Effect of the Solvent Type on the Colloidal Stability and the Degree of Condensation of Silica Sols Stabilized by Amphiphilic Urethane Acrylate and the Properties of Their Coating Films
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Synthesis of UAN 1000-1450
2.3. Preparation of SiO2 Organic-Inorganic Hybrid Sols
2.4. Preparation of O-I SiO2 Hybrid Coating Films on Glass Substrate
2.5. Characterization
3. Results and Discussion
3.1. Effect of the Solvent Type on the Colloidal Property of Silica Sols
3.1.1. Change in the Particle Size with the Type of Solvent Used in the Preparation of the Poly(UAN) Solution
3.1.2. Change in the Particle Size with the Type of Solvent Mixtures Used in the Preparation of Silica Sols in the Presence of Poly(UAN) Solutions
3.2. Effect of the Solvent Type on the Reaction in the Preparation of Silica Sols
3.2.1. Effect of the Solvent Type on the Degree of Condensation (DOC) Reaction of TEOS
3.2.2. Mechanical Strength of Coated Films Formed by Various Silica Sols Prepared Using Different Solvent Mixtures
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Karg, M.; Lu, Y.; Carbó-Argibay, E.; Pastoriza-Santos, I.; Pérez-Juste, J.; Liz-Marzán, L.M.; Hellweg, T. Multiresponsive Hybrid Colloids Based on Gold Nanorods and Poly(NIPAM-co-allylacetic acid) Microgels: Temperature- and pH-Tunable Plasmon Resonance. Langmuir 2009, 25, 3163–3167. [Google Scholar] [CrossRef]
- Willander, M.; Nur, O.; Zaman, S.; Zainelabdin, A.; Bano, N.; Hussain, I. Zinc oxide nanorods/polymer hybrid heterojunctions for white light emitting diodes. J. Phys. D Appl. Phys. 2011, 44, 224017. [Google Scholar] [CrossRef]
- Wei, Y.-X.; Deng, C.; Wei, W.-C.; Chen, H.; Wang, Y.-Z. Hybrid Nanorods Composed of Titanium, Silicon, and Organophosphorus as Additives for Flame-Retardant Polycarbonate. ACS Appl. Nano Mater. 2019, 2, 4859–4868. [Google Scholar] [CrossRef]
- Liu, B.-T.; Hung, T.-Y.; Gorji, N.E.; Mosavi, A.H. Fabrication and characterization of Cesium-doped Tungstate nanorods for Near-Infrared light absorption in dye sensitized solar cells. Results Phys. 2021, 29, 104804. [Google Scholar] [CrossRef]
- Chen, W.; Wu, W.; Pan, Z.; Wu, X.; Zhang, H. PEG400-assisted synthesis of oxygen-incorporated MoS2 ultrathin nanosheets supported on reduced graphene oxide for sodium ion batteries. J. Alloys Compd. 2018, 763, 257–266. [Google Scholar] [CrossRef]
- Islam, S.; Bidin, N.; Riaz, S.; Naseem, S.; Marsin, F.M. Correlation between structural and optical properties of surfactant assisted sol–gel based mesoporous SiO2–TiO2 hybrid nanoparticles for pH sensing/optochemical sensor. Sens. Actuators B Chem. 2016, 225, 66–73. [Google Scholar] [CrossRef]
- Luo, M.; He, Y.; Chen, Q.; Li, C. Synthesis and Structural and Electrical Characteristics of Polypyrrole Nanotube/TiO2 Hybrid Composites. J. Macromol. Sci. Part B 2010, 49, 419–428. [Google Scholar] [CrossRef]
- Lee, H.; Kim, S.; Kim, W.; Kang, S.-M.; Kim, Y.H.; Jang, J.; Han, S.M.; Bae, B.-S. Highly transparent and resilient urethane-methacrylate siloxane composite for hard, yet stretchable protective coating. Prog. Org. Coat. 2022, 162, 106567. [Google Scholar] [CrossRef]
- Ahmad, S.; Zafar, F.; Sharmin, E.; Garg, N.; Kashif, M. Synthesis and characterization of corrosion protective polyurethanefattyamide/silica hybrid coating material. Prog. Org. Coat. 2012, 73, 112–117. [Google Scholar] [CrossRef]
- Li, P.; Guo, W.; Lu, Z.; Tian, J.; Li, X.; Wang, H. UV-responsive single-microcapsule self-healing material with enhanced UV-shielding SiO2/ZnO hybrid shell for potential application in space coatings. Prog. Org. Coat. 2021, 151, 106046. [Google Scholar] [CrossRef]
- Eshaghi, A. Transparent hard self-cleaning nano-hybrid coating on polymeric substrate. Prog. Org. Coat. 2019, 128, 120–126. [Google Scholar] [CrossRef]
- Škoc, M.S.; Macan, J.; Pezelj, E. Modification of polyurethane-coated fabrics by sol–gel thin films. J. Appl. Polym. Sci. 2014, 131, 39914. [Google Scholar] [CrossRef]
- Bail, N.L.; Benayoun, S.; Toury, B. Mechanical properties of sol–gel coatings on polycarbonate: A review. J. Sol-Gel Sci. Technol. 2015, 75, 710–719. [Google Scholar] [CrossRef]
- Figueira, R.B.; Silva, C.J.R.; Pereira, E.V. Organic–inorganic hybrid sol–gel coatings for metal corrosion protection: A review of recent progress. J. Coat. Technol. Res. 2015, 12, 1–35. [Google Scholar] [CrossRef]
- Kim, N.; Li, X.; Kim, S.H.; Kim, J. Colloidally stable organic–inorganic hybrid nanoparticles prepared using alkoxysilane-functionalized amphiphilic polymer precursors and mechanical properties of their cured coating film. J. Ind. Eng. Chem. 2018, 68, 209–219. [Google Scholar] [CrossRef]
- Bari, A.H.; Jundale, R.B.; Kulkarni, A.A. Understanding the role of solvent properties on reaction kinetics for synthesis of silica nanoparticles. Chem. Eng. J. 2020, 398, 125427. [Google Scholar] [CrossRef]
- Zerda, T.W.; Hoang, G. Effect of solvents on the hydrolysis reaction of tetramethyl orthosilicate. Chem. Mater. 1990, 2, 372–376. [Google Scholar] [CrossRef]
- Jiang, H.; Zheng, Z.; Li, Z.; Wang, X. Effects of Temperature and Solvent on the Hydrolysis of Alkoxysilane under Alkaline Conditions. Ind. Eng. Chem. Res. 2006, 45, 8617–8622. [Google Scholar] [CrossRef]
- Artaki, I.; Zerda, T.W.; Jonas, J. Solvent effects on the condensation stage of the sol-gel process. J. Non-Cryst. Solids 1986, 81, 381–395. [Google Scholar] [CrossRef]
- Mandić, V.; Kurajica, S. The influence of solvents on sol–gel derived calcium aluminate. Mater. Sci. Semicond. Process. 2015, 38, 306–313. [Google Scholar] [CrossRef]
- Bernards, T.N.M.; van Bommel, M.J.; Boonstra, A.H. Hydrolysis-condensation processes of the tetra-alkoxysilanes TPOS, TEOS and TMOS in some alcoholic solvents. J. Non-Cryst. Solids 1991, 134, 1–13. [Google Scholar] [CrossRef]
- Kim, J.-Y.; Shin, D.-H.; Ihn, K.-J.; Suh, K.-D. Amphiphilic Polyurethane-co-polystyrene Network Films Containing Silver Nanoparticles. J. Ind. Eng. Chem. 2003, 9, 37–44. [Google Scholar]
- Kumar, L.; Horechyy, A.; Bittrich, E.; Nandan, B.; Uhlmann, P.; Fery, A. Amphiphilic Block Copolymer Micelles in Selective Solvents: The Effect of Solvent Selectivity on Micelle Formation. Polymers 2019, 11, 1882. [Google Scholar] [CrossRef] [PubMed]
- Mandal, P.; Mukherjee, M.; Shunmugam, R. Effect of the aqueous-organic solvent mixtures upon super-aggregation of chitosan. J. Polym. Res. 2023, 30, 9. [Google Scholar] [CrossRef]
- Brinker, C.J.; Scherer, G.W. (Eds.) CHAPTER 3—Hydrolysis and Condensation II: Silicates. In Sol-Gel Science; Academic Press: San Diego, CA, USA, 1990; pp. 96–233. [Google Scholar] [CrossRef]
- Mohseni, M.; Bastani, S.; Jannesari, A. Influence of silane structure on curing behavior and surface properties of sol–gel based UV-curable organic–inorganic hybrid coatings. Prog. Org. Coat. 2014, 77, 1191–1199. [Google Scholar] [CrossRef]
- Glaser, R.H.; Wilkes, G.L.; Bronnimann, C.E. Solid-state 29Si NMR of TEOS-based multifunctional sol-gel materials. J. Non-Cryst. Solids 1989, 113, 73–87. [Google Scholar] [CrossRef]
- Brinker, C.J. Hydrolysis and condensation of silicates: Effects on structure. J. Non-Cryst. Solids 1988, 100, 31–50. [Google Scholar] [CrossRef]
UT10 Sols | Solvent of Group A | Weight of Solvent of Group A (g) | Solvent of Group B | Weight of Solvent of Group B (g) | Weight of UAN 1000-1450 (g) | Weight of TEOS (g) | Weight of AIBN (g) | Weight of 0.1 M HCl(aq) (g) |
---|---|---|---|---|---|---|---|---|
UT10 (M-E) | M | 30 | E | 30 | 6 | 60 | 0.07 | 15.5 |
UT10 (C-E) | C | 30 | E | 30 | 6 | 60 | 0.07 | 15.5 |
UT10 (E-E) | E | 30 | E | 30 | 6 | 60 | 0.07 | 15.5 |
UT10 (P-E) | P | 30 | E | 30 | 6 | 60 | 0.07 | 15.5 |
UT10 (M-P) | M | 30 | P | 30 | 6 | 60 | 0.07 | 15.5 |
UT10 (C-P) | C | 30 | P | 30 | 6 | 60 | 0.07 | 15.5 |
UT10 (E-P) | E | 30 | P | 30 | 6 | 60 | 0.07 | 15.5 |
UT10 (P-P) | P | 30 | P | 30 | 6 | 60 | 0.07 | 15.5 |
Solvent Used in Polymerization of UAN | Average Nanoparticle Size of Poly(UAN) (d·nm) | Polydispersity (PDI) |
---|---|---|
P | 12.54 ± 1.67 | 0.548 |
C | 14.68 ± 0.4038 | 0.627 |
M | 19.06 ± 1.967 | 0.395 |
E | 48.06 ± 3.946 | 0.476 |
Solvent Used in Polymerization of UAN | Solvent Used in Hydrolysis of TEOS | Size of SiO2 Nanoparticles after Preparation (nm) | PDI of SiO2 Nanoparticles after Preparation | Size of SiO2 Nanoparticles 4 Months after Preparation (nm) | PDI of SiO2 Nanoparticles 4 Months after Preparation |
---|---|---|---|---|---|
P | P | 11.72 ± 0.04 | 0.357 | 12.09 ± 0.49 | 0.549 |
E | 14.56 ± 0.46 | 0.503 | 20.10 ± 0.59 | 0.385 | |
C | P | 15.85 ± 0.03 | 0.403 | 15.29 ± 0.06 | 0.5 |
E | 19.28 ± 0.1 | 0.455 | 21.84 ± 0.08 | 0.447 | |
M | P | 16.05 ± 0.07 | 0.283 | 17.75 ± 0.3 | 0.52 |
E | 22.13 ± 0.17 | 0.294 | 22.93 ± 0.04 | 0.27 | |
E | P | 16.99 ± 0.06 | 0.493 | 48.1 ± 3.94 | 0.793 |
E | 33.8 ± 0.7 | 0.318 | 129.3 ± 11.5 | 0.527 |
Samples | Chemical Shift of Peak (ppm) | Relative Peak Intensity (%) | DOC (%) | ||||||
---|---|---|---|---|---|---|---|---|---|
Q1 | Q2 | Q3 | Q4 | Q1 | Q2 | Q3 | Q4 | ||
UT10 (M-E) | --- | −93.31 | −100.71 | −109.35 | 0 | 20.7 | 58.74 | 20.56 | 75.11 |
UT10 (E-E) | --- | −91.02 | −100.47 | −110.78 | 0 | 24.15 | 68.74 | 7.1 | 71.95 |
UT10 (C-P) | --- | −91.47 | −100.47 | −108.99 | 0 | 17.69 | 77.4 | 4.9 | 71.8 |
UT10 (E-P) | --- | −91.53 | −100.61 | −110.05 | 0 | 26.46 | 59.24 | 14.3 | 72.94 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Le, H.N.; Lee, C.; Jung, W.; Kim, J. Effect of the Solvent Type on the Colloidal Stability and the Degree of Condensation of Silica Sols Stabilized by Amphiphilic Urethane Acrylate and the Properties of Their Coating Films. Coatings 2023, 13, 1997. https://doi.org/10.3390/coatings13121997
Le HN, Lee C, Jung W, Kim J. Effect of the Solvent Type on the Colloidal Stability and the Degree of Condensation of Silica Sols Stabilized by Amphiphilic Urethane Acrylate and the Properties of Their Coating Films. Coatings. 2023; 13(12):1997. https://doi.org/10.3390/coatings13121997
Chicago/Turabian StyleLe, Hong Nhung, Choonho Lee, Woochul Jung, and Juyoung Kim. 2023. "Effect of the Solvent Type on the Colloidal Stability and the Degree of Condensation of Silica Sols Stabilized by Amphiphilic Urethane Acrylate and the Properties of Their Coating Films" Coatings 13, no. 12: 1997. https://doi.org/10.3390/coatings13121997