] [CrossRef]
- Feßler, A.; Scott, C.; Kadlec, K.; Ehricht, R.; Monecke, S.; Schwarz, S. Characterization of methicillin-resistant Staphylococcus aureus ST398 from cases of bovine mastitis. J. Antimicrob. Chemother. 2010, 65, 619–625. [Google Scholar] [CrossRef]
- Ionescu, R.; Mediavilla, J.R.; Chen, L.; Grigorescu, D.O.; Idomir, M.; Kreiswirth, B.N.; Roberts, R.B. Molecular Characterization and Antibiotic Susceptibility of Staphylococcus aureus from a Multidisciplinary Hospital in Romania. Microb. Drug. Resist. 2010, 16, 263–272. [Google Scholar] [CrossRef]
- Chen, L.; Mediavilla, J.R.; Smyth, D.S.; Chavda, K.D.; Ionescu, R.; Roberts, R.B.; Robinson, D.A.; Kreiswirth, B.N. Identification of a Novel Transposon (Tn6072) and a Truncated Staphylococcal Cassette Chromosome mec Element in Methicillin-Resistant Staphylococcus aureus ST239. Antimicrob. Agents Chemother. 2010, 54, 3347–3354. [Google Scholar] [CrossRef]
- Strommenger, B.; Layer, F.; Werner, G. Staphylococcus aureus and methicillin-resistant Staphylococcus aureus in workers in the food industry. In Staphylococcus aureus, 1st ed.; Fetsch, A., Ed.; Academic Press: Cambridge, MA, USA, 2018; pp. 163–188. [Google Scholar]
- Hennekinne, J.A. Staphylococcus aureus as a leading cause of foodborne outbreaks worldwide. In Staphylococcus aureus, 1st ed.; Fetsch, A., Ed.; Academic Press: Cambridge, MA, USA, 2018; pp. 129–146. [Google Scholar]
- Smyth, D.S.; Hartigan, P.J.; Meaney, W.J.; Fitzgerald, J.R.; Deobald, C.F.; Bohach, G.A.; Smyth, C.J. Superantigen genes encoded by the egc cluster and SaPIbov are predominant among Staphylococcus aureus isolates from cows, goats, sheep, rabbits and poultry. J. Med. Microbiol. 2005, 54, 401–411. [Google Scholar] [CrossRef]
- Couto, N.; Belas, A.; Kadlec, K.; Schwarz, S.; Pomba, C. Clonal diversity, virulence patterns and antimicrobial and biocide susceptibility among human, animal and environmental MRSA in Portugal. J. Antimicrob. Chemother. 2015, 70, 2483–2487. [Google Scholar] [CrossRef] [Green Version]
- Zarazaga, M.; Gómez, P.; Ceballos, S.; Torres, C. Molecular epidemiology of Staphylococcus aureus lineages in the animal-human interface. In Staphylococcus aureus, 1st ed.; Fetsch, A., Ed.; Academic Press: Cambridge, MA, USA, 2018; pp. 189–214. [Google Scholar]
- Clinical and Laboratory Standards Institute. Performance Standards for Antimicrobial Susceptibility Testing, 26th ed.; CLSI supplement M100S; CLSI: Wayne, PA, USA, 2016; pp. 74–80. [Google Scholar]
- Loncaric, I.; Kübber-Heiss, A.; Posautz, A.; Stalder, G.L.; Hoffmann, D.; Rosengarten, R.; Walzer, C. Characterization of methicillin-resistant Staphylococcus spp. carrying the mecC gene, isolated from wildlife. J. Antimicrob. Chemother. 2013, 68, 2222–2225. [Google Scholar] [CrossRef]
- Aarestrup, F.M.; AgersŁ, Y.; Ahrens, P.; JŁrgensen, J.C.; Madsen, M.; Jensen, L.B. Antimicrobial susceptibility and presence of resistance genes in staphylococci from poultry. Vet. Microbiol. 2000, 74, 353–364. [Google Scholar] [CrossRef]
- Martineau, F.; Picard, F.J.; Lansac, N.; Ménard, C.; Roy, P.H.; Ouellette, M.; Bergeron, M.G. Correlation between the resistance genotype determined by multiplex PCR assays and the antibiotic susceptibility patterns of Staphylococcus aureus and Staphylococcus Antimicrob. Agents Chemother. 2000, 44, 231–238. [Google Scholar] [CrossRef]
- Kehrenberg, C.; Schwarz, S. Distribution of florfenicol resistance genes fexA and cfr among chloramphenicol-resistant Staphylococcus isolates. Antimicrob. Agents Chemother. 2006, 50, 1156–1163. [Google Scholar] [CrossRef]
- Schnellmann, C.; Gerber, V.; Rossano, A.; Jaquier, V.; Panchaud, Y.; Doherr, M.G.; Thomann, A.; Straub, R.; Perreten, V. Presence of new mecA and mph(C) variants conferring antibiotic resistance in Staphylococcus spp. isolated from the skin of horses before and after clinic admission. J. Clin. Microbiol. 2006, 44, 4444–4454. [Google Scholar] [CrossRef]
- Hauschild, T.; Vukovic, D.; Dakić, I.; Ježek, P.; Djukić, S.; Dimitrijević, V.; Stepanović, S.; Schwarz, S. Aminoglycoside Resistance in Members of the Staphylococcus sciuri Group. Microb. Drug Resist. 2007, 13, 77–84. [Google Scholar] [CrossRef]
- Argudín, M.A.; Tenhagen, B.A.; Fetsch, A.; Sachsenröder, J.; Käsbohrer, A.; Schroeter, A.; Hammerl, J.A.; Hertwig, S.; Helmuth, R.; Bräunig, J.; et al. Virulence and resistance determinants of German Staphylococcus aureus ST398 isolates from nonhuman sources. Appl. Environ. Microbiol. 2011, 77, 3052–3060. [Google Scholar] [CrossRef]
- Shittu, A.O.; Okon, K.; Adesida, S.; Oyedara, O.; Witte, W.; Strommenger, B.; Layer, F.; Nübel, U. Antibiotic resistance and molecular epidemiology of Staphylococcus aureus in Nigeria. BMC Microbiol. 2011, 11, 92. [Google Scholar] [CrossRef]
- Loncaric, I.; Künzel, F.; Licka, T.; Simhofer, H.; Spergser, J.; Rosengarten, R. Identification and characterization of methicillin-resistant Staphylococcus aureus (MRSA) from Austrian companion animals and horses. Vet. Microbiol. 2014, 168, 381–387. [Google Scholar] [CrossRef]
- Schauer, B.; Krametter-Frötscher, R.; Knauer, F.; Ehricht, R.; Monecke, S.; Feßler, A.T.; Schwarz, S.; Grunert, T.; Spergser, J.; Loncaric, I. Diversity of methicillin-resistant Staphylococcus aureus (MRSA) isolated from Austrian ruminants and New World camelids. Vet. Microbiol. 2018, 215, 77–82. [Google Scholar] [CrossRef]
- Feßler, A.T.; Li, J.; Kadlec, K.; Wang, Y.; Schwarz, S. Antimicrobial resistance properties of Staphylococcus aureus. In Staphylococcus aureus, 1st ed.; Fetsch, A., Ed.; Academic Press: Cambridge, MA, USA, 2018; pp. 57–85. [Google Scholar]
- Francisco, A.P.; Vaz, C.; Monteiro, P.T.; Melo-Cristino, J.; Ramirez, M.; Carriço, J.A. PHYLOViZ: Phylogenetic inference and data visualization for sequence based typing methods. BMC Bioinform. 2012, 13, 87. [Google Scholar] [CrossRef]
- Mehrotra, M.; Wang, G.; Johnson, W.M. Multiplex PCR for detection of genes for Staphylococcus aureus enterotoxins, exfoliative toxins, toxic shock syndrome toxin 1, and methicillin resistance. J. Clin. Microbiol. 2000, 38, 1032–1035. [Google Scholar]
- Van Wamel, W.J.; Rooijakkers, S.H.; Ruyken, M.; van Kessel, K.P.; van Strijp, J.A. The innate immune modulators staphylococcal complement inhibitor and chemotaxis inhibitory protein of Staphylococcus aureus are located on beta-hemolysin-converting bacteriophages. J. Bacteriol. 2006, 188, 1310–1315. [Google Scholar] [CrossRef]
- Peacock, S.J.; Moore, C.E.; Justice, A.; Kantzanou, M.; Story, L.; Mackie, K.; O’Neill, G.; Day, N.P. Virulent combinations of adhesin and toxin genes in natural populations of Staphylococcus aureus. Infect. Immun. 2002, 70, 4987–4996. [Google Scholar] [CrossRef]
Antimicrobial Resistance | Virulence Factors | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
ID | Host | Clinical Site | spa | dru | SCCmec | MLVA * | ST | CC | Phenotype ** | Genes Detected | IEC *** | Miscellaneous Genes **** | |
S264 | Cat | Skin swab | t127 | dt7o | NT | 15 | ST1 | CC1 | β-Lactams, CIP, GEN, RIF | mecA, aacA-aphD, ant(6’)-la | seg | sak, sea, scn, hlb | fnbA, clfA, clfB, icaA |
NN | Human | Wound swab | t223 | nt | IV | 18 | ST22 | CC22 | β-Lactams | mecA | seg, sei, tsst-1, PVL | chp, sak, scn, hlb | fnbA, clfB |
S164 | Human | Sputum | t037 | dt10a | NT | 9 | ST152 | CC152 | β-Lactams, CIP, GEN, TET, CHL, ERY, CLI | mecA,aacA-aphD, ant(6′)-Ia, erm(C), tet(K), tet(M), catpC221 | sea | sak, sea, scn, hlb | fnbA, clfA, clfB, icaA |
S239 | Human | Nipple discharge | t037 | dt11c | III | 5 | ST239 | CC239 | β-Lactams, CIP, GEN, ERY, CLI | mecA, aacA-aphD, ant(6′)-Ia, erm(C), tet(M) | sea | sak, sea, scn, hlb | fnbA, clfA, clfB, cna, icaA |
S241 | Human | Wound swab | t037 | dt11c | III + SCCmercury | 6 | ST239 | CC239 | β-Lactams, CIP, GEN, TET, ERY, CHL, CLI | mecA, aacA-aphD, ant(6′)-Ia, erm(C), tet(K), tet(M), fexA, catpC221 | sea | sak, sea, scn, hlb | fnbA, clfA, clfB, cna, icaA |
S245 | Human | Wound swab | t037 | dt11c | III + SCCmercury | 7 | ST239 | CC239 | β-Lactams, CIP, GEN, AMK, TET, CHL | mecA, aacA-aphD, ant(6′)-Ia, tet(K), tet(M), fexA, catpC221 | sea | sak, sea, scn, hlb | fnbA, clfA, clfB, cna, icaA |
S246 | Human | Wound swab | t037 | dt11c | III | 8 | ne | CC239 | β-Lactams, CIP, GEN, ERY, CLI | mecA, aacA-aphD, ant(6′)-Ia, erm(C), tet(M) | sea | sak, sea, scn, hlb | fnbA, clfA, clfB, cna, icaA |
S255 | Human | Wound swab | t037 | dt11c | III | 8 | ne | CC239 | β-Lactams, CIP, GEN, ERY, CLI | mecA, aacA-aphD, ant(6′)-Ia, erm(C), tet(M) | sea | sak, sea, scn, hlb | fnbA, clfA, clfB, cna, icaA |
S257 | Human | Sputum | t037 | dt11c | III | 8 | ST239 | CC239 | β-Lactams, CIP, GEN, ERY, CLI | mecA, aacA-aphD, ant(6′)-Ia, erm(C) | sea | sak, sea, scn, hlb | fnbA, clfA, clfB, cna, icaA |
S399 | Human | Wound swab | t037 | dr11c | NT | 10 | ST239 | CC239 | β-Lactams, CIP, GEN | mecA, aacA-aphD, ant(6′)-Ia, tet(M) | sea, sei | sak, sep, scn, hlb | fnbA, clfA, clfB, cna, icaA |
S401 | Human | Wound swab | t037 | dr11c | NT | 11 | ne | CC239 | β-Lactams, CIP, GEN | mecA, aacA-aphD, ant(6′)-Ia, tet(M) | sea | sak, sep, scn, hlb | fnbA, clfA, clfB, cna, icaA |
S473 | Human | Wound swab | t037 | dt11c | III | 11 | ne | CC239 | β-Lactams, CIP, GEN | mecA, aacA-aphD, ant(6′)-Ia, tet(M) | sea | sak, sea, scn, hlb | fnbA, clfB, cna |
S474 | Human | Wound swab | t038 | dt11c | III | 11 | ne | CC239 | β-Lactams, CIP, GEN, ERY, CLI | mecA, aacA-aphD, ant(6′)-Ia, erm(C), tet(M) | sea, sei | sak, sea, scn, hlb | fnbA, clfB, cna |
S475 | Human | Wound swab | t039 | dt11c | III | 12 | ST239 | CC239 | β-Lactams, CIP, GEN, ERY, CLI | mecA, aacA-aphD, ant(6′)-Ia erm(C), tet(M) | - | sak, scn, hlb | fnbA, clfB, cna |
S476 | Human | Wound swab | t040 | dt11c | III | 11 | ne | CC239 | β-Lactams, CIP, GEN | mecA, aacA-aphD, ant(6′)-Ia, tet(M) | sea | sak, sea, scn, hlb | fnbA, clfB, cna |
S478 | Human | Wound swab | t041 | dt11c | III | 11 | ST239 | CC239 | β-Lactams, CIP, GEN, ERY, CLI | mecA, aacA-aphD, ant(6′)-Ia, erm(C), tet(M) | sea | sak, sea, scn, hlb | fnbA, clfB, cna |
S386 | Dog | Eye swab | t2029 | dt11c | III | 17 | ST239 | CC239 | β-Lactams, CIP, TET, ERY, CLI (inducible) | mecA, ant(6′)-Ia, erm(C), tet(K), tet(M) | sea | sak, sea, scn, hlb | fnbA, clfA, clfB, cna, icaA |
S400 | Human | Wound swab | t4789 | dr11c | NT | 22 | ne | CC239 | β-Lactams, CIP, GEN, ERY, CLI | mecA, aacA-aphD, ant(6′)-Ia, erm(C), tet(M) | sea, sei | sak, sep, scn, hlb | fnbA, clfA, clfB, cna, icaA |
S402 | Human | Wound swab | t4789 | dr11c | III | 22 | ST239 | CC239 | β-Lactams, CIP, GEN, ERY, CLI | mecA, aacA-aphD, ant(6′)-Ia, erm(C), tet(M) | sea | sak, sep, scn | fnbA, clfA, clfB, cna, icaA |
S403 | Human | Wound swab | t4789 | dr11c | III | 23 | ST239 | CC239 | β-Lactams, CIP, GEN | mecA, aacA-aphD, ant(6′)-Ia, tet(M) | sea | sak, sep, scn, hlb | fnbA, clfA, clfB, cna, icaA |
S480 | Human | Wound swab | t4789 | dt11c | NT | 22 | ne | CC239 | β-Lactams, CIP, GEN, ERY, CLI | mecA, aacA-aphD, ant(6′)-Ia, erm(C), tet(M) | sea | sak, scn, hlb | clfB, cna |
S479 | Human | Wound swab | t487 | dt11c | III | 25 | ST239 | CC239 | β-Lactams, CIP, GEN, ERY, CLI | mecA, aacA-aphD, ant(6′)-Ia, erm(C), tet(M) | sea | sak, sea, scn, hlb | fnbA, clfB, cna |
S244a | Human | Wound swab | t685 | dt10a | NT | 26 | ST938 | CC30 | β-Lactams, ERY, CLI | mecA, ant(6′)-Ia, erm(A), erm(B) | seg, sei, tsst-1 | sak, scn, hlb | fnbA, clfA, clfB, icaA |
S244b | Human | Wound swab | t685 | dt10a | IV | 27 | ST938 | CC30 | β-Lactams, ERY, CLI | mecA, erm(A), erm(B) | seg, sei, tsst-1 | sak, scn, hlb | fnbA, clfA, clfB, icaA |
S398 | Dog | Skin swab | t487 | dt10g | NT | 24 | ST45 | CC45 | β-Lactams | mecA, ant(6′)-Ia | seg, sei | chp, sak, scn | fnbA, clfA, clfB, icaA |
S395 | Human | Wound swab | nt | nt | NT | 1 | ST111 | CC5 | β-Lactams, CIP, GEN, ERY, CLI, RIF | mecA, aacA-aphD, ant(6’)-la, erm(A), erm(B) | sea | sak, scn, hlb | fnbA, clfB, icaA |
S258 | Human | Wound swab | t041 | dt8h | I | 13 | ST111 | CC5 | β-Lactams, CIP, GEN, ERY, CLI | mecA, aacA-aphD, ant(6′)-Ia, erm(A), erm(B), tet(M) | sea, seg, sei | sak, sea, scn, hlb | fnbA, clfB, icaA |
S396 | Human | Nose swab | t12886 | dt10a | IV | 16 | ST5 | CC5 | β-Lactams, ERY, CLI (inducible) | erm(A), erm(B) | sea, sed, seg, sei | chp, sak, scn, hlb | fnbA, clfA, clfB, icaA |
MRS1 | Dog | Wound swab | t242 | dt10a | NT | 19 | CC5 | β-Lactams, GEN | aacA-aphD | seg, sei | chp, sak, sea, scn, hlb | fnbA, clfA, clfB, icaA | |
MRS2 | Dog | Wound swab | t242 | dt10a | NT | 19 | ST5 | CC5 | β-Lactams, GEN | aacA-aphD | seg, sei | chp, sak, scn, hlb | fnbA, clfA, clfB, icaA |
MRS3 | Dog | Ear swab | t242 | dt10a | V | 20 | ST5 | CC5 | β-Lactams | aacA-aphD | seg, sei | chp, sak, scn, hlb | fnbA, clfB |
S422 | Human | Ear swab | t024 | dt7f | IV | 2 | ST8 | CC8 | β-Lactams, GEN, ERY, CLI (inducible) | aacA-aphD, ant(6′)-Ia, erm(C) | sej | sak, scn, hlb | fnbA, clfA, clfB |
S423 | Human | Nose swab | t044 | dt10 | IV | 14 | ST80 | CC80 | β-Lactams, TET | aacA-aphD, ant(6′)-Ia, tet(K) | PVL | sak, scn, hlb | fnbA, clfA, clfB, icaA |
S256 | Human | Wound swab | t030 | dt8a | III + SCCmercury | 3 | ST444 | _ | β-Lactams, CIP, GEN, TET, ERY, CLI, RIF | aacA-aphD, ant(6′)-Ia, erm(A), erm(B), erm(C), tet(M) | sea | sak, sea, scn, hlb | fnbA, clfA, clfB, cna, icaA, qacAB |
S195 | Human | Skin swab | t030 | dt8a | III | 4 | ST444 | _ | β-Lactams, CIP, GEN, TET, CHL, ERY, CLI, SXT | aacA-aphD, erm(A), erm(B), erm(C), tet(M), catpC221 | sea | sak, sea, scn, hlb | fnbA, clfA, clfB, cna, icaA |
S394 | Human | Wound swab | t4272 | dt10q | NT | 21 | ST5907 | _ | β-Lactams, GEN, ERY, CLI | aacA-aphD, erm(C) | _ | sak, sea, scn, hlb | fnbA, clfA, clfB, icaA, arsA |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Asanin, J.; Misic, D.; Aksentijevic, K.; Tambur, Z.; Rakonjac, B.; Kovacevic, I.; Spergser, J.; Loncaric, I. Genetic Profiling and Comparison of Human and Animal Methicillin-Resistant Staphylococcus aureus (MRSA) Isolates from Serbia. Antibiotics 2019, 8, 26. https://doi.org/10.3390/antibiotics8010026
Asanin J, Misic D, Aksentijevic K, Tambur Z, Rakonjac B, Kovacevic I, Spergser J, Loncaric I. Genetic Profiling and Comparison of Human and Animal Methicillin-Resistant Staphylococcus aureus (MRSA) Isolates from Serbia. Antibiotics. 2019; 8(1):26. https://doi.org/10.3390/antibiotics8010026
Chicago/Turabian StyleAsanin, Jelena, Dusan Misic, Ksenija Aksentijevic, Zoran Tambur, Bojan Rakonjac, Ivana Kovacevic, Joachim Spergser, and Igor Loncaric. 2019. "Genetic Profiling and Comparison of Human and Animal Methicillin-Resistant Staphylococcus aureus (MRSA) Isolates from Serbia" Antibiotics 8, no. 1: 26. https://doi.org/10.3390/antibiotics8010026
APA StyleAsanin, J., Misic, D., Aksentijevic, K., Tambur, Z., Rakonjac, B., Kovacevic, I., Spergser, J., & Loncaric, I. (2019). Genetic Profiling and Comparison of Human and Animal Methicillin-Resistant Staphylococcus aureus (MRSA) Isolates from Serbia. Antibiotics, 8(1), 26. https://doi.org/10.3390/antibiotics8010026