The Use of Phosphogypsum as a Source of Raw Materials for Gypsum-Based Materials
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. PGs Characteristics
3.1.1. Chemical and Elemental Composition of PGs
3.1.2. Mineral Composition of the PGs and NG
3.1.3. DTA and TG-Analysis of the PGs and NG
3.1.4. Study of the Surface Morphology of PGs and NG Particles
- (1)
- The rhombic type is characterized by needle-shaped crystals with a uniform distribution of thin needles and elongated plates with sizes from 10 to 120 μm and crystallite size, normally from 400 to 550 nm;
- (2)
- The aggregate small rhombic type is characterized by small agglomerated needles with a size of 5–30 μm and a crystallite size from 70 to 300 nm;
- (3)
- The cluster type can be characterized as polycrystalline aggregates arranged in a disorderly manner. The crystals tend to form clumps, which are sometimes referred to as “pink sand”;
- (4)
- The aggregate short-needle type is characterized by the presence of small grains, which, normally, have a round, stone-like shape. This type is significantly different from other ones;
- (5)
- The needle type consists of very thin needle-shaped crystals.
3.1.5. Study of the Grain Composition and Granulometry of PGs
3.2. Study of Binder Characteristics
3.2.1. Study of the Morphology of PG Binders and NG Binder
3.2.2. SSA and Pore Size Distribution of the PG Binders and the NG Binder
Parameter | Gypsum-Bearing Component | |||
---|---|---|---|---|
PGBel | PGBal | PGKin | NG | |
Air permeability method | ||||
SSA, m2/kg | 301.0 | 241.8 | 192.3 | 457.0 |
BET method | ||||
SSA, m2/kg | 5374.9 | 3633.4 | 4019.1 | 4571.8 |
Total pore volume (p/p0 = 0.9900), cm3/g | 0.040 | 0.040 | 0.040 | 0.038 |
Average pore diameter, nm | 29.66 | 44.53 | 40.00 | 33.11 |
BJH method | ||||
SSA, m2/kg | 3732.4 | 2984.5 | 3506.1 | 4157.9 |
Total pore volume, cm3/g | 0.056 | 0.067 | 0.068 | 0.055 |
Average pore diameter, nm | 44.00 | 90.17 | 77.93 | 53.14 |
3.2.3. Setting Times and Physical Characteristics of the PG Binders and the NG Binder
3.2.4. Morphology of New Formations in Gypsum Binders
4. Conclusions
- -
- all studied PGs can be used as an alternative resource of raw materials to NG when the gypsum binders are synthesized;
- -
- despite the use of the same raw materials for the production of PGBel and PGKin, differences in the technological characteristics significantly affect the physical characteristics of PGs and PG materials;
- -
- SSA and pore size distribution for the PG binders are the main factors ensuring a high water demand, and as a result, less satisfactory physical characteristics;
- -
- to increase the efficiency of PGs use as a raw material for the production of PG-based materials, it is necessary to design measures aimed at reducing its water demand, for example, the use of grinding processes and the introduction of superplasticizers.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pedreño-Rojas, M.A.; Fořt, J.; Černý, R.; Rubio-de-Hita, P. Life cycle assessment of natural and recycled gypsum production in the Spanish context. J. Clean. Prod. 2020, 253, 120056. [Google Scholar] [CrossRef]
- Balti, S.; Boudenne, A.; Hamdi, N. Characterization and optimization of eco-friendly gypsum materials using response surface methodology. J. Build. Eng. 2023, 69, 106219. [Google Scholar] [CrossRef]
- Romero-Gómez, M.I.; Costa-Pereira, M.F.; Soares Dias, A.P.; Flores-Colen, I. Influence of high-temperature exposure on the properties of gypsum-plastic waste composites: Thermophysical and microstructural analysis. J. Build. Eng. 2023, 79, 107862. [Google Scholar] [CrossRef]
- Garg, M.; Pundir, A. Energy efficient cement free binder developed from industry waste—A sustainable approach. Eur. J. Environ. Civ. Eng. 2017, 21, 612–628. [Google Scholar] [CrossRef]
- Jain, N.; Maiti, S.; Aakriti, M.J.; Sondhi, D. Development of sustainable water-resistant binder with FGD gypsum & fly ash, and its environmental impact evaluation via carbon footprint and energy consumption analysis. Sustain. Chem. Pharm. 2024, 37, 101376. [Google Scholar] [CrossRef]
- Alfimova, N.; Pirieva, S.; Levickaya, K.; Kozhukhova, N.; Elistratkin, M. The Production of Gypsum Materials with Recycled Citrogypsum Using Semi-Dry Pressing Technology. Recycling 2023, 8, 34. [Google Scholar] [CrossRef]
- Kamarou, M.; Korob, N.; Kwapinski, W.; Romanovski, V. High-quality gypsum binders based on synthetic calcium sulfate dihydrate produced from industrial waste. J. Ind. Eng. Chem. 2021, 100, 324–332. [Google Scholar] [CrossRef]
- Murali, G.; Azab, M. Recent research in utilization of phosphogypsum as building materials: Review. J. Mater. Res. Technol. 2023, 25, 960–987. [Google Scholar] [CrossRef]
- Bilal, E.; Bellefqih, H.; Bourgier, V.; Mazouz, H.; Dumitraş, D.-G.; Bard, F.; Laborde, M.; Caspar, J.P.; Guilhot, B.; Iatan, E.-L.; et al. Phosphogypsum circular economy considerations: A critical review from more than 65 storage sites worldwide. J. Clean. Prod. 2023, 414, 137561. [Google Scholar] [CrossRef]
- Alfimova, N.I.; Pirieva, S.Y.; Elistratkin, M.Y.; Kozhuhova, N.I.; Titenko, A.A. Production methods of binders containing gypsum-bearing wastes: A review. Bull. BSTU Named V.G. Shukhov 2020, 11, 8–23. [Google Scholar] [CrossRef]
- Qin, X.; Cao, Y.; Guan, H.; Hu, Q.; Liu, Z.; Xu, J.; Hu, B.; Zhang, Z.; Luo, R. Resource utilization and development of phosphogypsum-based materials in civil engineering. J. Clean. Prod. 2023, 387, 135858. [Google Scholar] [CrossRef]
- Rashad, A.M. Phosphogypsum as a construction material. J. Clean. Prod. 2017, 166, 732–743. [Google Scholar] [CrossRef]
- Geraldo, R.H.; Costa, A.R.D.; Kanai, J.; Silva, J.S.; Souza, J.D.; Andrade, H.M.C.; Gonçalves, J.P.; Fontanini, P.S.P.; Camarini, G. Calcination parameters on phosphogypsum waste recycling. Constr. Build. Mater. 2020, 256, 119406. [Google Scholar] [CrossRef]
- Seraya, N.; Litvinov, V.; Daumova, G.; Zhusipov, N.; Idrisheva, Z.; Aubakirova, R. Production Waste Management: Qualitative and Quantitative Characteristics and the Calculation of the Hazard Class of Phosphogypsum. Processes 2023, 11, 3033. [Google Scholar] [CrossRef]
- Zhang, L.; Mo, K.H.; Tan, T.H.; Hung, C.-C.; Yap, S.P.; Ling, T.-C. Influence of calcination and GGBS addition in preparing β-hemihydrate synthetic gypsum from phosphogypsum. Case Stud. Constr. Mater. 2023, 19, e02259. [Google Scholar] [CrossRef]
- Cao, W.; Yi, W.; Peng, J.; Li, J.; Yin, S. Recycling of phosphogypsum to prepare gypsum plaster: Effect of calcination temperature. J. Build. Eng. 2022, 45, 103511. [Google Scholar] [CrossRef]
- Jin, Z.; Ma, B.; Su, Y.; Qi, H.; Lu, W.; Zhang, T. Preparation of eco-friendly lightweight gypsum: Use of beta-hemihydrate phosphogypsum and expanded polystyrene particles. Constr. Build. Mater. 2021, 297, 123837. [Google Scholar] [CrossRef]
- Ma, B.; Jin, Z.; Su, Y.; Lu, W.; Qi, H.; Hu, P. Utilization of hemihydrate phosphogypsum for the preparation of porous sound absorbing material. Constr. Build. Mater. 2020, 234, 117346. [Google Scholar] [CrossRef]
- Garg, M.; Pundir, A.; Singh, R. Modifications in water resistance and engineering properties of β-calcium sulphate hemihydrate plaster-superplasticizer blends. Mater. Struct. 2016, 49, 3253–3263. [Google Scholar] [CrossRef]
- Iglenkova, M.G.; Rodina, A.A.; Reshetov, V.A.; Romadenkina, S.B.; Kruzhalov, A.V. Dependences of Durability Phosphogypsum Knitting Materials from the Temperature of Heat Treatment and Particle Size Distribution. Proc. Saratov Univ. New Epis. Ser. Chem. Biol. Ecol. 2011, 11, 60–63. [Google Scholar]
- Loureiro, F.E.L.; de M. Monte, M.B.; Nascimento, M. Agrominerais—Fosfato. In Rochas & Minerais Industriais usos e Especificações. 2a; da Luz, A.B., Lins, F.A.F., Eds.; CETEM—Centro de Tecnologia Mineral: Rio de Janeiro, Brazil, 2008; 974p. [Google Scholar]
- Pufahl, P.K.; Groat, L.A. Sedimentary and igneous phosphate deposits: Formation and exploration: An invited paper. Econ. Geol. 2017, 112, 483–516. [Google Scholar] [CrossRef]
- Ptáček, P. Apatites and Their Synthetic Analogues—Synthesis. Structure. Properties and Applications; InTech: London, UK, 2016. [Google Scholar] [CrossRef]
- Jia, R.; Wang, Q.; Luo, T. Reuse of phosphogypsum as hemihydrate gypsum: The negative effect and content control of H3PO4. Resour. Conserv. Recycl. 2021, 174, 105830. [Google Scholar] [CrossRef]
PGBel | PGBal | PGKin | NG | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Oxide | % | StdErr% | Oxide | % | StdErr% | Oxide | % | StdErr % | Oxide | % | StdErr % |
CaO | 47.84 | 0.250 | SO3 | 48.84 | 0.250 | CaO | 47.03 | 0.250 | SO3 | 49.83 | 0.250 |
SO3 | 47.18 | 0.250 | CaO | 46.44 | 0.250 | SO3 | 46.85 | 0.250 | CaO | 49.62 | 0.250 |
P2O5 | 1.87 | 0.070 | SrO | 2.520 | 0.080 | P2O5 | 1.58 | 0.060 | MgO | 0.14 | 0.006 |
SiO2 | 1.18 | 0.050 | P2O5 | 0.68 | 0.034 | SiO2 | 1.27 | 0.060 | SrO | 0.12 | 0.006 |
F | 1.04 | 0.180 | CeO2 | 0.36 | 0.018 | SrO | 1.05 | 0.050 | Other | 0.30 | – |
SrO | 0.28 | 0.014 | PuO2 | 0.17 | 0.010 | F | 0.98 | 0.170 | |||
MgO | 0.15 | 0.010 | MgO | 0.15 | 0.008 | Al2O3 | 0.32 | 0.016 | |||
Al2O3 | 0.12 | 0.006 | SiO2 | 0.13 | 0.009 | CeO2 | 0.22 | 0.011 | |||
Other | 0.35 | – | Fe2O3 | 0.12 | 0.006 | MgO | 0.21 | 0.010 | |||
Na2O | 0.12 | 0.018 | Na2O | 0.10 | 0.019 | ||||||
La2O3 | 0.12 | 0.009 | Other | 0.40 | – | ||||||
Nd2O3 | 0.11 | 0.006 | |||||||||
Other | 0.23 | – |
PGBel | PGBal | PGKin | NG | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Element | % | StdErr% | Element | % | StdErr% | Element | % | StdErr % | Element | % | StdErr % |
Ca | 34.21 | 0.180 | Sx | 19.56 | 0.100 | CaO | 47.03 | 0.180 | SO3 | 49.83 | 0.100 |
Sx | 18.89 | 0.100 | Ca | 33.21 | 0.180 | SO3 | 46.85 | 0.100 | CaO | 49.62 | 0.180 |
Px | 0.82 | 0.030 | Sr | 2.130 | 0.070 | P2O5 | 1.58 | 0.027 | MgO | 0.14 | 0.004 |
Si | 0.55 | 0.025 | Px | 0.30 | 0.015 | SiO2 | 1.27 | 0.026 | SrO | 0.12 | 0.005 |
F | 1.04 | 0.180 | Ce | 0.29 | 0.015 | SrO | 1.05 | 0.043 | Other | 0.22 | – |
Sr | 0.23 | 0.012 | Pu | 0.15 | 0.009 | F | 0.98 | 0.170 | |||
Mg | 0.09 | 0.006 | Mg | 0.09 | 0.005 | Al2O3 | 0.32 | 0.008 | |||
Al | 0.06 | 0.003 | Si | 0.06 | 0.004 | CeO2 | 0.22 | 0.009 | |||
Other | 0.29 | – | Fe | 0.09 | 0.004 | MgO | 0.20 | 0.006 | |||
Na | 0.09 | 0.014 | Na2O | 0.10 | 0.014 | ||||||
La | 0.10 | 0.007 | Other | 0.33 | – | ||||||
Nd | 0.01 | 0.005 | |||||||||
Other | 0.17 | – |
PG ID | Sieve Residue Type | Sieve Residue, by wt.% Sieve Mesh Size, mm | Fineness Modulus | ||||||
---|---|---|---|---|---|---|---|---|---|
5 | 2.5 | 1.25 | 0.63 | 0.315 | 0.16 | >0.16 | |||
PGBel | Partial | 8.6 | 3.9 | 4.7 | 7.1 | 3.9 | 14.5 | 57.3 | 1.28 |
Total | 8.6 | 12.5 | 17.2 | 24.3 | 28.2 | 42.7 | 100 | ||
PGBal | Partial | 11.2 | 8.2 | 6.8 | 10 | 7.8 | 18.9 | 37.1 | 1.89 |
Total | 11.2 | 19.4 | 26.2 | 36.2 | 44 | 62.9 | 100 | ||
PGKin | Partial | 24.6 | 13.8 | 8.5 | 7.8 | 8.5 | 14.7 | 22.0 | 2.72 |
Total | 24.6 | 38.4 | 46.9 | 45.7 | 63.2 | 77.9 | 99.9 |
Parameter | PGBel | PGBal | PGKin | NG |
---|---|---|---|---|
Air permeability method | ||||
SSA, m2/kg | 203.6 | 183.9 | 163.5 | – |
BET method | ||||
SSA, m2/kg | 18,155 | 15,773 | 17,458 | – |
Total pore volume (p/p0 = 0.9900), cm3/g | 0.071 | 0.067 | 0.061 | 0.053 |
Average pore diameter, nm | 15.64 | 16.98 | 13.92 | 14.76 |
BJH method | ||||
SSA, m2/kg | 18,065 | 15,717 | 17172 | – |
Total pore volume, cm3/g | 0.086 | 0.084 | 0.082 | 0.072 |
Average pore diameter, nm | 19.03 | 21.40 | 19.17 | 19.29 |
Gypsum Component for Binder | W/S ratio | Setting Time, min | Average Density, kg/m3 | Flexural Strength, MPa | Compressive Strength, MPa | ||||
---|---|---|---|---|---|---|---|---|---|
Initial | Final | after 2 h of Molding | after Complete Drying | after 2 h of Molding | after Complete Drying | after 2 h of Molding | after Complete Drying | ||
PGBel | 0.92 | 17 | 22 | 1461 | 908 | 1,.85 | 2.47 | 1.72 | 4.67 |
PGBal | 0.88 | 11 | 19 | 1457 | 935 | 1.90 | 2.55 | 2.23 | 5.29 |
PGKin | 0.70 | 15 | 25 | 1494 | 1056 | 1.91 | 3.35 | 3.38 | 8.14 |
NG | 0.70 | 18 | 25 | 1570 | 1120 | 3.11 | 5.74 | 4.76 | 11.96 |
Gypsum Component for the Binder | Average Density for Completely Dry Binders at Different W/S Ratios, kg/m3 | ||||
---|---|---|---|---|---|
0.5 | 0.6 | 0.7 | 0.8 | 0.9 | |
PGBel | 1332 | 1246 | 1105 | 1014 | 944 |
PGBal | 1342 | 1233 | 1157 | 1053 | 927 |
PGKin | 1321 | 1202 | 1095 | 1062 | 960 |
NG | 1384 | 1255 | 1170 | 1054 | 961 |
Gypsum Component for the Binder | Compressive Strength for Completely Dry Binders at Different W/S Ratios, MPa | ||||
---|---|---|---|---|---|
0.5 | 0.6 | 0.7 | 0.8 | 0.9 | |
PGBel | 16.89 | 13.96 | 10.42 | 8.92 | 7.57 |
PGBal | 18.24 | 15.42 | 12.21 | 8.84 | 7.00 |
PGKin | 16.94 | 13.56 | 10.90 | 8.22 | 7.11 |
NG | 16.86 | 13.96 | 11.90 | 9.34 | 7.50 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Levickaya, K.; Alfimova, N.; Nikulin, I.; Kozhukhova, N.; Buryanov, A. The Use of Phosphogypsum as a Source of Raw Materials for Gypsum-Based Materials. Resources 2024, 13, 69. https://doi.org/10.3390/resources13050069
Levickaya K, Alfimova N, Nikulin I, Kozhukhova N, Buryanov A. The Use of Phosphogypsum as a Source of Raw Materials for Gypsum-Based Materials. Resources. 2024; 13(5):69. https://doi.org/10.3390/resources13050069
Chicago/Turabian StyleLevickaya, Kseniya, Nataliya Alfimova, Ivan Nikulin, Natalia Kozhukhova, and Aleksander Buryanov. 2024. "The Use of Phosphogypsum as a Source of Raw Materials for Gypsum-Based Materials" Resources 13, no. 5: 69. https://doi.org/10.3390/resources13050069