Gold Nanoparticles as Monoanion Sensors through Modified Electrophilicity
Abstract
:1. Introduction
2. Materials and Methods
2.1. General Procedures
2.2. Synthesis of Compound 1
2.3. Synthesis of Compound 5
2.4. Preparation of the Functionalized AuNPs: NP1
3. Results
3.1. Study of Commercial Malachite Green (MG+) Dye versus Anions in Solution
3.2. Study of MG+ Functionalized AuNPs versus Anions in Solution
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Swain, G.; Scott, C.B. Quantitative Correlation of Relative Rates. Comparison of Hydroxide Ion with Other Nucleophilic Reagents toward Alkyl Halides, Esters, Epoxides and Acyl Halides. J. Am. Chem. Soc. 1953, 75, 141–147. [Google Scholar] [CrossRef]
- Ritchie, C.D. Nucleophilic reactivities toward cations . Acc. Chem. Res. 1972, 5, 348–354. [Google Scholar] [CrossRef]
- Mayr, H.; Ofial, A.R. Do general nucleophilicity scales exist? J. Phys. Org. Chem. 2008, 21, 584–595. [Google Scholar] [CrossRef]
- Mayr, H.; Patz, M. Scales of Nucleophilicity and Electrophilicity: A System for Ordering Polar Organic and Organometallic Reactions. Angew. Chem. Int. Ed. Engl. 1994, 33, 938–957. [Google Scholar] [CrossRef]
- Parr, R.G.; Szentpály, L.V.; Liu, S. Electrophilicity Index. J. Am. Chem. Soc. 1999, 121, 1922–1924. [Google Scholar] [CrossRef]
- Kiyooka, S.-I.; Kaneno, D.; Fujiyama, R. Intrinsic reactivity index as a single scale directed toward both electrophilicity and nucleophilicity using frontier molecular orbitals. Tetrahedron 2013, 69, 4247–4258. [Google Scholar] [CrossRef]
- Jaramillo, P.; Pérez, P.; Contreras, R.; Tiznado, W.; Fuentealba, P. Definition of a Nucleophilicity Scale. J. Phys. Chem. A 2006, 110, 8181–8187. [Google Scholar] [CrossRef]
- Liu, S.; Rong, C.; Lu, T. Information Conservation Principle Determines Electrophilicity, Nucleophilicity, and Regioselectivity. J. Phys. Chem. A 2014, 118, 3698–3704. [Google Scholar] [CrossRef]
- Martí, A.; Costero, A.M.; Gaviña, P.; Parra, M. Triarylcarbinol functionalized gold nanoparticles for the colorimetric detection of nerve agent simulants. Tetrahedron Lett. 2014, 55, 3093–3096. [Google Scholar] [CrossRef]
- Xi, C.; Liu, Z.; Kong, L.; Hu, X.; Liu, S. Effects of interaction of folic acid with uranium (VI) and basic triphenylmethane dyes on resonance Rayleigh scattering spectra and their analytical applications. Anal. Chim. Acta 2008, 613, 83–90. [Google Scholar] [CrossRef]
- Eldem, Y.; Özer, I. Electrophilic reactivity of cationic triarylmethane dyes towards proteins and protein-related nucleophiles. Dye. Pigment. 2004, 60, 49–54. [Google Scholar] [CrossRef]
- Cho, P.; Yang, T.; Blankenship, L.R.; Moody, J.D.; Churchwell, M.; Beland, F.A.; Culp, S.J. Synthesis and Characterization of N-Demethylated Metabolites of Malachite Green and Leucomalachite Green. Chem. Res. Toxicol. 2003, 16, 285–294. [Google Scholar] [CrossRef] [PubMed]
- Jang, M.-S.; Kang, N.-Y.; Kim, K.-S.; Kim, C.-H.; Lee, J.-H.; Lee, Y.-C. Mutational analysis of NADH-binding residues in triphenylmethane reductase from Citrobacter sp. strain KCTC 18061P. FEMS Microbiol. Lett. 2007, 271, 78–82. [Google Scholar] [CrossRef] [PubMed]
- Soborover, E.I.; Tverskoi, V.A.; Tokarev, S.V. An optical chemical sensor based on functional polymer films for controlling sulfur dioxide in the air of the working area: Acrylonitrile and alkyl methacrylate copolymers with brilliant green styrene sulfonate. J. Anal. Chem. 2005, 60, 274–281. [Google Scholar] [CrossRef]
- Motomizu, S.; Fujiwara, S.; Toei, K. Liquid—Liquid distribution behavior of ion-pairs of triphenylmethane dye cations and their analytical applications. Anal. Chim. Acta 1980, 128, 185–194. [Google Scholar] [CrossRef]
- Uda, R.M.; Oue, M.; Kimura, K. Specific behavior of crowned crystal violet in cation complexation and photochromism. J. Supramol. Chem. 2002, 2, 311–316. [Google Scholar] [CrossRef]
- Kimura, K.; Mizutani, R.; Yokoyama, M.; Arakawa, R.; Sakurai, Y. Metal-Ion Complexation and Photochromism of Triphenylmethane Dye Derivatives Incorporating Monoaza-15-crown-5 Moieties. J. Am. Chem. Soc. 2000, 122, 5448–5454. [Google Scholar] [CrossRef]
- Dickert, F.L.; Vonend, M.; Kimmel, H.; Mages, G. Dyes of the triphenylmethane type as sensor materials for solvent vapours. Fresenius’ Z. Anal. Chem. 1989, 333, 615–618. [Google Scholar] [CrossRef]
- Bengtesson, G. Acta Chem Scand—Consistent data. Acta Chem. Scand. 1969, 23, 455–466. [Google Scholar] [CrossRef]
- Gupta, S.K.S.; Mishra, S.; Rani, V.R. A study on equilibrium and kinetics of carbocation-to-carbinol conversion for di- and tri-arylmethane dye cations in aqueous solutions: Relative stabilities of dye carbocations and mechanism of dye carbinol formation. Indian J. Chem. Sec. A 2000, 39, 703–708. [Google Scholar]
- Chen, Y.-C.; Lee, I.-L.; Sung, Y.-M.; Wo, S.-P. Triazole functionalized gold nanoparticles for colorimetric Cr3+ sensing. Sensors Actuators B Chem. 2013, 188, 354–359. [Google Scholar] [CrossRef]
- Li, H.; Yong, Y.-W. Gold nanoparticles functionalized with supramolecular macrocycles. Chin. Chem. Lett. 2013, 24, 545–552. [Google Scholar] [CrossRef]
- Knighton, R.C.; Sambrook, M.R.; Vincent, J.C.; Smith, S.A.; Serpell, C.J.; Cookson, J.; Vickers, M.S.; Beer, P.D. Fluorogenic dansyl-ligated gold nanoparticles for the detection of sulfur mustard by displacement assay. Chem. Commun. 2013, 49, 2293–2295. [Google Scholar] [CrossRef] [PubMed]
- Kumar, V.; Anslyn, E.V. A Selective Turn-On Fluorescent Sensor for Sulfur Mustard Simulants. J. Am. Chem. Soc. 2013, 135, 6338–6344. [Google Scholar] [CrossRef] [PubMed]
- Wang, A.-J.; Guo, H.; Zhang, M.; Zhou, D.-L.; Wang, R.-Z.; Feng, J.-J. Sensitive and selective colorimetric detection of cadmium(II) using gold nanoparticles modified with 4-amino-3-hydrazino-5-mercapto-1,2,4-triazole. Microchim. Acta 2013, 180, 1051–1057. [Google Scholar] [CrossRef]
- Rastegarzadeh, S.; Rezaei, Z.B. Environmental assessment of 2-mercaptobenzimidazole based on the surface plasmon resonance band of gold nanoparticles. Environ. Monit. Assess. 2013, 185, 9037–9042. [Google Scholar] [CrossRef]
- Mayer, K.M.; Hafner, J.M. Localized Surface Plasmon Resonance Sensors. Chem. Rev. 2011, 111, 3828–3857. [Google Scholar] [CrossRef]
- Jiang, Y.; Wang, Y.; Ma, N.; Wang, Z.; Smet, M.; Zhang, X. Reversible Self-Organization of a UV-Responsive PEG-Terminated Malachite Green Derivative: Vesicle Formation and Photoinduced Disassembly. Langmuir 2007, 23, 4029–4034. [Google Scholar] [CrossRef]
- Barghouthi, Z.; Amereih, S. Spectrophotometric determination of fluoride in drinking water using aluminium complexes of triphenylmethane dyes. Water SA 2012, 38, 543–548. [Google Scholar] [CrossRef]
- Reuben, D.M.E.; Bruice, T.C. Reaction of thiol anions with benzene oxide and malachite green. J. Am. Chem. Soc. 1976, 98, 114–121. [Google Scholar] [CrossRef]
- Kaur, P.; Sareen, D.; Kaur, S.; Singh, K. An efficacious “naked-eye” selective sensing of cyanide from aqueous solutions using a triarylmethane leuconitrile. Inorg. Chem. Commun. 2009, 12, 272–275. [Google Scholar] [CrossRef]
- Haiss, W.; Thanh, N.T.K.; Aveyard, J.; Fernig, D.G. Determination of Size and Concentration of Gold Nanoparticles from UV−Vis Spectra. Anal. Chem. 2007, 79, 4215–4221. [Google Scholar] [CrossRef] [PubMed]
- Kong, B.; Zhu, A.; Luo, Y.; Tian, Y.; Yu, Y.; Shi, G. Sensitive and Selective Colorimetric Visualization of Cerebral Dopamine Based on Double Molecular Recognition. Angew. Chem. Int. Ed. 2011, 50, 1837–1840. [Google Scholar] [CrossRef] [PubMed]
- Godoy-Reyes, T.M.; Costero, A.M.; Gaviña, P.; Martínez-Máñez, R.; Sancenón, F. Colorimetric detection of normetanephrine, a pheochromocytoma biomarker, using bifunctionalised gold nanoparticles. Anal. Chim. Acta 2019, 1056, 146–152. [Google Scholar] [CrossRef]
- Martí, A.; Costero, A.M.; Gaviña, P.; Gil, S.; Parra, M.; Brotons-Gisbert, M.; Sánchez-Royo, J.F. Functionalized Gold Nanoparticles as an Approach to the Direct Colorimetric Detection of DCNP Nerve Agent Simulant. Eur. J. Org. Chem. 2013, 2013, 4770–4779. [Google Scholar] [CrossRef]
- Liu, B.; Wang, H.; Wang, T.; Bao, Y.; Du, F.; Tian, J.; Li, Q.; Bai, R. A new ratiometric ESIPT sensor for detection of palladium species in aqueous solution. Chem. Commun. 2012, 48, 2867–2869. [Google Scholar] [CrossRef]
Nucleophilicity Parameters | |||||
---|---|---|---|---|---|
Nucleophile | n | N | SN | ω/ε | IRI |
HS− | 5.1 | ||||
CN− | 5.1 | 16.27 | 0.70 | ||
Cl− | 2.7 | 17.20 | 0.60 | 1.74/0.37 | 0.34 |
F− | 10.88 * | 0.83 * | 4.52/0.45 | 0.50 | |
AcO− | 2.7 | 16.90 | 0.75 | 0.43/0.23 | 0.05 |
Malachite green | −42.0 | 0.82 |
CN− | AcO− | F− | Cl− | ClO4− | PF6− | |
---|---|---|---|---|---|---|
LOD (mol/L) | 3.099·10−3 | 5.08·10−4 | --- | 4.547·10−4 | --- | 5.22·10−4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Martí, A.; Arroyo, P.; Gaviña, P.; Gil, S.; Parra, M.; Sáez, J.A. Gold Nanoparticles as Monoanion Sensors through Modified Electrophilicity. Colorants 2023, 2, 591-600. https://doi.org/10.3390/colorants2040030
Martí A, Arroyo P, Gaviña P, Gil S, Parra M, Sáez JA. Gold Nanoparticles as Monoanion Sensors through Modified Electrophilicity. Colorants. 2023; 2(4):591-600. https://doi.org/10.3390/colorants2040030
Chicago/Turabian StyleMartí, Almudena, Pau Arroyo, Pablo Gaviña, Salvador Gil, Margarita Parra, and José A. Sáez. 2023. "Gold Nanoparticles as Monoanion Sensors through Modified Electrophilicity" Colorants 2, no. 4: 591-600. https://doi.org/10.3390/colorants2040030