-
Modelling and Visualization Tools for Resource Decoupling at Meso- and Micro-Levels: Case Study in Poland
-
Insights into Awareness and Perceptions of Food Waste and School Catering Practices: A Student-Centered Study in Rezekne City, Latvia
-
Photovoltaic Waste Generation in the Context of Sustainable Energy Transition in EU Member States
-
Struvite Precipitation from Centrate—Identifying the Best Balance Between Effectiveness and Resource Efficiency
Journal Description
Resources
Resources
is an international, peer-reviewed, open access journal on natural resources published monthly online by MDPI.
- Open Access— free for readers, with article processing charges (APC) paid by authors or their institutions.
- High Visibility: indexed within Scopus, ESCI (Web of Science), GeoRef, PubAg, AGRIS, RePEc, and other databases.
- Journal Rank: JCR - Q2 (Environmental Sciences) / CiteScore - Q1 (Nature and Landscape Conservation)
- Rapid Publication: manuscripts are peer-reviewed and a first decision is provided to authors approximately 26.1 days after submission; acceptance to publication is undertaken in 4.4 days (median values for papers published in this journal in the second half of 2024).
- Recognition of Reviewers: reviewers who provide timely, thorough peer-review reports receive vouchers entitling them to a discount on the APC of their next publication in any MDPI journal, in appreciation of the work done.
- Journal Clusters of Water Resources: Water, Journal of Marine Science and Engineering, Hydrology, Resources, Oceans, Limnological Review, Coasts.
Impact Factor:
3.2 (2024);
5-Year Impact Factor:
3.5 (2024)
Latest Articles
FinTech Adoption and Its Influence on Sustainable Mineral Resource Management in the United States
Resources 2025, 14(6), 101; https://doi.org/10.3390/resources14060101 - 16 Jun 2025
Abstract
Sustainable mineral resource management is critical amid escalating environmental concerns and growing demand for minerals in digital and clean energy technologies. While financial technology (FinTech) has been widely recognized for enhancing financial inclusion and economic efficiency, its role in environmental governance—particularly in the
[...] Read more.
Sustainable mineral resource management is critical amid escalating environmental concerns and growing demand for minerals in digital and clean energy technologies. While financial technology (FinTech) has been widely recognized for enhancing financial inclusion and economic efficiency, its role in environmental governance—particularly in the mining sector—remains underexplored, especially within developed economies like the United States. This study addresses this gap by examining how FinTech adoption influences mineral sustainability, using time series data from 1998 to 2023. Four FinTech proxies—mobile cellular subscriptions, Internet usage, fixed broadband access, and financial inclusion—were analyzed alongside environmental compliance and investment in sustainable mining technologies. Using the Autoregressive Distributed Lag (ARDL) model and Frequency Domain Causality (FDC) analysis, the results show that greater FinTech adoption significantly reduces mineral depletion rates, indicating improved sustainability. Internet and broadband access exhibit strong long-term impacts, while mobile connectivity and credit access show notable short- and medium-term effects. Investment in sustainable mining technologies further enhances these outcomes. Our findings suggest that FinTech serves as a multidimensional enabler of sustainability through digital inclusion, transparency, and access to green financing. This study provides empirical evidence to guide policymakers in integrating digital financial infrastructure into strategies for sustainable mineral resource governance.
Full article
(This article belongs to the Special Issue Production Efficiency and Environmental Research for Responsible Mining)
►
Show Figures
Open AccessReview
Research Progress of Mine Ecological Restoration Technology
by
Yue Xiang, Jiayi Gong, Liyong Zhang, Minghai Zhang, Jia Chen, Hui Liang, Yonghua Chen, Xiaohua Fu, Rongkui Su and Yiting Luo
Resources 2025, 14(6), 100; https://doi.org/10.3390/resources14060100 - 16 Jun 2025
Abstract
This article provides a systematic review of the current research status and latest progress in the field of mine ecological restoration. Using the SCI literature indexed by the Web of Science database as the data source, the research status and hotspots in the
[...] Read more.
This article provides a systematic review of the current research status and latest progress in the field of mine ecological restoration. Using the SCI literature indexed by the Web of Science database as the data source, the research status and hotspots in the field of mine ecological restoration are displayed through the visual analysis of CiteSpace and the progress of mine ecological restoration technology this year is systematically summarized. Through a comprehensive review of existing technological methods, it is found that whether it is physical, chemical, biological restoration, or combined restoration technology, there are respective advantages, disadvantages, and application limitations. Physical remediation is a pretreatment, chemical remediation is prone to secondary pollution, while the sustainability shown by bioremediation makes it dominant in the of mine ecological remediation, but it has a long cycle and there is a risk of heavy metals that are accumulated by plants re-entering the biosphere through the food chain. Combined remediation can integrate the advantages of different restoration technologies and is the trend for the future development of mine ecological restoration. In the future, we should further promote technological innovation, perfect monitoring and evaluation technology, and promote informatization, scientization, and the effective implementation of mine ecological restoration, to achieve the ecological restoration and sustainable development of the mine area.
Full article
(This article belongs to the Special Issue Mine Ecological Restoration)
►▼
Show Figures

Figure 1
Open AccessFeature PaperArticle
Geosystem Services of Erratic Boulders in Selected Regions of Central Poland
by
Maria Górska-Zabielska and Anna Łubek
Resources 2025, 14(6), 99; https://doi.org/10.3390/resources14060099 - 11 Jun 2025
Abstract
Scandinavian erratic boulders in central Poland represent a significant element of the region’s geodiversity, fulfilling important natural, scientific, and cultural functions. As objects of high perceptual value, they integrate into the landscape and provide a wide range of geosystem services. The main objectives
[...] Read more.
Scandinavian erratic boulders in central Poland represent a significant element of the region’s geodiversity, fulfilling important natural, scientific, and cultural functions. As objects of high perceptual value, they integrate into the landscape and provide a wide range of geosystem services. The main objectives of research conducted in two areas of the Małopolska Upland are to determine the concentration of these boulders and identify the geosystem benefits they offer, with particular emphasis on lichen species inhabiting their surfaces. Research has confirmed the currently limited use of geosystem services provided by the 25 erratic boulders studied. However, this may change with growing ecological awareness among local communities, enabling a deeper appreciation of inanimate nature. Erratic boulders have the potential to attract geotourists and thus support economic development (by improving the residents’ quality of life), but this potential requires broader promotion. Although the Central Register of Geosites of Poland is an appropriate platform for their registration, none of the analysed boulders have yet been included. The research findings are also partly directed at local government units to help them recognise the value of erratic boulders for sustainable development, in line with existing legal frameworks and development strategies. The detailed characterisation of 25 boulders may inspire broader initiatives and foster knowledge transfer to support regional development through geotourism. The ability to identify the ecosystem benefits provided by erratic boulders is essential for maintaining ecological balance and sustaining natural processes. However, there is growing evidence of the systematic disappearance of erratic boulders from the landscape, which disrupts geosystem balance and leads to further environmental degradation, negatively affecting human well-being. In light of the lack of effective nature protection measures in the study area, it is proposed that some of these boulders be designated as geological protected features. Such a conservation approach could help maintain ecological balance in the designated area.
Full article
(This article belongs to the Special Issue Geosites as Tools for the Promotion and Conservation of Geoheritage)
►▼
Show Figures

Figure 1
Open AccessReview
Valorization of Guarana (Paullinia cupana) Production Chain Waste—A Review of Possible Bioproducts
by
Guilherme Teixeira de Azevedo, Giovana Lima de Souza, Eduardo Leonarski, Kevyn Melo Lotas, Gustavo Henrique Barroso da Silva, Fábio Rodolfo Miguel Batista, Karina Cesca, Débora de Oliveira, Anderson Mathias Pereira and Leiliane do Socorro Sodré Souza
Resources 2025, 14(6), 98; https://doi.org/10.3390/resources14060098 - 9 Jun 2025
Abstract
►▼
Show Figures
The Amazon region’s rich biodiversity supports a bioindustry model that utilizes various biological assets from different plant species, and where it will add value to existing production chains, starting to supply bio industrialized products and not just primary products. Guarana (Paullinia cupana
[...] Read more.
The Amazon region’s rich biodiversity supports a bioindustry model that utilizes various biological assets from different plant species, and where it will add value to existing production chains, starting to supply bio industrialized products and not just primary products. Guarana (Paullinia cupana) is rich in bioactive compounds that interest the food and pharmaceutical industries. Thus, the main objective of this review is to present ways to add value to the guarana production chain by developing bioproducts using the residues generated in its processing. During processing, various residues are generated, as follows: peel (corresponding to 30% of the total mass of the fruit), and pulp (aryl), shell, and spent seeds, which have potential for application according to their characteristics. These residues were used to obtain bioactive compounds (catechins, theobromine, and caffeine) through different types of extraction (conventional, enzymatic, and pressurized liquid), and, subsequently, encapsulation. They were also applied in biodegradable and active packaging. Due to the high hemicellulose concentration, residual guarana seeds’ characteristics could potentially produce xylooligosaccharides (XOS). Therefore, the concept of biorefinery applied within the guarana production chain provides products that can be studied in the future to determine which processes are viable for expanding and valuing the productive chain of this fruit, in addition to strengthening sustainable development in the Amazon.
Full article

Figure 1
Open AccessSystematic Review
Integrating Sustainability and Resilience Objectives for Energy Decisions: A Systematic Review
by
Olaoluwa Paul Aasa, Sarah Phoya, Rehema Joseph Monko and Innocent Musonda
Resources 2025, 14(6), 97; https://doi.org/10.3390/resources14060097 - 5 Jun 2025
Abstract
►▼
Show Figures
There is a need for simultaneous attention to sustainability and resilience objectives while making energy decisions because of the need to address disruptions or shocks that can result from system-wide changes due to transitioning and existing threats to system performance. Owing to this
[...] Read more.
There is a need for simultaneous attention to sustainability and resilience objectives while making energy decisions because of the need to address disruptions or shocks that can result from system-wide changes due to transitioning and existing threats to system performance. Owing to this emerging research area, this systematic review used the Scopus database to address the central question: What are the trends and practices that can enhance the integration of sustainability and resilience for energy decisions? The articles used are peer-reviewed, empirical research in the energy field and written in English. Articles that did not explicitly address energy systems (or any of the value chains) and gray literature were excluded from the study. The final screening of records resulted in the selection of 75 articles that effectively addressed the decision objective, context, and implementation (D-OCI), a classification scheme that supports 18 specific questions to identify practices for integrating the sustainability and resilience objectives. The highlighted practices are advantageous for decision evaluation and can provide valuable insights for formulating energy policies. This is particularly relevant because energy-related decisions affect households, organizations, and both national and international development. The study proposes ideas for future research based on the highlighted practices.
Full article

Figure 1
Open AccessArticle
Life Cycle Sustainability Assessment of Greywater Treatment and Rainwater Harvesting for Decentralized Water Reuse in Brazil and Germany
by
Hugo Henrique de Simone Souza, Carlo Gottardo Morandi, Marc Árpád Boncz, Paula Loureiro Paulo and Heidrun Steinmetz
Resources 2025, 14(6), 96; https://doi.org/10.3390/resources14060096 - 4 Jun 2025
Abstract
►▼
Show Figures
Urban water management faces growing pressure from population growth, pollution, and climate variability, demanding innovative strategies to ensure long-term sustainability. This study applies the Life Cycle Sustainability Assessment (LCSA) across four case studies in Brazil and Germany, evaluating integrated systems that combine constructed
[...] Read more.
Urban water management faces growing pressure from population growth, pollution, and climate variability, demanding innovative strategies to ensure long-term sustainability. This study applies the Life Cycle Sustainability Assessment (LCSA) across four case studies in Brazil and Germany, evaluating integrated systems that combine constructed wetlands for greywater treatment with rainwater harvesting for non-potable use. The scenarios include a single-family household, a high-rise residential building, a rural residence, and worker housing. A multi-criteria analysis was conducted to derive consolidated sustainability indicators, and sensitivity analysis explored the influence of dimension weighting. Results showed that water reuse scenarios consistently outperformed conventional counterparts across environmental, economic, and social dimensions. Life Cycle Assessment (LCA) revealed notable reductions in global warming potential, terrestrial acidification, and eutrophication. Life Cycle Costing (LCC) confirmed financial feasibility when externalities were considered, especially in large-scale systems. Social Life Cycle Assessment (S-LCA) highlighted the perceived benefits in terms of health, safety, and sustainability engagement. Integrated water reuse systems achieved overall sustainability scores up to 4.8 times higher than their baseline equivalents. These findings underscore the effectiveness of decentralized water reuse as a complementary and robust alternative to conventional supply and treatment models, supporting climate resilience and sustainable development goals.
Full article

Figure 1
Open AccessArticle
Green Coffee Bean Extracts: An Alternative to Improve the Microbial and Oxidative Stability of Ground Beef
by
Wendy Alejandra Atondo-Echeagaray, Brisa del Mar Torres-Martínez, Rey David Vargas-Sánchez, Gastón Ramón Torrescano-Urrutia, Nelson Huerta-Leidenz and Armida Sánchez-Escalante
Resources 2025, 14(6), 95; https://doi.org/10.3390/resources14060095 - 4 Jun 2025
Abstract
Green coffee bean extracts (GCBEs) represent a promising alternative to improve ground beef’s microbial and oxidative stability. This study evaluated the content of bioactive metabolites, the antimicrobial and antioxidant activity of extracts obtained from GCBE with different solvents (W, water; E, ethanol; WE,
[...] Read more.
Green coffee bean extracts (GCBEs) represent a promising alternative to improve ground beef’s microbial and oxidative stability. This study evaluated the content of bioactive metabolites, the antimicrobial and antioxidant activity of extracts obtained from GCBE with different solvents (W, water; E, ethanol; WE, water–ethanol), in comparison to textured soy protein extract (TSPE), and their effect on the microbial and antioxidant stability of meat homogenates. The results showed that the extraction solvent significantly affected the yield and metabolite content (p < 0.05), with GCBE-W and TSPE-WE as the highest performers (>20% by both). GCBE-E presented the highest (p < 0.05) tannin value (19.13 mg/100 g), while GCBE-W and GCBE-WE showed the highest (p < 0.05) flavonoids and chlorogenic acid content (1.19 and 11.20 mg/100 g, respectively). Regarding antimicrobial activity, GCBE-WE showed the highest (p < 0.05) inhibition against Staphylococcus aureus and Escherichia coli (31.11% and 41.94% of inhibition, respectively). In comparison, GCBE-E and GCBE-WE were significantly effective (p < 0.05) against Listeria monocytogenes and Salmonella typhimurium (44.79% and 31.25% of inhibition by both, respectively). Regarding antioxidant activity, GCBE-E and GCBE-WE presented the highest (p < 0.05) DPPH inhibition (92.79% by both), as well as the highest reducing power values (1.40 abs and 173.28 mg Fe2+/g by both). GCBE-WE significantly reduced (p < 0.05) the microbial load after heating in meat (1.21 log10 CFU/g), while GCBE-E and ASC showed the lowest (p < 0.05) pH values (5.74 by both). Furthermore, incorporating the extracts GCBE-E, GCBE-WE, and TSPE significantly reduced (p < 0.05) lipid oxidation (40, 45.71, and 48.57%), and affected (p < 0.05) color parameters. These findings suggest the potential of GCBEs as natural additives in the meat industry.
Full article
(This article belongs to the Special Issue Resource Extraction from Agricultural Products/Waste: 2nd Edition)
►▼
Show Figures

Figure 1
Open AccessArticle
Valorization of the Invasive Red Lionfish (Pterois volitans L.) as a Natural and Promising Source of Bioactive Hydrolysates with Antioxidant and Metal-Chelating Properties
by
Luis Chel-Guerrero, David Betancur-Ancona, Yasser Alejandro Chim-Chi, Valentino Mukthar Sandoval-Peraza and Santiago Gallegos Tintoré
Resources 2025, 14(6), 94; https://doi.org/10.3390/resources14060094 - 3 Jun 2025
Abstract
►▼
Show Figures
Lionfish is a predatory invasive species that endangers native species in the areas it colonizes. Hunting it is necessary to prevent this natural devastation while taking advantage of this unconventional natural source. The objective of this research was to utilize lionfish muscle to
[...] Read more.
Lionfish is a predatory invasive species that endangers native species in the areas it colonizes. Hunting it is necessary to prevent this natural devastation while taking advantage of this unconventional natural source. The objective of this research was to utilize lionfish muscle to obtain hydrolysates with biological activities (antioxidant and chelating properties). The methodology of this study involved the obtention of hydrolysates with Alcalase® at 30 (H30), 60 (H60), and 90 (H90) min. Degree of hydrolysis (DH), amino acid, electrophoretic profile, and antioxidant and chelating activities were determined for the hydrolysates obtained. The amino acid composition showed a high nutritional value since all the hydrolysates fulfilled the requirements proposed by the FAO (except tryptophan) for children, adolescents, and adults. The DH was >30% at 60 and 90 min. In the electrophoretic analysis, protein and polypeptides were identified. DPPH radical scavenging was 27.78% at 30 min. Iron-chelating activity was 64.23% at 90 min, and copper-chelating capacity remained at >90% in all hydrolysates. Lionfish are an invasive and unexploited source of hydrolysates with potential applications in the feed and food industries.
Full article

Graphical abstract
Open AccessArticle
Novel Rap-Landslide Method for Assessing Agroforestry Sustainability in Landslide-Prone Areas
by
Euthalia Hanggari Sittadewi, Iwan Gunawan Tejakusuma, Titin Handayani, Arif Dwi Santoso, Adrin Tohari, Asep Mulyono, Zufialdi Zakaria, Evensius Bayu Budiman, Hilmi El Hafidz Fatahillah and Riski Fitriani
Resources 2025, 14(6), 93; https://doi.org/10.3390/resources14060093 - 1 Jun 2025
Abstract
►▼
Show Figures
Landslides are becoming increasingly frequent, intensified by extreme rainfall and human activities, and threaten ecosystems and livelihoods. In Nyomplong, West Java, they have displaced residents and damaged land, which is now repurposed for agroforestry. Sustainable agroforestry management is crucial for reducing landslide risks
[...] Read more.
Landslides are becoming increasingly frequent, intensified by extreme rainfall and human activities, and threaten ecosystems and livelihoods. In Nyomplong, West Java, they have displaced residents and damaged land, which is now repurposed for agroforestry. Sustainable agroforestry management is crucial for reducing landslide risks and enhancing farmer livelihoods, and a comprehensive assessment is required. This study presents Rapid Appraisal for Landslide (Rap-Landslide), a novel method for assessing agroforestry sustainability. Multidimensional Scaling evaluates economic, environmental, social, technological, and institutional dimensions, focusing on key factors in landslide mitigation, land conservation, and productivity enhancement. The approach includes data collection, sustainability evaluation, leverage factor analysis, and validity testing. This study indicates that the sustainability index of agroforestry in Nyomplong ranges from 40.66% to 62.82%, with an average of 56.16%, classifying it as moderately sustainable. Monte Carlo analysis confirms that this study maintains a stable sustainability status with high confidence. Furthermore, Rap-Landslide leverage analysis identifies 15 key attributes significantly influencing sustainability. Key strategies for improvement include more substantial government support in agroforestry policies, farmer group empowerment, the adoption of conservation technologies such as terracing and soil biotechnology, the use of organic fertilizers, appropriate crop selection, and improved market access. Rap-Landslide can be applied to other landslide-prone areas, offering a systematic approach to evaluating sustainability and guiding effective land management strategies.
Full article

Figure 1
Open AccessArticle
Hydrothermal Valorization of Peapods and Coffee Cherry Waste: Comparative Analysis of Organic and Inorganic Acid Catalysis and Evaluation of Biomass’ Influence on Catalytic Efficiency
by
Alejandra Sophia Lozano Pérez, Valentina Romero Mahecha and Carlos Alberto Guerrero Fajardo
Resources 2025, 14(6), 92; https://doi.org/10.3390/resources14060092 - 29 May 2025
Abstract
►▼
Show Figures
Hydrothermal processing has emerged as a promising clean technology for managing the substantial amounts of agro-industrial waste generated worldwide. This study aims to introduce a clean technology approach to biomass valorization processes by exploring the hydrothermal conversion of two distinct biomass feedstocks, peapods
[...] Read more.
Hydrothermal processing has emerged as a promising clean technology for managing the substantial amounts of agro-industrial waste generated worldwide. This study aims to introduce a clean technology approach to biomass valorization processes by exploring the hydrothermal conversion of two distinct biomass feedstocks, peapods and coffee cherries, into valuable platform chemicals through the use of homogeneous acid catalysts. The hydrothermal valorization experiments were conducted in a 500 mL reactor at 180 °C for 1 h with a 1:20 biomass–acid solution ratio, utilizing a set of organic and inorganic acids as catalysts. The chemical compositions of the biomass feedstocks were analyzed, revealing significant differences in their cellulose (20.2 wt% in peapods; 27.6 wt% in coffee cherries), hemicellulose (17.4 wt% in peapods; 12.5 wt% in coffee cherries), and lignin (5.0 wt% in peapods; 13.7 wt% in coffee cherries) contents. Without the use of catalysts, peapods yielded 45.128 wt% platform chemicals, outperforming coffee cherries, which produced 32.598 wt%. The introduction of various acid catalysts influenced the yields and selectivity of platform chemicals. Sulfuric acid enhanced sugar production, yielding 62.936 wt% from peapods and 51.236 wt% from coffee cherries. Hydrochloric acid selectively favored sugar production but resulted in decreased overall yields. Nitric acid facilitated the conversion of both biomass types, yielding 35.223 wt% from coffee cherries and 40.315 wt% from peapods. Adipic acid achieved the highest overall yields, with 53.668 wt% for coffee cherries and 65.165 wt% for peapods, while also increasing levulinic acid production. Acetic acid significantly increased sugar yields, which reached 50.427 wt% with peapods. The findings highlight the potential of hydrothermal valorization as a clean technology for biomass conversion and underscores the importance of tailoring catalyst selection and process conditions to optimize the valorization of biomass feedstocks.
Full article

Figure 1
Open AccessArticle
Study of Road Bitumen Operational Properties Modified with Phenol–Cresol–Formaldehyde Resin
by
Yuriy Demchuk, Volodymyr Gunka, Iurii Sidun, Bohdan Korchak, Myroslava Donchenko, Iryna Drapak, Ihor Poliuzhyn and Serhiy Pyshyev
Resources 2025, 14(6), 91; https://doi.org/10.3390/resources14060091 - 28 May 2025
Cited by 1
Abstract
Using a relatively inexpensive method, phenol–cresol–formaldehyde resin (PhCR-F) was produced utilizing the byproducts of coal coking. It is shown that petroleum road bitumens, to which 1.0 wt.% PhCR-F is added, in terms of basic physical and mechanical parameters, comply with the requirements of
[...] Read more.
Using a relatively inexpensive method, phenol–cresol–formaldehyde resin (PhCR-F) was produced utilizing the byproducts of coal coking. It is shown that petroleum road bitumens, to which 1.0 wt.% PhCR-F is added, in terms of basic physical and mechanical parameters, comply with the requirements of the regulatory document for bitumens modified with adhesive additives. Research on the operational properties of these modified bitumens as a binding material for asphalt concrete is described. It has been proven that modified bitumen can store stable properties during its application (resistance to aging). The interaction of bitumens modified by PhCR-F with the surfaces of mineral materials, which occurs during the creation of asphalt concrete coatings, was studied. It was shown that adding 1.0 wt.% PhCR-F to road bitumen significantly improves the adhesion of the binder to the mineral material and increases the hydrophobicity of such a coating. The production of effective bitumen modifiers from non-target coking products of coal will not only make it possible to use new resources in road construction but will also increase the depth of decarbonization of the coking industry.
Full article
(This article belongs to the Special Issue Assessment and Optimization of Energy Efficiency)
►▼
Show Figures

Figure 1
Open AccessArticle
Future Development of Raw Material Policy Based on Statistical Data Analysis
by
Lucia Domaracká, Damiana Šaffová, Katarína Čulková, Marcela Taušová, Barbara Kowal and Simona Matušková
Resources 2025, 14(6), 90; https://doi.org/10.3390/resources14060090 - 27 May 2025
Abstract
►▼
Show Figures
For the European Union in the field of raw material policy, it is primarily important to ensure reliable, seamless, and unrestricted access to raw materials in all EU countries. An important aspect in assessing the European Union’s raw material policy is a detailed
[...] Read more.
For the European Union in the field of raw material policy, it is primarily important to ensure reliable, seamless, and unrestricted access to raw materials in all EU countries. An important aspect in assessing the European Union’s raw material policy is a detailed analysis of selected significant raw materials. This paper focuses on raw material policy within the European Union (EU). Specifically, it examines five types of raw materials: critical raw materials, metal ores, non-metallic minerals, fossil energy materials, and biomass. The research is oriented to analyzing the materials from the perspectives of consumption, mining, export, and import. The objective is to assess the European Union’s (EU) raw material policy by employing specific tools and statistical methodologies to analyze individual data. We aimed to assess the European Union (EU) raw material policy using selected statistical methods such as regression and correlation analysis, multivariate analysis, and pairwise correlation to reveal and describe the relationships between variables. Based on the examination of import and export data, it is evident that imports are on the rise while exports are declining. This trend underscores the EU’s continued reliance on raw materials sourced from other global regions. The results show that domestic production and consumption are sufficient; on the other hand, the EU remains dependent on imports of critical raw materials. The results are useful for the development of future EU raw material policy.
Full article

Figure 1
Open AccessArticle
Optimization of Blighia sapida Seed Oil Biodiesel Production: A Sustainable Approach to Renewable Biofuels
by
Oyetola Ogunkunle and Christopher C. Enweremadu
Resources 2025, 14(6), 89; https://doi.org/10.3390/resources14060089 - 26 May 2025
Abstract
►▼
Show Figures
This study aims to optimize the production of biodiesel from Blighia sapida (Ackee) seed oil, a non-edible and underutilized feedstock, as a sustainable alternative to conventional fossil-based diesel fuels. The transesterification of Blighia sapida seed oil was optimized using Response Surface Methodology (RSM)
[...] Read more.
This study aims to optimize the production of biodiesel from Blighia sapida (Ackee) seed oil, a non-edible and underutilized feedstock, as a sustainable alternative to conventional fossil-based diesel fuels. The transesterification of Blighia sapida seed oil was optimized using Response Surface Methodology (RSM) with a Box–Behnken experimental design. Three process variables, reaction time, temperature, and methanol-to-oil molar ratio, were selected for modeling biodiesel yield. The resulting biodiesel was characterized by physicochemical properties in accordance with ASTM D6751 standards. The optimal transesterification conditions were found to be 60 min, 60 °C, and a methanol-to-oil ratio of 3:1, yielding 98.36% biodiesel. This represents an improvement over the unoptimized yield of 94.3% at a 6:1 molar ratio. Experimental validation produced an average yield of 97.49%, confirming the model’s reliability. The produced biodiesel exhibited a kinematic viscosity of 4.02 mm2/s, cetane number of 54.6, flash point of 138 °C, and acid value of 0.421 mg KOH/g, which are all within the ASTM D6751 standard limits. This work is among the first to systematically optimize Blighia sapida biodiesel production using RSM. The results demonstrate its viability as a clean-burning, high-quality biodiesel fuel with promising fuel properties and environmental benefits. Its high cetane number and low methanol requirement enhance its combustion performance and production efficiency, positioning Blighia sapida as a competitive feedstock for sustainable biofuel development.
Full article

Figure 1
Open AccessArticle
Assessment of Minimum Support Price for Economically Relevant Non-Timber Forest Products of Buxa Tiger Reserve in Foothills of Eastern Himalaya, India
by
Trishala Gurung, Avinash Giri, Arun Jyoti Nath, Gopal Shukla and Sumit Chakravarty
Resources 2025, 14(6), 88; https://doi.org/10.3390/resources14060088 - 25 May 2025
Abstract
►▼
Show Figures
This study was carried out at 10 randomly selected fringe villages of Buxa Tiger Reserve (BTR) in the Terai region of West Bengal, India through personal interviews with 100 randomly selected respondents. The study documented 102 non-timber forest products (NTFPs) that were utilized
[...] Read more.
This study was carried out at 10 randomly selected fringe villages of Buxa Tiger Reserve (BTR) in the Terai region of West Bengal, India through personal interviews with 100 randomly selected respondents. The study documented 102 non-timber forest products (NTFPs) that were utilized throughout the year. In the local weekly market, 28 NTFPs were found to be traded by the collectors. The study shows that without proper price mechanisms and marketing channels; the residents cannot obtain fair prices for their products. The study found only nine NTFPs that were prominently traded with the involvement of middlemen and traders along with the royalty imposed by the State Forest Department. The MSPs computed for these nine NTFPs were 25–200% higher than the prices the collectors were selling to the traders. The nationalization of NTFPs through MSPs will help their effective marketing, ensuring an adequate income for the collectors, which will lead to their sustainable harvest and conservation through participatory forest management. Introducing MSPs for NTFPs with an efficient procurement network can advance the economic status of the inhabitants. We recommend increasing the inhabitants’ capacity to collect, store, process, and market NTFPs with active policy, institutional, and infrastructural support.
Full article

Figure 1
Open AccessFeature PaperArticle
Carbon, Water, and Light Use Efficiency Under Conservation Practice on Sloped Arable Land
by
Gergana Kuncheva, Atanas Z. Atanasov, Milena Kercheva, Margaritka Filipova, Plamena D. Nikolova, Petar Nikolov, Valentin Vlăduț and Veselin Dochev
Resources 2025, 14(6), 87; https://doi.org/10.3390/resources14060087 - 23 May 2025
Abstract
►▼
Show Figures
Agroecosystems play a key role in the global carbon cycle, with CO2 exchange driven by photosynthesis and respiration. Indicators such as gross primary productivity (GPP), net primary productivity (NPP), and carbon, water, and light use efficiency (CUE, WUE, LUE) are essential for
[...] Read more.
Agroecosystems play a key role in the global carbon cycle, with CO2 exchange driven by photosynthesis and respiration. Indicators such as gross primary productivity (GPP), net primary productivity (NPP), and carbon, water, and light use efficiency (CUE, WUE, LUE) are essential for assessing resource use in agricultural systems. Conventional tillage depletes carbon, water, and nutrients, negatively impacting the environment, while conservation practices aim to improve soil health and biodiversity. This study evaluated the effects of a cover crop in a wheat–maize rotation on sloped arable land prone to water erosion. The experiment involved minimum contour tillage combined with cover cropping, and its impact on carbon balance components and resource use efficiency was assessed. The results demonstrated that the inclusion of a cover crop significantly improved GPP and NPP. Water and light use efficiency also increased, particularly in 2022 and 2023, which were characterized by summer drought. However, carbon use efficiency remained unchanged over the study period. These findings highlight the potential of conservation practices, such as cover cropping and reduced tillage, to enhance productivity and resource efficiency in sloped agricultural landscapes under water stress conditions.
Full article

Figure 1
Open AccessSystematic Review
Basalt Rock Powder in Cementitious Materials: A Systematic Review
by
Maryane Pipino Beraldo Almeida, Lays da Silva Sá Gomes, Alex Ramos Silva, Jacqueline Roberta Tamashiro, Fábio Friol Guedes Paiva, Lucas Henrique Pereira Silva and Angela Kinoshita
Resources 2025, 14(6), 86; https://doi.org/10.3390/resources14060086 - 23 May 2025
Abstract
►▼
Show Figures
Concrete and mortar production consumes significant natural resources, leading to environmental concerns and sustainability challenges. Sustainable alternatives, such as industrial byproducts, have been explored to replace clinkers and aggregates. Basalt rock powder (BRP) is a promising option due to its physical and chemical
[...] Read more.
Concrete and mortar production consumes significant natural resources, leading to environmental concerns and sustainability challenges. Sustainable alternatives, such as industrial byproducts, have been explored to replace clinkers and aggregates. Basalt rock powder (BRP) is a promising option due to its physical and chemical properties, including its better particle size distribution and compatibility with cementitious composites, and studies have highlighted its pozzolanic activity and its potential to improve mechanical properties (compressive strength, flexural strength, and durability). Reusing rock dust as a raw material could transform it into a mineral byproduct, benefiting the new material and reducing waste volumes. This article presents a systematic literature review on the use of BRP in construction materials, conducted using the Scopus, ScienceDirect, PubMed, and Web of Science databases and following the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) procedures. The search resulted in 787 articles (up to December 2024) and, after the screening process, 17 met the inclusion criteria. From the selected articles, information regarding the utilization of this waste product; its influence on mechanical properties, pozzolanic activity, and durability; and the sustainability associated with its use was compiled. The risk of bias was low as the search was comprehensive, all the papers were peer-reviewed, and all authors reviewed the papers independently. In conclusion, the studies demonstrate the potential of using BRP as a component of cementitious materials, indicating it as a possible innovative solution to the current challenges in the construction industry.
Full article

Figure 1
Open AccessArticle
Floating Offshore Wind and Carbon Credits in Brazil: A Case Study on Floating Production, Storage and Offloading Unit Decarbonization
by
Annelys Machado Schetinger, Hugo Barros Bozelli, João Marcelo Teixeira do Amaral, Carolina Coutinho Mendonça de Souza, Amaro Olimpio Pereira, Jr., André Guilherme Peixoto Alves, Emanuel Leonardus van Emmerik, Giulia de Jesusda Silva, Pedro Henrique Busin Cambruzzi and Robson Francisco da Silva Dias
Resources 2025, 14(6), 85; https://doi.org/10.3390/resources14060085 - 22 May 2025
Abstract
►▼
Show Figures
This study analyzes the economic impacts of integrating floating offshore wind farms with a Floating Production, Storage and Offloading (FPSO) unit to reduce carbon dioxide emissions. The idea is to replace the use of natural gas for power supply with an offshore wind
[...] Read more.
This study analyzes the economic impacts of integrating floating offshore wind farms with a Floating Production, Storage and Offloading (FPSO) unit to reduce carbon dioxide emissions. The idea is to replace the use of natural gas for power supply with an offshore wind farm, considering the effects of carbon pricing. Results show that wind integration reduces emissions by 23% to 76%, depending on the installed capacity. However, higher wind capacity increases total system costs, initial investment, electricity and operational expenses. The Brazilian carbon credit market adversely impacts existing FPSO units as a result of the compulsory carbon trading costs necessary to mitigate their emissions. In contrast, wind-integrated scenarios benefited from carbon pricing, improving financial indicators such as payback period and Return on Investment. Wind shares of 30% and 70% yielded the best financial results for carbon prices between 10 and 50 United States Dollars per ton, with higher penalties further improving viability. These findings elucidate the significance of carbon pricing in mitigating emissions and enhancing the economic feasibility of offshore wind farms within the context of the Brazilian national FPSO decarbonization strategy.
Full article

Figure 1
Open AccessArticle
High Field Strength Element (HFSE) and Rare Earth Element (REE) Enrichment in Laterite Deposit of High Background Natural Radiation Area (HBNRA) of Mamuju, West Sulawesi, Indonesia
by
I Gde Sukadana, Sulaeman, Heri Syaeful, Frederikus Dian Indrastomo, Tyto Baskara Adimedha, Roni Cahya Ciputra, Fadiah Pratiwi, Deni Mustika, Agus Sumaryanto, Muhammad Burhannudinnur, Rr Arum Puni Rijanti, Puji Santosa and Susilo Widodo
Resources 2025, 14(5), 84; https://doi.org/10.3390/resources14050084 - 20 May 2025
Abstract
The Mamuju region in West Sulawesi, Indonesia, is a High Background Natural Radiation Area (HBNRA) characterized by a significant enrichment of high field strength elements (HFSEs) and rare earth elements (REEs) within its lateritic deposits. This study investigates the geochemical behavior, mineralogical distribution,
[...] Read more.
The Mamuju region in West Sulawesi, Indonesia, is a High Background Natural Radiation Area (HBNRA) characterized by a significant enrichment of high field strength elements (HFSEs) and rare earth elements (REEs) within its lateritic deposits. This study investigates the geochemical behavior, mineralogical distribution, and enrichment processes of HFSEs and REEs in lateritic profiles of drill cores and surface samples derived from alkaline volcanic rocks. The mineralogy and geochemical content of HFSEs and REEs in the alkaline bedrocks indicate its potential to become a source of lateritic enrichment. An intense lateritic weathering process leads to the residual accumulation of HFSEs and REEs, particularly in B-horizon soils, where clay minerals and Fe–Al oxides are crucial in element precipitation. Moreover, groundwater redox conditions are a key factor for uranium precipitation in the lateritic profile. The findings provide insight into the potential of lateritic weathering as a natural mechanism for HFSE and REE concentration, contributing to the broader understanding of critical metal resources in Indonesia. These insights have implications for sustainable resource exploration and environmental management in areas with high natural radiation exposure.
Full article
(This article belongs to the Special Issue Consideration of Critical and Strategic Raw Materials in Life Cycle Management)
►▼
Show Figures

Figure 1
Open AccessArticle
Tropical Fruit Wastes: Physicochemical Characterization, Fatty Acid Profile and Antioxidant Capacity
by
Mariana Ferreira dos Santos, Beatriz Pereira de Freitas, Jaqueline Souza de Freitas, Luane Souza Silva Lage, Alex Aguiar Novo, Claudete Norie Kunigami, Eliane Przytyk Jung and Leilson Oliveira Ribeiro
Resources 2025, 14(5), 83; https://doi.org/10.3390/resources14050083 - 20 May 2025
Abstract
Wastes resulting from the depulping of tropical fruits such as siriguela (Spondias purpurea), umbu (Spondias tuberosa), and juçara (Euterpe edulis) can be used as a source of bioactive compounds and nutrients. Therefore, the aim of this work
[...] Read more.
Wastes resulting from the depulping of tropical fruits such as siriguela (Spondias purpurea), umbu (Spondias tuberosa), and juçara (Euterpe edulis) can be used as a source of bioactive compounds and nutrients. Therefore, the aim of this work was to chemically characterize the flours of siriguela seeds and peels (FSSs and FSPs), umbu seeds and peels (FUSs and FUPs), umbu pulp refine cake (FUC), and defatted juçara pulp refine cake (FJC) based on their proximate composition and mineral content, fatty acids, total phenolic content (TPC) and antioxidant capacity (ABTS•+, DPPH•, and FRAP). The results were expressed on a dry basis. The FJC had the highest lipid and protein percentage (10% and 31%, respectively), while for carbohydrates; FUS samples had the highest value (80%). FSSs presented the highest levels of Ca (239.7 mg 100 g−1), Mg (183.3 mg 100 g−1), and FSP of K (1403.9 mg 100 g−1). Regarding the fatty acid profiles, palmitic acid (C16:0) was found as the main fatty acid in FSSs (28.87%), FSPs (69.31%), and FUC (45.68%), while oleic acid (C18:1) was found as the main fatty acid in FUSs (32.63%), FUPs (48.24%), and FJC (61.58%). The FUP sample exhibited the highest antioxidant potential (1852.81 mg GAE 100 g−1, 130 µmol Trolox g−1, 131 µmol Trolox g−1, and 590 µmol Fe2+ g−1 by TPC, ABTS•+, DPPH•, and FRAP, respectively). As the first comparative study of these specific fruits wastes, the results showed that their flours are promising sources of nutrients and bioactive compounds. In addition, their use can contribute to the circular economy and Sustainable Development Goals (SDGs) 2 and 12 of the 2030 Agenda.
Full article
(This article belongs to the Special Issue Resource Extraction from Agricultural Products/Waste: 2nd Edition)
►▼
Show Figures

Figure 1
Open AccessArticle
Antioxidant and Physico-Structural Insights of Walnut (Juglans regia) and Hazelnut (Corylus avellana L.) Shells: Implications for Southern Chile By-Product Valorization
by
Carlos Manterola-Barroso, Karina Godoy Sanchez, Erick Scheuermann, Daniela Padilla-Contreras, Filis Morina and Cristian Meriño-Gergichevich
Resources 2025, 14(5), 82; https://doi.org/10.3390/resources14050082 - 20 May 2025
Abstract
Considerable amounts of agro-industrial by-products are discarded every year. Moreover, these represent an interesting source of phenolics, cellulose and lignin, in addition to useful compounds such as antioxidants. However, these compounds may be affected by external factors such as genotype, locality and productive
[...] Read more.
Considerable amounts of agro-industrial by-products are discarded every year. Moreover, these represent an interesting source of phenolics, cellulose and lignin, in addition to useful compounds such as antioxidants. However, these compounds may be affected by external factors such as genotype, locality and productive season, increasing or decreasing the antioxidant potential of by-products. In this study, hazelnut (Corylus avellana L.) and walnut (Juglans regia L.) nutshells were investigated for their fiber content and antioxidant capacity as valorized by-products in this industry. The determination of oxygen radical absorbance capacity (ORAC), total phenolic content (TPC) and color difference was performed using hazelnut and walnut shells collected from orchards located in Southern Chile during three consecutive seasons (2020/21, 2021/22 and 2022/23). The ORAC in nutshells showed the highest values in both species for the season 2020/21 (3217 and 4663 µmol TE g DW−1 for hazelnut and walnut), whereas the variability in consecutive seasons was lower for hazelnut than for walnut. The TPC in hazelnut shells was positively correlated with L* (R: 0.883) and ΔE (r = 0.924) during the 2020/21 season and with L* for 2022/23 (r = 0.907). On the other hand, the ORAC was negatively correlated with L* (r = 0.922) in 2021/22. In addition, the morphological and structural features of both nutshells examined by scavenging electron microscopy (VP-SEM) and confocal scavenging laser microscopy (CSLM) revealed differential tissue distribution and accumulation patterns of both cellulose and lignin. In addition, photo-colorimetric values were determined for both shells and corresponding seasons, and non-significant differences were found for both shells and among seasons. Finally, our results provide new insights into the physicochemical characteristics of these two types of nutshells as valorized by-products, considering their antioxidant properties as residual materials derived from this agroindustry.
Full article
(This article belongs to the Special Issue Alternative Use of Biological Resources)
►▼
Show Figures

Figure 1

Journal Menu
► ▼ Journal Menu-
- Resources Home
- Aims & Scope
- Editorial Board
- Reviewer Board
- Topical Advisory Panel
- Instructions for Authors
- Special Issues
- Topics
- Topical Collections
- Article Processing Charge
- Indexing & Archiving
- Editor’s Choice Articles
- Most Cited & Viewed
- Journal Statistics
- Journal History
- Journal Awards
- Conferences
- Editorial Office
Journal Browser
► ▼ Journal BrowserHighly Accessed Articles
Latest Books
E-Mail Alert
News
Topics
Topic in
Buildings, Energies, Entropy, Resources, Sustainability, Processes, Solar
Advances in Solar Heating and Cooling
Topic Editors: Salvatore Vasta, Sotirios Karellas, Marina Bonomolo, Alessio Sapienza, Uli JakobDeadline: 30 June 2025
Topic in
Electricity, Electronics, Energies, Processes, Resources, JMSE
Advanced Operation, Control, and Planning of Intelligent Energy Systems
Topic Editors: Ziming Yan, Rui Wang, Chuan He, Tao Chen, Zhengmao LiDeadline: 31 July 2025
Topic in
Applied Sciences, Energies, Minerals, Processes, Resources
New Advances in Mining Technology
Topic Editors: Shuai Li, Xinmin WangDeadline: 30 September 2025
Topic in
Economies, Resources, Agriculture, Agronomy, Sustainability
Zero Hunger: Health, Production, Economics and Sustainability
Topic Editors: Richard John Roberts, José-María Montero, María del Carmen Valls Martínez, Viviane Naimy, José Manuel Santos-JaénDeadline: 30 November 2025

Conferences
Special Issues
Special Issue in
Resources
Assessment and Optimization of Energy Efficiency
Guest Editors: Silvia Maria Zanoli, Crescenzo PepeDeadline: 20 July 2025
Special Issue in
Resources
Alternative Use of Biological Resources
Guest Editors: Zoltán Lakner, Anita BorosDeadline: 20 August 2025
Special Issue in
Resources
Mineral Resource Management 2025: Assessment, Mining and Processing
Guest Editors: Jian Cao, Wanjia Zhang, Zhitao FengDeadline: 20 August 2025
Special Issue in
Resources
Resource Extraction from Agricultural Products/Waste: 2nd Edition
Guest Editors: Maria Dimopoulou, Athanasios Angelis Dimakis, Antonia VyrkouDeadline: 20 September 2025
Topical Collections
Topical Collection in
Resources
Management, Environment, Energy and Sustainability under a Circular Economy
Collection Editors: Elena Magaril, Elena Rada