Protecting Street Art from Outdoor Environmental Threats: What Are the Challenges?
Abstract
:1. Introduction
2. Research Projects and Debates about Contemporary Muralism
3. Paint Formulations Used for Street Art
- (1)
- Defoamers. They are generally used to reduce the tendency of the surfactant to foam; generally using mineral or silicone oils.
- (2)
- Plasticisers. They allow for increasing the plastic properties and the fluidity of the paints. In addition, they are used to control the paint film formation process. The correct formation of the film is essential to guarantee the final paint film adhesion to the support, elasticity, and hardness [40]. Some recent examples found in alkyd paints are di-isobutyl phthalate (DIBP), diethyl phthalate (DEP), dibutyl phthalate (DBP), and in polyvinyl paints are di-iso-octyl adipate (DIOA), di-iso-butylitaconate (DITA), ethyl citrate, and the 2-ethylhexyl diester of hexanedioic acid [41].
- (3)
- Wetting and dispersing agents. Wetting agents are additives with a polar-apolar surfactant structure and low molecular weight capable of reducing the interfacial tension between the binder and the pigment surface. On the other hand, dispersing agents are stabilising compounds which are absorbed by the pigment via establishing repulsive forces between individual pigment particles. Stabilisation is ensured by electrostatic charge repulsion or by steric hindrance due to molecular structures projecting from the pigment surface in the binder [42]. These additives can prevent the flocculation problem when different pigments are mixed in the same paint. An example of a commercial product is Disperbyk®, an alkylammonium salt of polycarboxylic acid used in water-based systems to stabilise a wide variety of pigments and fillers against flocculation [43].
- (4)
- Surfactants. They lower the surface tension which, in the solution, leads to the adsorption of surfactants at the air–water interface. Furthermore, they can form micelles, resulting in a stabilising effect in paints. The two most studied and identified examples in modern paints are polyethylene glycol (PEG) and polyethylene oxide (PEO) [44,45].
- (5)
- Surface modifying agents. They are useful for regulating the difference in surface tension of the paint when applied to a support (in fact, if the paint has a higher surface tension than the support, it will be poorly wettable) and to prevent any morphological defects caused by the deposit of particulate matter. An example is the use of silicone additives [39].
- (6)
- Rheology additives. Also called thickeners, they allow for the improvement of the viscosity of the paint work by polymer chain entanglement and hydrogen bonding with water molecules. Cellulose derivatives are the most common group.
- (7)
- Driers and catalysts. They allow for the acceleration of the drying process of the paints. Dryers are generally organometallic compounds, where the active part (the metal) is generally represented by cobalt and manganese (primary dryers), lead, calcium, zinc, zirconium, and barium (secondary dryers).
- (8)
- Preservatives. Biocides are added to prevent microbial growth on the dried polymeric film.
- (9)
- pH buffers. They can stabilise the pH range (e.g., ammonia).
- (10)
- Freeze-thaw agents. They lower the freezing point of the system as the water component in the polymer can freeze, expand in volume, and damage the polymeric film. For this purpose, water-soluble solvents, such as ethylene glycol or propylene glycol, are added.
- (11)
- Sequestrants. They are used for the removal of metal ions in the paint mixture during production, preventing them from precipitating any anionic surfactants or dispersants (e.g., sodium hexametaphosphate).
- (12)
- UV absorbers and stabilisers. These additives are of recent use. In fact, some synthetic polymers, such as some acrylic-based ones, are not stable under UV light exposure, causing the modification of their mechanical, chemical, and optical properties. Some examples are benzotriazoles and hindered amine light stabilisers (HALS). They have demonstrated the capacity to increase the chemical stability of the coating as they are chemically formulated to absorb the high energy of ultraviolet light and protect the coating product from exposure to this energy [46].
Title | Artist | Year of Production | Binders | Pigments | Reference |
---|---|---|---|---|---|
Cinema Airone | G. Capogrossi | 1953 (Rome, Italy) | Alkyd resin | PW6, PY34, PB29, PB15 | La Nasa et al. (2021) [50] |
Polyforum Cultural Siqueiros | D.A. Siqueiros | 1964 (Mexico City, Mexico) | Polystyrene, alkyd resin | PR101, PR112, PR122, PY1, PY3 | La Nasa et al. (2021) [50] |
Collingwood | K. Haring | 1984 (Melbourne, Australia) | Alkyd resin, 2-EHA acrylic resin | PR3 | Dickens et al. (2016); Carlesi et al. (2016); La Nasa et al. (2016) [51,52,53] |
XXXKH8 | K. Haring | 1986 (Amsterdam, Netherlands) | Alkyd resin | PW6 | La Nasa et al. (2021) [50] |
Necker Hospital | K. Haring | 1987 (Paris, France) | Polyvinyl acetate (PVAc) | PB15, PG7, PR112, PY74, PY73 | La Nasa et al. (2016); Magrini et al. (2017) [51,54] |
Tuttomondo | K. Haring | 1989 (Pisa, Italy) | n(butilacetate (BA))/styrene resin | PW6, red ochre, PB15:x, arylide yellow pigments, PR122, PV23 | Dickens et al. (2016); La Nasa et al. (2016); Cucci et al. (2016) [51,52,55] |
Writing | Peeta and Deban + Ment | 2006 (Verona, Italy) | Alkyd resin, PVAc, ethyl acetate (EA) acrylic resin, nitrate cellulose | PW6, PBk7, PB15:6, PR101, PY83 | La Nasa et al. (2021); Fenzi et al. (2018) [50,56] |
The Big Mother | Gola Hundun | 2010 (Reggio Emilia, Italy) | n.a. | PB15, PV23, PW6 | Cimino et al. (2022); Rousaki et al. (2022) [19,57] |
Big Sacral Bird | Kenor | 2010 (Reggio Emilia, Italy) | n.a. | PR254, PY74, PO34, PV23, PW6, PB15, PR112, PY83 | Cimino et al. (2022); Rousaki et al. (2022) [19,57] |
Oriental Carpet | H101 | 2010 (Reggio Emilia, Italy) | n.a. | PO34, PW6 | Cimino et al. (2022); Rousaki et al. (2022) [19,57] |
The Economy Subdues You | Zosen | 2010 (Reggio Emilia, Italy) | n.a. | PY74, PO34, PW6, PB15 | Cimino et al. (2022); Rousaki et al. (2022) [19,57] |
La strada la trovi da te | A. Pasquini | 2011 (Rome, Italy) | Acrylic resin, alkyd | PW6, PBk7, PR101, PB15, PG7, PR48, PR110, PY74 | Bosi et al. (2020) [58] |
No Title | Rojo Roma | 2012 (Turin, Italy) | Alkyd resin | PW6, PY42, PB15 | Pellis et al. (2022) [32] |
Frontier | Etnik | 2012 (Bologna, Italy) | nBA/ methyl methacrylcate (MMA), nBA/styrene, alkyd resin | PW6, PBk7, PY184, PB15:x, PG7, PV23, PY74 | La Nasa et al. (2021) [50] |
No Title | BLU | 2014 (Rome, Italy) | MMA/EA, nBA/MMA, 2-EHA, and 6-MHA acrylic resins nBA/styrene resin | PW6, PBk7, burnt umber, PB15:x, PR112, PR122, PY1 | La Nasa et al. (2021) [50] |
Straniera | A. Luchko | 2014 (Rome, Italy) | Styrene/acrylic, alkyd resin | PW6, PR101, PR48 | Bosi et al. (2020) [58] |
The Trial of Joseph K. | SEPE and Chazme | 2016 (Fondi, Italy) | PVAc | PW6, PBk7, PR112 | Bosi et al. (2020) [58] |
ORME | OrticaNoodle | 2016 (Milan, Italy) | Acrylic resin | Organic pigments | Pagnin et al. (2022) [66] |
Necesse | SMOE Studio | 2021 (Milan, Italy) | Acrylic, alkyd resin | Organic pigments | Pagnin et al. (2022) [66] |
4. Effects of Outdoor Exposure on Street Artworks
5. Protective Strategies for Outdoor Exposed Contemporary Mural Paintings
5.1. Protective Coating Requirements and Methods
- -
- The first type refers to transparent barriers, usually plastic (polycarbonate, plexiglass, etc.) or glass, applied in the extreme proximity but not in contact with the work of art, having the main function of limiting the mechanical or vandalic action of anthropogenic origin.
- -
- On the other hand, in the case of the direct protective method, a liquid and transparent protective coating of various chemical natures is applied directly to the pictorial surface by brush, roller, or spray. This is usually the most used method, mainly for economic reasons, but also because these products can satisfy many, if not all, of the requirements mentioned above. As it will be explained later, some examples of protective coatings are represented by acrylic-based or silicon-based resins. Another category, recently considered as a protective coating, is represented by anti-graffiti products. Anti-graffiti systems have been created with the intent to limit vandalism phenomena [90] such as the illegal writing acts that fall into the category of “graffiti” and “tags”, i.e., identification drawings and marks that writers use to communicate with each other. In order to remove these unwanted paintings and facilitate the cleaning operations, anti-graffiti systems have been introduced in the market. After various studies [91,92,93,94], it was observed that these systems do not only protect building and painted surfaces, preventing inks and paints from penetrating the pictorial support, but also have a protective role against atmospheric agents. Specifically, these coatings are capable of not altering the aesthetic appearance of the artworks as they are transparent, resist ultraviolet light (preventing yellowing), and limit physical or chemical damage [95]. For this reason, some examples of anti-graffiti tested on painted surfaces, were included in this review with the intention of widening the selection and knowledge of eligible coatings for the protection of street artworks.
5.2. In Situ Indirect Protective Systems
5.3. In Situ Direct Protective Systems
5.3.1. Acrylic-Based Coatings
5.3.2. Silicon-Based Coatings
5.3.3. Fluorinated Coatings
5.3.4. Wax Coatings
6. Future Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Cadetti, A. Conservare La Street Art. Le Problematiche Del Muralismo Contemporaneo in Italia; Edifir: Florence, Italy, 2020. [Google Scholar]
- Lewisohn, C. Street Art: The Graffiti Revolution; Tate Publishing: London, UK, 2008. [Google Scholar]
- Hughes, M. Street Art & Graffiti Art: Developing an Understanding. Master’s Thesis, Georgia State University, Atlanta, GA, USA, 2009; pp. 1–70. [Google Scholar]
- Gómez, M. The Writing on Our Walls: Finding Solutions Through Distinguishing Graffiti Art from Graffiti Vandalism. Univ. Mich. J. Law Reform 1993, 26, 697. [Google Scholar]
- Mezzadri, P. Contemporary Murals in the Street and Urban Art Field: Critical Reflections between Preventive Conservation and Restoration of Public Art. Heritage 2021, 4, 2515–2525. [Google Scholar] [CrossRef]
- Forte, F.; de Paola, P. How Can Street Art Have Economic Value? Sustainability 2019, 11, 580. [Google Scholar] [CrossRef]
- Brajer, I. Values and the Prevention of Contemporary Outdoor Murals. In Conservation Issues in Modern and Contemporary Murals; Cambridge Scholars Publishing: Cambridge, UK, 2015; pp. 39–59. [Google Scholar]
- Rainer, L.; Paul, T.J.; Trust, G. The Conservation of Outdoor Contemporary Murals. In Conservation; The Getty Conservation Institute: Los Angeles, CA, USA, 2003; Volume 18, pp. 4–9. [Google Scholar]
- Shank, W.; Norris, D.H. Giving Contemporary Murals a Longer Life: The Challenges for Muralists and Conservators. Stud. Conserv. 2008, 53, 12–16. [Google Scholar] [CrossRef]
- Folgarait, L.; Garfinkle, A.; Healy, W.; Shank, W.; Rainer, L.; Levin, J. Preserving Art in Public Places: A Discussion about Mural Painting and Conservation. Conserv. GCI Newsl. 2003, 18, 1–7. [Google Scholar]
- Sawicki, T. The Conservation of Murals—A New Trend in Protecting Works of Art. Acta Univ. Lodz. Folia Philos. Ethica-Aesthetica-Practica 2022, 40, 81–95. [Google Scholar] [CrossRef]
- Sanchez Pons, M.; Shank, W.; Fuster-Lòpez, L. Conservation Issues in Modern and Contemporary Murals; Cambridge Scholars Publishing: Cambridge, UK, 2015. [Google Scholar]
- Macchia, A.; Castro, M.; Curbelo, C.; Rivaroli, L.; Capriotti, S.; Vieira, E.; Moreira, P.; Ruffolo, S.A.; La Russa, M.F. Methods and Products for the Conservation of Vandalized Urban Art Murals. Coatings 2021, 11, 1304. [Google Scholar] [CrossRef]
- Gayo, E.; Gayo, E. From Post-Graffiti to Contemporary Mural Art. SAUC-Str. Art Urban Creat. 2017, 3, 26–28. [Google Scholar] [CrossRef]
- Macchia, A.; Rivaroli, L.; Rivaroli, M. Your Art: Yococu Urban ART. In Action/Reaction: Arte Urbana e Street Art a Roma; Palombi: Rome, Italy, 2020; pp. 255–264. [Google Scholar]
- GRAArt. Urban Contemporary Art Project. Available online: https://www.graart.it/ (accessed on 6 September 2023).
- Rivaroli, L.; Moretti, P.; Caricchio, A.; Macchia, A. Mural Art Conservation Data Recording (Scima): The Graart Project. Heritage 2021, 4, 4222–4232. [Google Scholar] [CrossRef]
- CAPuS. Conservation of Art in Public Spaces. Available online: https://www.capusproject.eu/ (accessed on 6 September 2023).
- Cimino, D.; Lamuraglia, R.; Saccani, I.; Berzioli, M.; Izzo, F.C. Assessing the (In)Stability of Urban Art Paints: From Real Case Studies to Laboratory Investigations of Degradation Processes and Preservation Possibilities. Heritage 2022, 5, 581–609. [Google Scholar] [CrossRef]
- PRIN 2020 SUPERSTAR. Sustainable Preservation Strategies for Street Art. Available online: https://prin2020superstar.dcci.unipi.it/ (accessed on 6 September 2023).
- Miranda, T.J. The Future of the Coatings Industry. In Surface Coatings; Springer: Oil and Colour Chemists’ Association: Dordrecht, The Netherlands, 2012; pp. 1–10. [Google Scholar]
- Shashoua, Y. Conservation of Plastics—Materials Science, Degradation and Preservation; Elsevier: Amsterdam, The Netherlands, 2008. [Google Scholar]
- La Nasa, J.; Biale, G.; Sabatini, F.; Degano, I.; Colombini, M.P.; Modugno, F. Synthetic Materials in Art: A New Comprehensive Approach for the Characterization of Multi-Material Artworks by Analytical Pyrolysis. Herit. Sci. 2019, 7, 8. [Google Scholar] [CrossRef]
- Chiantore, O.; Rava, A. Conserving Contemporary Art:Issues, Methods, Materials, and Research; Getty Conservation Institute: Los Angeles, CA, USA, 2005. [Google Scholar]
- Cortea, I.M.; Ratoiu, L.; Radvan, R. Characterization of Spray Paints Used in Street Art Graffiti by a Non-destructive Multi-analytical Approach. Color Res. Appl. 2021, 46, 183–194. [Google Scholar] [CrossRef]
- Macchia, A.; Rivaroli, L.; Damiani, F.; Ruffolo, S.A.; La Russa, M.F. Protezione Delle Opere Di Street Art: Materiali e Metodi. Kermes Restauro Conserv. Tutela Patrim. Cult. 2018, 109, 86–89. [Google Scholar]
- Learner, T. Analysis of Modern Paints; The Getty Conservation Institute: Los Angeles, CA, USA, 2004. [Google Scholar]
- Bentley, J.; Turner, G.P.A. Introduction to Paint Chemistry and Principles of Paint Technology, 4th ed.; Chapman & Hall: London, UK, 1998. [Google Scholar]
- Sackler, A.M. Scientific Examination of Art: Modern Techniques in Conservation and Analysis; The National Academic Press: Washington, DC, USA, 2003. [Google Scholar]
- Learner, T.; Smithen, P.; Krueger, J.; Schilling, M. Modern Paints Uncovered; Getty Conservation Institute: Los Angeles, CA, USA, 2006. [Google Scholar]
- Wiesinger, R.; Pagnin, L.; Anghelone, M.; Moretto, L.M.; Orsega, E.F.; Schreiner, M. Pigment and Binder Concentrations in Modern Paint Samples Determined by IR and Raman Spectroscopy. Angew. Chem.-Int. Ed. 2018, 57, 7401–7407. [Google Scholar] [CrossRef] [PubMed]
- Pellis, G.; Bertasa, M.; Ricci, C.; Scarcella, A.; Croveri, P.; Poli, T.; Scalarone, D. A Multi-Analytical Approach for Precise Identification of Alkyd Spray Paints and for a Better Understanding of Their Ageing Behaviour in Graffiti and Urban Artworks. J. Anal. Appl. Pyrolysis 2022, 165, 105576. [Google Scholar] [CrossRef]
- Germinario, G.; van der Werf, I.D.; Sabbatini, L. Chemical Characterisation of Spray Paints by a Multi-Analytical (Py/GC–MS, FTIR, μ-Raman) Approach. Microchem. J. 2016, 124, 929–939. [Google Scholar] [CrossRef]
- Melchiorre Di Crescenzo, M.; Zendri, E.; Sánchez-Pons, M.; Fuster-López, L.; Yusá-Marco, D.J. The Use of Waterborne Paints in Contemporary Murals: Comparing the Stability of Vinyl, Acrylic and Styrene-Acrylic Formulations to Outdoor Weathering Conditions. Polym. Degrad. Stab. 2014, 107, 285–293. [Google Scholar] [CrossRef]
- Fardi, T.; Pintus, V.; Kampasakali, E.; Pavlidou, E.; Schreiner, M.; Kyriacou, G. Analytical Characterization of Artist’s Paint Systems Based on Emulsion Polymers and Synthetic Organic Pigments. J. Anal. Appl. Pyrolysis 2018, 135, 231–241. [Google Scholar] [CrossRef]
- Pintus, V.; Wei, S.; Schreiner, M. Accelerated UV Ageing Studies of Acrylic, Alkyd, and Polyvinyl Acetate Paints: Influence of Inorganic Pigments. Microchem. J. 2016, 124, 949–961. [Google Scholar] [CrossRef]
- Anghelone, M.; Jembrih-Simbürger, D.; Pintus, V.; Schreiner, M. Photostability and Influence of Phthalocyanine Pigments on the Photodegradation of Acrylic Paints under Accelerated Solar Radiation. Polym. Degrad. Stab. 2017, 146, 13–23. [Google Scholar] [CrossRef]
- Pagnin, L.; Calvini, R.; Wiesinger, R.; Weber, J.; Schreiner, M. Photodegradation Kinetics of Alkyd Paints: The Influence of Varying Amounts of Inorganic Pigments on the Stability of the Synthetic Binder. Front. Mater. 2020, 7, 600887. [Google Scholar] [CrossRef]
- Stoye, D.; Freitag, W. Paints, Coatings and Solvents; Wiley-VCH: Hoboken, NJ, USA, 1998. [Google Scholar]
- Marcilla, A.; Beltrán, M. Mechanism of Plasticizers Action. In Handbook of Plasticizers, 4th ed.; ChemTec Publishing: Scarborough, ON, Canada, 2023; pp. 139–158. ISBN 978-1-77467-022-4. [Google Scholar]
- Silva, M.F.; Doménech-Carbó, M.T.; Fuster-Lopéz, L.; Martín-Rey, S.; Mecklenburg, M.F. Determination of the Plasticizer Content in Poly(Vinyl Acetate) Paint Medium by Pyrolysis–Silylation–Gas Chromatography–Mass Spectrometry. J. Anal. Appl. Pyrolysis 2009, 85, 487–491. [Google Scholar] [CrossRef]
- Vash, R. Pigment Wetting and Dispersinig Additives for Water-Based Coatings and Inks BT—Surface Phenomena and Additives in Water-Based Coatings and Printing Technology; Sharma, M.K., Ed.; Springer: Boston, MA, USA, 1991; pp. 139–149. ISBN 978-1-4899-2361-5. [Google Scholar]
- Beaugendre, A.; Degoutin, S.; Bellayer, S.; Pierlot, C.; Duquesne, S.; Casetta, M.; Jimenez, M. Self-Stratifying Coatings: A Review. Prog. Org. Coat. 2017, 110, 210–241. [Google Scholar] [CrossRef]
- Sundberg, B.N.; Lagalante, A.F. Characterization of Non-Ionic Surfactants in Winsor & Newton’s Water-Mixable Oil Paints. J. Cult. Herit. 2021, 48, 54–64. [Google Scholar] [CrossRef]
- Pagnin, L.; Wiesinger, R.; Koyun, A.N.; Schreiner, M. The Effect of Pollutant Gases on Surfactant Migration in Acrylic Emulsion Films: A Comparative Study and Preliminary Evaluation of Surface Cleaning. Polymers 2021, 13, 1941. [Google Scholar] [CrossRef]
- Valet, A.; Braig, A. Light Stabilizers for Coatings; Vincentz Network: Hannover, Germany, 2017. [Google Scholar]
- Govaert, F.; Bernard, M. Discriminating Red Spray Paints by Optical Microscopy, Fourier Transform Infrared Spectroscopy and X-Ray Fluorescence. Forensic Sci. Int. 2004, 140, 61–70. [Google Scholar] [CrossRef]
- Zieba-Palus, J. Examination of Spray Paints by the Use of Reflection Technique of Microinfrared Spectroscopy. J. Mol. Struct. 2005, 744–747, 229–234. [Google Scholar] [CrossRef]
- Marazioti, V.; Douvas, A.M.; Katsaros, F.; Koralli, P.; Chochos, C.; Gregoriou, V.G.; Boyatzis, S.; Facorellis, Y. Chemical Characterisation of Artists’ Spray-Paints: A diagnostic tool for urban art conservation. Spectr. Acta Part A Molec. Bio Spectr. 2022, 291, 122375. [Google Scholar] [CrossRef] [PubMed]
- La Nasa, J.; Campanella, B.; Sabatini, F.; Rava, A.; Shank, W.; Lucero-Gomez, P.; De Luca, D.; Legnaioli, S.; Palleschi, V.; Colombini, M.P.; et al. 60 Years of Street Art: A Comparative Study of the Artists’ Materials through Spectroscopic and Mass Spectrometric Approaches. J. Cult. Herit. 2021, 48, 129–140. [Google Scholar] [CrossRef]
- La Nasa, J.; Orsini, S.; Degano, I.; Rava, A.; Modugno, F.; Colombini, M.P. A Chemical Study of Organic Materials in Three Murals by Keith Haring: A Comparison of Painting Techniques. Microchem. J. 2016, 124, 940–948. [Google Scholar] [CrossRef]
- Dickens, J.; Rava, A.; Colombini, M.P.; Picollo, M.; Shank, W. Keith Haring in Pisa and Melbourne: Controversy and Conservation. Stud. Conserv. 2016, 61, 29–37. [Google Scholar] [CrossRef]
- Carlesi, S.; Bartolozzi, G.; Cucci, C.; Marchiafava, V.; Picollo, M.; La Nasa, J.; Di Girolamo, F.; Dilillo, M.; Modugno, F.; Degano, I.; et al. Discovering “The Italian Flag” by Fernando Melani (1907–1985). Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2016, 168, 52–59. [Google Scholar] [CrossRef]
- Magrini, D.; Bracci, S.; Cantisani, E.; Conti, C.; Rava, A.; Sansonetti, A.; Shank, W.; Colombini, M. A Multi-Analytical Approach for the Characterization of Wall Painting Materials on Contemporary Buildings. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2017, 173, 39–45. [Google Scholar] [CrossRef]
- Cucci, C.; Bartolozzi, G.; De Vita, M.; Marchiafava, V.; Picollo, M.; Casadio, F. The Colors of Keith Haring: A Spectroscopic Study on the Materials of the Mural Painting Tuttomondo and on Reference Contemporary Outdoor Paints. Appl. Spectrosc. 2016, 70, 186–196. [Google Scholar] [CrossRef] [PubMed]
- Fenzi, F.; Gasperini, R.; La Nasa, J.; Di Carlo, S.; Michelotto, C.; Modugno, F.; Scalvi, M.; Todaro, C. I Writing Di Peeta, Deban e Ment a Verona. Los Tudio e Il Restauro Di Due Opere Di Street Art. Kermes Doss. Str. Art 2018, 109, 71–80. [Google Scholar]
- Rousaki, A.; Vandenabeele, P.; Berzioli, M.; Saccani, I.; Fornasini, L.; Bersani, D. An In-and-out-the-Lab Raman Spectroscopy Study on Street Art Murals from Reggio Emilia in Italy. Eur. Phys. J. Plus 2022, 137, 252. [Google Scholar] [CrossRef]
- Bosi, A.; Ciccola, A.; Serafini, I.; Guiso, M.; Ripanti, F.; Postorino, P.; Curini, R.; Bianco, A. Street Art Graffiti: Discovering Their Composition and Alteration by FTIR and Micro-Raman Spectroscopy. Spectrochim. Acta-Part A Mol. Biomol. Spectrosc. 2020, 225, 117474. [Google Scholar] [CrossRef] [PubMed]
- Murillo, E.A.; Percino, J.; López, B.L. Colloidal, Morphological, Thermal, Rheological, and Film Properties of Waterborne Hyperbranched Alkyd–Acrylic Resins. J. Coat. Technol. Res. 2019, 16, 1223–1232. [Google Scholar] [CrossRef]
- Chardon, F.; Denis, M.; Negrell, C.; Caillol, S. Hybrid Alkyds, the Glowing Route to Reach Cutting-Edge Properties? Prog. Org. Coat. 2021, 151, 106025. [Google Scholar] [CrossRef]
- Lomax, S.Q.; Learner, T. A Review of the Classes, Structures, and Methods of Analysis of Synthetic Organic Pigments. J. Am. Inst. Conserv. 2006, 45, 107–125. [Google Scholar] [CrossRef]
- Ghelardi, E.; Degano, I.; Colombini, M.P.; Mazurek, J.; Schilling, M.; Learner, T. Py-GC/MS Applied to the Analysis of Synthetic Organic Pigments: Characterization and Identification in Paint Samples. Anal. Bioanal. Chem. 2015, 407, 1415–1431. [Google Scholar] [CrossRef]
- Rosi, F.; Daveri, A.; Moretti, P.; Brunetti, B.G.; Miliani, C. Interpretation of Mid and Near-Infrared Reflection Properties of Synthetic Polymer Paints for the Non-Invasive Assessment of Binding Media in Twentieth-Century Pictorial Artworks. Microchem. J. 2016, 124, 898–908. [Google Scholar] [CrossRef]
- Lettieri, M.; Calia, A.; Licciulli, A.; Marquardt, A.E.; Phaneuf, R.J. Nanostructured TiO2 for Stone Coating: Assessing Compatibility with Basic Stone’s Properties and Photocatalytic Effectiveness. Bull. Eng. Geol. Environ. 2017, 76, 101–114. [Google Scholar] [CrossRef]
- van Driel, B.A.; van der Meer, S.R.; van den Berg, K.J.; Dik, J. Determining The Presence of Photocatalytic Titanium White Pigments via Embedded Paint Sample Staining: A Proof of Principle. Stud. Conserv. 2019, 64, 261–272. [Google Scholar] [CrossRef]
- Pagnin, L.; Izzo, F.C.; Goidanich, S.; Toniolo, L. Interview with the Artists SMOE and OrticaNoodle about the Paint Material Used for their Murals “Necesse” and “ORME” in Milan. 27 September 2022; unpublished. [Google Scholar]
- Pozo-Antonio, J.S.; Rivas, T.; González, N.; Alonso-Villar, E.M. Deterioration of Graffiti Spray Paints Applied on Granite after a Decade of Natural Environment. Sci. Total Environ. 2022, 826, 154169. [Google Scholar] [CrossRef] [PubMed]
- Conservation of Art in Public Spaces (CAPuS)-Illustrated Glossary. Available online: https://www.capusproject.eu/glossary/ (accessed on 21 March 2023).
- Rivas, T.; Alonso-Villar, E.M.; Pozo-Antonio, J.S. Forms and Factors of Deterioration of Urban Art Murals under Humid Temperate Climate; Influence of Environment and Material Properties. Eur. Phys. J. Plus 2022, 137, 1257. [Google Scholar] [CrossRef]
- Sanmartín, P.; Pozo-Antonio, J.S. Weathering of Graffiti Spray Paint on Building Stones Exposed to Different Types of UV Radiation. Constr. Build. Mater. 2020, 236, 117736. [Google Scholar] [CrossRef]
- Croll, S.G. Stress and Embrittlement in Organic Coatings during General Weathering Exposure: A Review. Prog. Org. Coat. 2022, 172, 107085. [Google Scholar] [CrossRef]
- Krmpotić, M.; Jembrih-Simbürger, D.; Siketić, Z.; Anghelone, M.; Radović, I.B. Study of UV Ageing Effects in Modern Artists’ Paints with MeV-SIMS. Polym. Degrad. Stab. 2022, 195, 109769. [Google Scholar] [CrossRef]
- Alonso-Villar, E.M.; Rivas, T.; Pozo-Antonio, J.S. Resistance to Artificial Daylight of Paints Used in Urban Artworks. Influence of Paint Composition and Substrate. Prog. Org. Coat. 2021, 154, 106180. [Google Scholar] [CrossRef]
- Alonso-Villar, E.M.; Rivas, T.; Pozo-Antonio, J.S. Sol-Silicate versus Organic Paints: Durability after Outdoor and Ultraviolet Radiation Exposures. Prog. Org. Coat. 2022, 168, 106843. [Google Scholar] [CrossRef]
- Feller, R. Accelerated Aging, Photochemical and Thermal Aspects; The Getty Conservation Institute: Los Angeles, CA, USA, 1994. [Google Scholar]
- Chiantore, O.; Trossarelli, L.; Lazzari, M. Photooxidative Degradation of Acrylic and Methacrylic Polymers. Polymer 2000, 41, 1657–1668. [Google Scholar] [CrossRef]
- Izzo, F.C.; Balliana, E.; Perra, E.; Zendri, E. Accelerated Ageing Procedures to Assess the Stability of an Unconventional Acrylic-Wax Polymeric Emulsion for Contemporary Art. Polymers 2020, 12, 1925. [Google Scholar] [CrossRef]
- Pintus, V.; Wei, S.; Schreiner, M. UV Ageing Studies: Evaluation of Lightfastness Declarations of Commercial Acrylic Paints. Anal. Bioanal. Chem. 2012, 402, 1567–1584. [Google Scholar] [CrossRef]
- Ciccola, A.; Serafini, I.; Guiso, M.; Ripanti, F.; Domenici, F.; Sciubba, F.; Postorino, P.; Bianco, A. Spectroscopy for Contemporary Art: Discovering the Effect of Synthetic Organic Pigments on UVB Degradation of Acrylic Binder. Polym. Degrad. Stab. 2019, 159, 224–228. [Google Scholar] [CrossRef]
- Pintus, V.; Schreiner, M. Characterization and Identification of Acrylic Binding Media: Influence of UV Light on the Ageing Process. Anal. Bioanal. Chem. 2011, 399, 2961–2976. [Google Scholar] [CrossRef]
- Ormsby, B.; Foster, G.; Learner, T.; Ritchie, S.; Schilling, M. Improved Controlled Relative Humidity Dynamic Mechanical Analysis of Artists’ Acrylic Emulsion Paints: Part II. General Properties and Accelerated Ageing. J. Therm. Anal. Calorim. 2007, 90, 503–508. [Google Scholar] [CrossRef]
- Pagnin, L.; Calvini, R.; Sterflinger, K.; Izzo, F.C. Data Fusion Approach to Simultaneously Evaluate the Degradation Process Caused by Ozone and Humidity on Modern Paint Materials. Polymers 2022, 14, 1787. [Google Scholar] [CrossRef] [PubMed]
- Pagnin, L.; Calvini, R.; Wiesinger, R.; Schreiner, M. SO2- and NOx- Initiated Atmospheric Degradation of Polymeric Films: Morphological and Chemical Changes, Influence of Relative Humidity and Inorganic Pigments. Microchem. J. 2021, 164, 106087. [Google Scholar] [CrossRef]
- Timoncini, A.; Brattich, E.; Bernardi, E.; Chiavari, C.; Tositti, L. Safeguarding Outdoor Cultural Heritage Materials in an Ever-Changing Troposphere: Challenges and New Guidelines for Artificial Ageing Test. J. Cult. Herit. 2023, 59, 190–201. [Google Scholar] [CrossRef]
- Gomes, V.; Dionísio, A.; Santiago Pozo-Antonio, J. The Influence of the SO2 Ageing on the Graffiti Cleaning Effectiveness with Chemical Procedures on a Granite Substrate. Sci. Total Environ. 2018, 625, 233–245. [Google Scholar] [CrossRef] [PubMed]
- Pagnin, L.; Izzo, F.C.; Goidanich, S.; Toniolo, L. Preliminary Approach to Protect Street Art from Environmental Agents and Gaseous Pollutants. In Proceedings of the 2022 IMEKO TC4 International Conference on Metrology for Archaeology and Cultural Heritage, IMEKO, Calabria, Italy, 19–21 October 2022; pp. 80–83. [Google Scholar]
- Artesani, A.; di Turo, F.; Zucchelli, M.; Traviglia, A. Recent Advances in Protective Coatings for Cultural Heritage. Coatings 2020, 10, 217. [Google Scholar] [CrossRef]
- Doehne, E.; Price, C. Stone Conservation; Getty Conservation Institute: Los Angeles, CA, USA, 2010. [Google Scholar]
- Snethlage, R. Stone Conservation. In Stone in Architecture; Springer: Berlin/Heidelberg, Germany, 2015; pp. 516–528. [Google Scholar]
- Sanmartín, P.; Cappitelli, F.; Mitchell, R. Current Methods of Graffiti Removal: A Review. Constr. Build. Mater. 2014, 71, 363–374. [Google Scholar] [CrossRef]
- Bertasa, M.; Ricci, C.; Scarcella, A.; Zenucchini, F.; Pellis, G.; Croveri, P.; Scalarone, D. Overcoming Challenges in Street Art Murals Conservation: A Comparative Study on Cleaning Approach and Methodology. Coatings 2020, 10, 1019. [Google Scholar] [CrossRef]
- Carmona-Quiroga, P.M.; Panas, I.; Svensson, J.E.; Johansson, L.G.; Blanco-Varela, M.T.; Martínez-Ramírez, S. Protective Performances of Two Anti-Graffiti Treatments towards Sulfite and Sulfate Formation in SO2 Polluted Model Environment. Appl. Surf. Sci. 2010, 257, 852–856. [Google Scholar] [CrossRef]
- Gomes, V.; Dionísio, A.; Pozo-Antonio, J.S. Conservation Strategies against Graffiti Vandalism on Cultural Heritage Stones: Protective Coatings and Cleaning Methods. Prog. Org. Coatings 2017, 113, 90–109. [Google Scholar] [CrossRef]
- García, O.; Malaga, K. Definition of the Procedure to Determine the Suitability and Durability of an Anti-Graffiti Product for Application on Cultural Heritage Porous Materials. J. Cult. Herit. 2012, 13, 77–82. [Google Scholar] [CrossRef]
- Norbutus, A. Common Threads, Common Goals: Protective Coatings for Outdoor Public Murals. In Conservation Issues in Modern and Contemporary Murals; Cambridge Scholars Publishing: Cambridge, UK, 2015; pp. 218–237. [Google Scholar]
- Lamuraglia, R. Evaluation of Anti UV and Anti Graffiti Coatings for Contemporary Paints in Urban Art. Master’s Thesis, Ca’ Foscari University of Venice, Venice, Italy, 2020. [Google Scholar]
- Amrutkar, S.; More, A.; Mestry, S.; Mhaske, S.T. Recent Developments in the Anti-Graffiti Coatings: An Attentive Review. J. Coatings Technol. Res. 2022, 19, 717–739. [Google Scholar] [CrossRef]
- Gagne, L. Evaluation of Two Sacrificial Anti-Graffiti Polysaccharide Coatings for the Conservation of Outdoor Contemporary Murals. Ph.D. Thesis, Queen’s University, Kingston, ON, Canada, 2014. [Google Scholar] [CrossRef]
- Podagrosi, M. Street Art: Conseguenze Giuridiche Della Realizzazione Di Opere Su Superfici Altrui. Riv. Dirit. Arti Spett. 2018, 1, 109–126. [Google Scholar]
- McDonald, E. Keith Haring a Pisa; Cronaca Di Un Murales: Pisa, Italy, 2013. [Google Scholar]
- Rava, A.; Shank, W.; Colombini, M.P.; Chiantore, O.; Picollo, M.; Palleschi, V. Keith Haring in Pisa: Cleaning and Protection of an Acrylic Painting in an Outdoor Environment. In Conservation Issues in Modern and Contemporary Murals; Cambridge Scholars Publishing: Cambridge, UK, 2014; pp. 184–201. [Google Scholar]
- Gurgone, P.; Iazurlo, U.; Santamaria, M.G. Problematiche Conservative Dei Murales Contemporanei Acrilico-Vinilici. In Proceedings of Sulle Pitture Murali: Riflessioni, Conoscenze, Interventi in Atti del XXI Convegno Internazionale Scienze dei Beni Culturali; Arcadia Ricerche: Venice, Italy, 2005; pp. 860–868. [Google Scholar]
- Chiantore, O.; Lazzari, M. Photo-Oxidative Stability of Paraloid Acrylic Protective Polymers. Polymer 2001, 42, 17–27. [Google Scholar] [CrossRef]
- Lazzari, M.; Chiantore, O. Thermal-Ageing of Paraloid Acrylic Protective Polymers. Polymer 2000, 41, 6447–6455. [Google Scholar] [CrossRef]
- Bracci, S.; Melo, M.J. Correlating Natural Ageing and Xenon Irradiation of Paraloid® B72 Applied on Stone. Polym. Degrad. Stab. 2003, 80, 533–541. [Google Scholar] [CrossRef]
- Melo, M.J.; Bracci, S.; Camaiti, M.; Chiantore, O.; Piacenti, F. Photodegradation of Acrylic Resins Used in the Conservation of Stone. Polym. Degrad. Stab. 1999, 66, 23–30. [Google Scholar] [CrossRef]
- Pozo-Antonio, J.S.; Alonso-Villar, E.M.; Rivas, T.; Márquez, I. Evaluation of a Protective Acrylic Finish Applied to Surfaces Painted with Acrylic Paints for Outdoor or Indoor Uses. Dye. Pigment. 2023, 212, 111141. [Google Scholar] [CrossRef]
- Alonso-Villar, E.M.; Rivas, T.; Pozo-Antonio, J.S.; Pellis, G.; Scalarone, D. Efficacy of Colour Protectors in Urban Art Paintings under Different Conditions: From a Real Mural to the Laboratory. Heritage 2023, 6, 3475–3498. [Google Scholar] [CrossRef]
- Wheeler, G. Alkoxysilanes and the Consolidation of Stone. In Research on Conservation; Getty Conservation Institute: Los Angeles, CA, USA, 2005; pp. 1–11. [Google Scholar]
- Cappelletti, G.; Fermo, P. Hydrophobic and Superhydrophobic Coatings for Limestone and Marble Conservation. In Smart Composite Coatings and Membranes; Montemor, M.F., Ed.; Woodhead Publishing Series in Composites Science and Engineering; Woodhead Publishing: Sawston, UK, 2016; pp. 421–452. ISBN 978-1-78242-283-9. [Google Scholar]
- Hofacker, S.; Mechtel, M.; Mager, M.; Kraus, H. Sol-Gel: A New Tool for Coatings Chemistry. Prog. Org. Coat. 2002, 45, 159–164. [Google Scholar] [CrossRef]
- Rauseo, A. Il Restauro Negato. Senza Titolo Di Blu Ed Ericailcane Al Padiglione d’Arte Contemporanea Di Milano. Kermes Doss. Str. Art 2018, 109, 20–25. [Google Scholar]
- Carrieri, A. Perchè Restaurare Questo Graffito. In Quattordio Urban Art. Nessuna Frontiera; Mantovani, K., Ed.; Milan, Italy, 2018; pp. 159–172. [Google Scholar]
- Colombini, M.P.; Modugno, F.; Di Girolamo, F.; La Nasa, J.; Duce, C.; Al, E. Keith Haring and the City of the Leaning Tower: Preservation of the Mural “Tuttomondo”. In Conservation Issues in Modern and Contemporary Murals; Cambridge Scholars Publishing: Cambridge, UK, 2014; pp. 274–284. [Google Scholar]
- Spepi, A.; Pizzimenti, S.; Duce, C.; Vozzi, G.; De Maria, C.; Tiné, M.R. Chemico-Physical Characterization and Evaluation of Coating Properties of Two Commercial Organosilicons: Hydrophase® and Disboxan 450®. J. Therm. Anal. Calorim. 2019, 138, 3277–3285. [Google Scholar] [CrossRef]
- Chiantore, O.; Lazzari, M.; Aglietto, M.; Castelvetro, V.; Ciardelli, F. Photochemical Stability of Partially Fluorinated Acrylic Protective Coatings. Polym. Degrad. 2000, 67, 461–467. [Google Scholar] [CrossRef]
- Scheerder, J.; Visscher, N.; Nabuurs, T.; Overbeek, A. Novel, Water-Based Fluorinated Polymers with Excellent Antigraffiti Properties. J. Coatings Technol. Res. 2005, 2, 617–625. [Google Scholar] [CrossRef]
- Rossi, S.; Fedel, M.; Petrolli, S.; Deflorian, F. Behaviour of Different Removers on Permanent Anti-Graffiti Organic Coatings. J. Build. Eng. 2016, 5, 104–113. [Google Scholar] [CrossRef]
- Licchelli, M.; Marzolla, S.J.; Poggi, A.; Zanchi, C. Crosslinked Fluorinated Polyurethanes for the Protection of Stone Surfaces from Graffiti. J. Cult. Herit. 2011, 12, 34–43. [Google Scholar] [CrossRef]
- Carmona-Quiroga, P.M.; Jacobs, R.M.J.; Martínez-Ramírez, S.; Viles, H.A. Durability of Anti-Graffiti Coatings on Stone: Natural vs Accelerated Weathering. PLoS ONE 2017, 12, e0172347. [Google Scholar] [CrossRef] [PubMed]
- Macchia, A.; Ruffolo, S.A.; Rivaroli, L.; Malagodi, M.; Licchelli, M.; Rovella, N.; Randazzo, L.; La Russa, M.F. Comparative Study of Protective Coatings for the Conservation of Urban Art. J. Cult. Herit. 2020, 41, 232–237. [Google Scholar] [CrossRef]
- Macchia, A.; Capriotti, S.; Rivaroli, L.; Ruffolo, S.A.; La Russa, M.F. Protection of Urban Art Painting: A Laboratory Study. Polymers 2022, 14, 162. [Google Scholar] [CrossRef]
- Pozo-Antonio, J.S.; Rivas, T.; Jacobs, R.M.J.; Viles, H.A.; Carmona-Quiroga, P.M. Effectiveness of Commercial Anti-Graffiti Treatments in Two Granites of Different Texture and Mineralogy. Prog. Org. Coat. 2018, 116, 70–82. [Google Scholar] [CrossRef]
- Moura, A.; Flores-Colen, I.; De Brito, J. Study of the Effect of Three Anti-Graffiti Products on the Physical Properties of Different Substrates. Constr. Build. Mater. 2016, 107, 157–164. [Google Scholar] [CrossRef]
Number of Analysed Commercial Spray Paints | Trademark and Commercial Brands of the Analysed Spray Paints | Polymeric Binding Media | Pigments and Colour Index (C.I.) | References |
---|---|---|---|---|
51 red spray paints | Altona, Hammerite, Trimetal, cuworks, Levis, Air Crafts, Dupli Colour, De Keyn, Colourworks, Gamma, Motip, Auto-K. | Alkyd styrene Acrylic alkyd Acrylic Polyvinyl acetate Styrene | Monoazo red, PR112–PR254 Quinacridone red, PR122 Monoazo yellow, PY74 | Govaert et al. (2004) [47] |
20 spray paints | Brico, Dupli, Colourworks, Montana, Motip, SparVar, Tuttocolour, Colourpol | Alkyd Acrylic Styrene Silicone | n.a. | Zieba-Palus et al. (2005) [48] |
40 spray paints | Montana Colours | Alkyd Styrene alkyd Polyvinyl acetate | Quinacridone red, PR122 Monoazo red, PR170 Quinacridone violet, PV19 Phthalocyanine green, PG7 Phthalocyanine blue, PB15 | Cortea et al. (2021) [25] |
45 spray paints | Dupli-Colour, Fly Colour, Molotow, Montana colours, Arexons, Fantastica Ver-O, Saratoga, Keen–Vantage, Capec, Tecnoral, Spraycar | Alkyd Acrylic styrene Acrylic | Titanium white, PW6 Monoazo yellow, PY74 Lead chromate, PY34 Monoazo red, PR170 Disazo diarylide, PY83 Disazo pyrazolone, PO13 Phthalocyanine green, PG7 Phthalocyanine blue, PB15 | Germinario et al. (2015) [33] |
20 spray paints | Flame, Montana Black, Loop Colours, Montana Gold | Alkyd nitrocellulose Acrylic Acrylic nitrocellulose styrene | Titanium white, PW6 Phthalocyanine blue, PB15:3 Monoazo red, PR112–PR254 Phthalocyanine green, PG7 Monoazo yellow, PY74 | Marazioti et al. (2022) [49] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pagnin, L.; Guarnieri, N.; Izzo, F.C.; Goidanich, S.; Toniolo, L. Protecting Street Art from Outdoor Environmental Threats: What Are the Challenges? Coatings 2023, 13, 2044. https://doi.org/10.3390/coatings13122044
Pagnin L, Guarnieri N, Izzo FC, Goidanich S, Toniolo L. Protecting Street Art from Outdoor Environmental Threats: What Are the Challenges? Coatings. 2023; 13(12):2044. https://doi.org/10.3390/coatings13122044
Chicago/Turabian StylePagnin, Laura, Nicolò Guarnieri, Francesca Caterina Izzo, Sara Goidanich, and Lucia Toniolo. 2023. "Protecting Street Art from Outdoor Environmental Threats: What Are the Challenges?" Coatings 13, no. 12: 2044. https://doi.org/10.3390/coatings13122044