Corrosion Behavior of Al2O3-40TiO2 Coating Deposited on 20MnNiMo Steel via Atmospheric Plasma Spraying in Hydrogen Sulfide Seawater Stress Environments
Abstract
:1. Introduction
2. Materials and Methods
2.1. Original Materials and Preparation Methods
2.2. Test and Characterization Methods
2.2.1. Corrosion Behavior of Coating in Artificial Seawater
2.2.2. Corrosion Behavior of Coating in a Simulated High-Pressure Seawater Environment with Wet Hydrogen Sulfide
2.2.3. Ion Leaching Behavior of Coating in Ultrapure Water
2.2.4. Microstructural Characterization and Phase Analysis
3. Results and Discussion
3.1. Characterization of Al2O3-40TiO2 Coating before Corrosion
3.2. Corrosion Behavior of Coating in Artificial Seawater
3.3. Corrosion Behavior of Coating in a Simulated High-Pressure Seawater Environment with Wet Hydrogen Sulfide
3.4. Results of Ion Dissolution Experiments
4. Conclusions
- (1)
- In artificial seawater, the corrosion rate (based on the corrosion current) of the coating first decreased and then increased. It was speculated that the blocking of corrosion products in defect channels, such as pores and cracks, was helpful in delaying the progress of corrosion in the early stage. The dissolution of corrosion products accelerated the corrosion rate in the later stage. The coating had a corrosion current in the order of 10−6 A·cm−2 in artificial seawater, implying good protection in conventional seawater environments;
- (2)
- In the simulated high-pressure seawater environment with wet hydrogen sulfide, the corrosion rate of the Al2O3-40TiO2 coating showed a continuously declining trend. A minimal corrosion rate of 0.0030 mm/a was obtained after the coating was immersed for 30 days. We speculated that corrosion products in the simulated environment, such as metal sulfide, might be more chemically stable than those in artificial seawater, leading to a longer blocking effect. The localized failures of the Al2O3-40TiO2 coating were caused by its quality but the coating itself had good corrosion resistance;
- (3)
- The results of the ion dissolution experiments indicated minimal dissolution of the coated elements after sealing. The validation experiment revealed that the dissolution of non-coated elements, such as nickel and molybdenum, was linked to the fluorocarbon resin layer. The coating material exhibited good bio-friendliness.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhang, Z.G.; Wang, Y.; Gao, L.F.; Zhang, Y.; Liu, C.S. Marine Gas Hydrates: Future Energy or Environmental Killer? Energy Procedia 2012, 16, 933–938. [Google Scholar] [CrossRef]
- Chong, Z.R.; Yang, S.H.B.; Babu, P.; Linga, P.; Li, X.S. Review of natural gas hydrates as an energy resource: Prospects and challenges. Appl. Energy 2016, 162, 1633–1652. [Google Scholar] [CrossRef]
- Peketi, A.; Mazumdar, A.; Sawant, B.; Manaskanya, A.; Zatale, A. Biogeochemistry and trophic structure of a cold seep ecosystem, offshore Krishna-Godavari basin (east coast of India). Mar. Pet. Geol. 2022, 138, 105542. [Google Scholar] [CrossRef]
- Cordes, E.E.; Bergquist, D.C.; Fisher, C.R. Macro-ecology of gulf of Mexico cold seeps (Review). Annu. Rev. Mar. Sci. 2009, 1, 143–168. [Google Scholar] [CrossRef] [PubMed]
- Joseph, R.X.; Vinodhini, S.P.; Beryl, J.R. Anti-corrosion and flame-retardant properties of environmentally benign smart functionalized WS2/rGO in epoxy coatings for enhanced steel structural protection in natural seawater. Mater. Today Commun. 2024, 38, 107842. [Google Scholar] [CrossRef]
- Liu, Q.Q.; Li, N.P.; Li, C.M.; Duan, J.J. Fabrication of environmentally friendly superhydrophobic coatings for corrosion protection under simulated conditions of antifreeze solutions for heat-source tower. Surf. Coat. Technol. 2023, 471, 129878. [Google Scholar] [CrossRef]
- Liu, M.Y.; Li, S.N.; Wang, H.; Jiang, R.J.; Zhou, X. Research progress of environmentally friendly marine antifouling coatings. Polym. Chem. 2021, 12, 3702–3720. [Google Scholar] [CrossRef]
- Aaishwarika, R.S.; Rakesh, G. Immersion studies of Al2O3–13% TiO2 and Cr2O3 coatings on ship hull plate in simulated seawater environment in laboratory. Mater. Today Proc. 2022, 48, 946–951. [Google Scholar] [CrossRef]
- Xiao, L.Y.; Liu, Q.Q.; Wang, J.; Chen, N.N.; Chen, J.H.; Song, J.L.; Zhang, X.; Xiao, K. Study on corrosion mechanism of Al-Zn coatings in the simulated polluted marine atmosphere. J. Mater. Res. Technol. 2023, 25, 6446–6458. [Google Scholar] [CrossRef]
- Lin, M.; Xiao, J.K.; Sun, G.D.; Wei, X.L.; Wu, D.L.; Cao, P.; Zhang, C. Microstructure and wear behaviors of Cr2O3-Al2O3 composite coatings deposited by atmospheric plasma spraying. Surf. Coat. Technol. 2022, 444, 128619. [Google Scholar] [CrossRef]
- Jia, S.K.; Zou, Y.; Xu, J.Y. Effect of TiO2 content on properties of Al2O3 thermal barrier coatings by plasma spraying. Trans. Nonferrous Met. Soc. China 2015, 25, 175–183. [Google Scholar]
- Toma, F.-L.; Stahr, C.C.; Berger, L.-M.; Saaro, S.; Herrmann, M.; Deska, D.; Michael, G. Corrosion Resistance of APS- and HVOF-Sprayed Coatings in the Al2O3-TiO2 System. J. Therm. Spray Technol. 2010, 19, 137–147. [Google Scholar] [CrossRef]
- Kumar, D.; Singh, P.; Murtaza, Q.; Walia, R.S. Synergistic effect of Al2O3–40%TiO2 coating on thermal conductivity and corrosion rate of SS 304 substrate. Sādhanā 2023, 48, 266. [Google Scholar] [CrossRef]
- Jiang, L.H.; Dai, W.W.; Wei, Z.; Huang, Y.F.; Wang, F.X.; Hong, S. The effect of immersion time on corrosion performance of the Al2O3-40TiO2 and WC-10Co-4Cr coatings in 3.5 wt.% NaCl solution. Surf. Topogr. 2022, 10, 015013. [Google Scholar] [CrossRef]
- Wei, Z.U.; Hong, S.; Wei, Z.; Hu, N.; Ying, G.B.; Wu, Y.P. Comparison on long-term corrosion performance of WC-CoCr and Al2O3-TiO2 ceramic coatings in sulphide-containing 3.5 wt% NaCl solution. Int. J. Refract. Hard. Met. 2022, 107, 105906. [Google Scholar] [CrossRef]
- Li, J.L.; Liu, Z.D.; Ma, H.R.; Wang, X.Y.; Kong, Y.; Li, Y.; Shen, Y. High-temperature corrosion behavior of C276 alloy, 1.4529 steel and laser-cladding 1.4529 coating under the synergistic action of deposited chloride salt and HCl-containing atmosphere. Corros. Sci. 2023, 222, 111413. [Google Scholar] [CrossRef]
- Wang, K.L.; Wei, Z.; Wei, Z.Y.; Ying, G.B.; Hong, S. Enhanced corrosion resistance of subsonic plasma sprayed nanostructured Al2O3-13TiO2 coating by ultrasound-assisted sealing. Ceram. Int. 2023, 49, 13852–13859. [Google Scholar] [CrossRef]
- Andrew, S.M.A. Investigating the anisotropic mechanical properties of plasma sprayed yttria-stabilised zirconia coatings. Surf. Coat. Technol. 2014, 259, 551–559. [Google Scholar] [CrossRef]
- Kahl, B.A.; Yang, Y.S.; Berndt, C.C.; Ang, A.S.M. Data-Constrained Modelling with multi-energy X-ray computed microtomography to evaluate the porosity of plasma sprayed ceramic coatings. Surf. Coat. Technol. 2022, 436, 128267. [Google Scholar] [CrossRef]
- Weng, P.X.; Guo, P.; Zheng, Z.H.; Ye, H.; Li, Q. Effects of TiO2 Contents on Phase and Mechanical Properties of Plasma Sprayed Al2O3-TiO2 Coatings. Mech. Eng. 2017, 41, 13–19. [Google Scholar] [CrossRef]
- Ozkan, S. Effect of the substrate temperature on properties of plasma sprayed Al2O3 coatings. Mater. Des. 2005, 26, 53–57. [Google Scholar] [CrossRef]
- Wu, J.; Cui, J.P.; Zheng, Q.J.; Zhang, S.D.; Sun, W.H.; Yang, B.J.; Wang, J.Q. Insight into the corrosion evolution of Fe-based amorphous coatings under wet-dry cyclic conditions. Electrochim. Acta 2019, 319, 966–980. [Google Scholar] [CrossRef]
- Picas, J.A.; Rupérez, E.; Punset, M.; Forn, A. Influence of HVOF spraying parameters on the corrosion resistance of WC–CoCr coatings in strong acidic environment. Surf. Coat. Technol. 2013, 225, 47–57. [Google Scholar] [CrossRef]
- Guan, F.; Zhai, X.F.; Duan, J.Z.; Zhang, J.; Li, K.; Hou, B.R. Influence of sulfate-reducing bacteria on the corrosion behavior of 5052 aluminum alloy. Surf. Coat. Technol. 2017, 316, 171–179. [Google Scholar] [CrossRef]
- Liu, C.; Bi, Q.; Leyland, A.; Matthews, A. An electrochemical impedance spectroscopy study of the corrosion behaviour of PVD coated steels in 0.5 N NaCl aqueous solution: Part II. Corros. Sci. 2003, 45, 1257–1273. [Google Scholar] [CrossRef]
- Ahn, S.H.; Choi, Y.S.; Kim, J.G.; Han, J.G. A study on corrosion resistance characteristics of PVD Cr-N coated steels by electrochemical method. Surf. Coat. Technol. 2002, 150, 319–326. [Google Scholar]
- Verdian, M.M.; Raeissi, K.; Salehi, M. Corrosion performance of HVOF and APS thermally sprayed NiTi intermetallic coatings in 3.5% NaCl solution. Corros. Sci. 2010, 52, 1052–1059. [Google Scholar] [CrossRef]
- Zhou, J.L.; Kong, D.J. Effects of Ni addition on corrosion behaviors of laser cladded FeSiBNi coating in 3.5% NaCl solution. J. Alloys Compd. 2019, 795, 416–425. [Google Scholar] [CrossRef]
- Qin, Y.J.; Wu, Y.P.; Zhang, J.F.; Hong, S.; Guo, W.M.; Chen, L.Y.; Liu, H. Optimization of the HOVF Spray Parameters by Taguchi Method for High Corrosion-Resistant Fe-Based Coatings (Article). J. Mater. Eng. Perform. 2015, 24, 2637–2644. [Google Scholar] [CrossRef]
- Zhang, G.A.; Zeng, Y.; Guo, X.P.; Jiang, F.; Shi, D.Y.; Chen, Z.Y. Electrochemical corrosion behavior of carbon steel under dynamic high pressure H2S/CO2 environment. Corros. Sci. 2012, 65, 37–47. [Google Scholar] [CrossRef]
- Wen, X.L.; Bai, P.P.; Luo, B.W.; Zheng, S.; Chen, C.F. Review of recent progress in the study of corrosion products of steels in a hydrogen sulfide environment. Corros. Sci. 2018, 139, 124–140. [Google Scholar] [CrossRef]
- Wei, S. Kinetics of Iron Carbonate and Iron Sulfide Scale Formation in Co2/H2s Corrosion. Ph.D. Thesis, Ohio University, Athens, OH, USA, 2006. [Google Scholar]
- Wang, Y.F.; Cheng, G.X.; Wu, W.; Qiao, Q.; Li, Y.; Li, X.F. Effect of pH and chloride on the micro-mechanism of pitting corrosion for high strength pipeline steel in aerated NaCl solutions. Appl. Surf. Sci. 2015, 349, 746–756. [Google Scholar] [CrossRef]
- Xiong, X.H.; Chen, L.B.; Hu, K.X.; Wang, Z.P.; Zhang, Q.X.; Lei, Y.J. Influence of temperature and chloride ion concentration on the corrosion behavior of Mg–4Al–3Ca–0.5RE alloy. Mater. Corros. 2019, 70, 1214–1221. [Google Scholar] [CrossRef]
Element | C | Si | Mn | Cr | Mo | Ni | P | S | Al | Fe |
---|---|---|---|---|---|---|---|---|---|---|
Content | 0.17–0.23 | 0.20–0.35 | 0.40–0.70 | 0.35–0.65 | 0.20–0.70 | 1.60–2.20 | ≤0.030 | ≤0.030 | 0.20–0.30 | Bal. |
Process Parameters | Bonding Layer | Ceramic Layer |
---|---|---|
Current/A | 400 | 500 |
Voltage/V | 68–70 | 77–79 |
Plasma gas flow (Ar)/L·min−1 | 40 | 30 |
Plasma gas flow (H2)/L·min−1 | 1 | 6.5 |
Plasma gas flow (N2)/L·min−1 | 1 | 1 |
Powder gas flow (N2)/L·min−1 | 5 | 5 |
Spray distance/mm | 130 | 90 |
Powder feed rate/g·min−1 | 25 | 22 |
Spray gun speed/mm·s−1 | 500 | 300 |
Compound | Concentration (g/L) |
---|---|
NaCl | 24.53 |
MgCl2 | 5.20 |
Na2SO4 | 4.09 |
CaCl2 | 1.16 |
KCl | 0.70 |
NaHCO3 | 0.20 |
KBr | 0.10 |
H3BO3 | 0.03 |
SrCl2-6H2O | 0.03 |
Time (d) | Ecorr (V) | icorr (A/cm2) | βa (mV·decade−1) | βc (mV·decade−1) |
---|---|---|---|---|
0 (substrate) | −0.748 | 1.013 × 10−5 | 70.731 | −236.64 |
0 (coating) | −0.615 | 3.406 × 10−6 | 129.27 | −94.33 |
14 (coating) | −0.503 | 2.450 × 10−6 | 156.05 | −125.98 |
28 (coating) | −0.525 | 3.653 × 10−6 | 141.49 | −119.83 |
Time (d) | Rs (Ω·cm2) | Qc (μF·cm−2) | ncoat | Rpore (Ω·cm2) | Qdl (μF·cm−2) | ndl | Rct (Ω·cm2) | W (Ω·cm−2·s−1/2) |
---|---|---|---|---|---|---|---|---|
0 | 26.78 | 5.0552 × 10−5 | 0.3511 | 216.4 | 4.3075 × 10−4 | 0.5142 | 1980 | 2.682 × 10−3 |
14 | 20.71 | 6.6334 × 10−5 | 0.2722 | 667.1 | 1.5731 × 10−4 | 0.4911 | 4341 | 1.873 × 10−3 |
28 | 20.93 | 1.0245 × 10−4 | 0.3603 | 538.6 | 2.7932 × 10−4 | 0.3682 | 2852 | 1.195 × 10−3 |
Elements | C | O | Si | Al | Ti | Fe | S |
---|---|---|---|---|---|---|---|
Original coating | 57.6 | 24.2 | 16.0 | 1.0 | 0.7 | 0.1 | - |
Uncracked area | 53.8 | 27.5 | 15.2 | 1.9 | 1.2 | 0.2 | - |
Cracked area | 48.5 | 31.3 | 14.8 | 2.2 | 1.3 | 1.7 | 0.3 |
Test Time (Day) | Ni μg/L | Ti μg/L | Mo μg/L | Fe mg/L | Mn mg/L | Al mg/L | Cr mg/L |
---|---|---|---|---|---|---|---|
Coating (1–7) | <0.06 | <0.46 | <0.06 | <0.02 | <0.004 | <0.07 | <0.03 |
Water (1–7) | <0.06 | <0.46 | <0.06 | <0.02 | <0.004 | <0.07 | <0.03 |
Coating (8–14) | <0.06 | <0.46 | <0.06 | <0.02 | <0.004 | <0.07 | <0.03 |
Water (8–14) | <0.06 | <0.46 | <0.06 | <0.02 | <0.004 | <0.07 | <0.03 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zeng, X.; Chen, X.; Wang, Y.; Zhang, H.; Cao, Q.; Cheng, X. Corrosion Behavior of Al2O3-40TiO2 Coating Deposited on 20MnNiMo Steel via Atmospheric Plasma Spraying in Hydrogen Sulfide Seawater Stress Environments. Coatings 2024, 14, 588. https://doi.org/10.3390/coatings14050588
Zeng X, Chen X, Wang Y, Zhang H, Cao Q, Cheng X. Corrosion Behavior of Al2O3-40TiO2 Coating Deposited on 20MnNiMo Steel via Atmospheric Plasma Spraying in Hydrogen Sulfide Seawater Stress Environments. Coatings. 2024; 14(5):588. https://doi.org/10.3390/coatings14050588
Chicago/Turabian StyleZeng, Xian, Xiangxiang Chen, Yongjun Wang, Hao Zhang, Qian Cao, and Xudong Cheng. 2024. "Corrosion Behavior of Al2O3-40TiO2 Coating Deposited on 20MnNiMo Steel via Atmospheric Plasma Spraying in Hydrogen Sulfide Seawater Stress Environments" Coatings 14, no. 5: 588. https://doi.org/10.3390/coatings14050588