Handheld Raman Spectroscopy for the Distinction of Essential Oils Used in the Cosmetics Industry
Abstract
:1. Introduction
2. Materials and Methods
2.1. Essential Oils
2.2. Raman Spectroscopy and Chemometrics
3. Results and Discussion
Essential Oil | Wavenumbers of Bands (cm−1) | Proposed Assignment | Essential Oil | Wavenumbers of Bands (cm−1) | Proposed Assignment | |
---|---|---|---|---|---|---|
Anise | 1654 | C=C stretch | Lavender | 1672 | C=C stretch | |
1608 | Ring quadrant stretch | 1640 | C=C stretch | |||
1282 | Ar–O stretch (ether) | 1452 | CH3/CH2 bend | |||
1173 | In-plane C–H bend (ring) | 1413 | CH3/CH2 bend | |||
1378 | CH3 bend (attached to a C=C) | |||||
Basil (linalool) | 1672 | C=C stretch | ||||
1640 | C=C stretch | 1298 | =CH rock | |||
1452 | CH3/CH2 bend | 652 | Ring deformation | |||
1378 | CH3 bend (attached to a C=C) | Lemon | 1676 | C=C stretch | ||
1644 | C=C stretch | |||||
1293 | =CH rock | 1432 | CH3/CH2 bend | |||
803 | C–O stretch (alcohol) | 757 | Ring deformation | |||
651 | Ring deformation | Nutmeg | 1654 | C=C stretch | ||
Basil (methyl chavicol) | 1640 | C=C stretch | 1640 | C=C stretch | ||
1608 | Ring quadrant stretch | 1608 | Ring quadrant stretch | |||
1298 | Ar–O stretch (ether) | 1447 | CH3/CH2 bend | |||
1179 | In-plane C–H bend (ring) | 956 | Ring deformation | |||
670 | Ring deformation | |||||
843 | Aromatic 2 adjacent H CH wag 1 | 646 | Ring deformation | |||
Sweet/Bitter | 1676 | C=C stretch | ||||
820 | Aromatic 2 adjacent H CH wag 1 | Orange | 1645 | C=C stretch | ||
1433 | CH3/CH2 bend | |||||
640 | Ring in-plane bend | 763 | Ring deformation | |||
Geranium | 1671 | C=C stretch | Patchouli | 1640 | C=C stretch | |
1640 | C=C stretch | 1452 | CH3/CH2 bend | |||
1452 | CH3/CH2 bend | 1438 | CH3/CH2 bend | |||
1378 | CH3 bend (attached to a C=C) | 604 | Ring deformation | |||
Peppermint | 1457 | CH3/CH2 bend | ||||
803 | C–O stretch (alcohol) | 769 | Ring deformation | |||
Ginger | 1671 | C=O stretch | Sage | 1447 | CH3/CH2 bend | |
1635 | C=C stretch | 652 | Ring deformation | |||
1590 | C=C stretch | Thyme | 1613 | Ring quadrant stretch | ||
1447 | CH3/CH2 bend | 1457 | CH3/CH2 bend | |||
1438 | CH3/CH2 bend | 1442 | CH3/CH2 bend | |||
1378 | CH3 bend (attached to a C=C) | 1378 | CH3 bend (attached to an aromatic ring) | |||
Lavandin | 1672 | C=C stretch | 1210 | In-plane C–H bend (ring) | ||
1640 | C=C stretch | |||||
1452 | CH3/CH2 bend | 1061 | In-plane C–H bend (ring) | |||
1413 | CH3/CH2 bend | |||||
1378 | CH3 bend (attached to a C=C) | 803 | Ring deformation | |||
740 | Ring quadrant in-plane bend | |||||
1298 | =CH rock | |||||
652 | Ring deformation |
4. Conclusions
Acknowledgments
Author Contributions
Supplementary Materials
Conflicts of Interest
References
- Zesch, A. Kometika: Definition und rechtliche Grundlagen der Anwendung. Der Hautarzt 1999, 50, 243–249. (In German) [Google Scholar] [CrossRef]
- Aburjai, T.; Natsheh, F.M. Plants used in Cosmetics. Phytother. Res. 2003, 17, 987–1000. [Google Scholar] [CrossRef] [PubMed]
- Bakkali, F.; Averbeck, S.; Averbeck, D.; Idaomar, M. Biological effects of essential oils—A review. Food Chem. Toxicol. 2008, 46, 446–475. [Google Scholar] [CrossRef] [PubMed]
- Edris, A.E. Pharmaceutical and therapeutic potentials of essential oils and their individual volatile constituents: A review. Phytother. Res. 2007, 21, 308–323. [Google Scholar] [CrossRef] [PubMed]
- Gabbanini, S.; Lucchi, E.; Carli, M.; Berlini, E.; Minghetti, A.; Valgimigli, L. In vitro evaluation of the permeation through reconstructed human epidermis of essentials oils from cosmetic formulations. J. Pharm. Biomed. Anal. 2009, 50, 370–376. [Google Scholar] [CrossRef] [PubMed]
- Dorman, H.J.D.; Deans, S.G. Antimicrobial agents from plants: Antibacterial activity of plant volatile oils. J. Appl. Microbiol. 2000, 88, 308–316. [Google Scholar] [CrossRef] [PubMed]
- Burt, S. Essential oils: Their antibacterial properties and potential applications in foods—A review. Int. J. Food Microbiol. 2004, 94, 223–253. [Google Scholar] [CrossRef] [PubMed]
- Zu, Y.; Yu, H.; Liang, L.; Fu, Y.; Efferth, T.; Liu, X.; Wu, N. Activities of ten essential oils towards Propionibacterium acnes and PC-3, A-549 and MCF-7 cancer cells. Molecules 2010, 15, 3200–3210. [Google Scholar] [CrossRef] [PubMed]
- Tomaino, A.; Cimino, F.; Zimbalatti, V.; Venuti, V.; Sulfaro, V.; de Pasquale, A.; Saija, A. Influence of heating on antioxidant activity and the chemical composition of some spice essential oils. Food Chem. 2005, 89, 549–554. [Google Scholar] [CrossRef]
- Wei, A.; Shibamoto, T. Antioxidant activities and volatile constituents of various essential oils. J. Agric. Food Chem. 2007, 55, 1737–1742. [Google Scholar] [CrossRef] [PubMed]
- Wei, A.; Shibamoto, T. Antioxidant/lipoxygenase inhibitory activities and chemical compositions of selected essential oils. J. Agric. Food Chem. 2010, 58, 7218–7225. [Google Scholar] [CrossRef] [PubMed]
- Skotti, E.; Anastasaki, E.; Kanellou, G.; Polissiou, M.; Tarantilis, P.A. Total phenolic content, antioxidant activity and toxicity of aqueous extracts from selected Greek medicinal and aromatic plants. Ind. Crops Prod. 2014, 53, 46–54. [Google Scholar] [CrossRef]
- Valgimigli, L.; Gabbanini, S.; Berlini, E.; Lucchi, E.; Beltramini, C.; Bertarelli, Y.L. Lemon (Citrus limon, Burm.f.) essential oil enhances the trans-epidermal release of lipid- (A, E) and water- (B6, C) soluble vitamins from topical emulsions in reconstructed human epidermis. Int. J. Cosmet. Sci. 2012, 34, 347–356. [Google Scholar] [CrossRef] [PubMed]
- Kaur, C.D.; Saraf, S. In vitro sun protection factor determination of herbal oils used in cosmetics. Pharmacogn. Res. 2010, 2, 22–25. [Google Scholar] [CrossRef]
- Trongtokit, Y.; Rongsriyam, Y.; Komalamisra, N.; Apiwathnasorn, C. Comparative repellency of 38 essential oils against mosquito bites. Phytother. Res. 2005, 19, 303–309. [Google Scholar] [CrossRef] [PubMed]
- Schmitt, M.; Popp, J. Raman spectroscopy at the beginning of the twenty-first century. J. Raman Spectrosc. 2006, 37, 20–28. [Google Scholar] [CrossRef]
- Vandenabeele, P.; Edwards, H.G.M.; Moens, L. A decade of Raman spectroscopy in art and archaeology. Chem. Rev. 2007, 107, 675–686. [Google Scholar] [CrossRef] [PubMed]
- Vargas Jentzsch, P.; Ciobotă, V.; Bolanz, R.M.; Kampe, B.; Rösch, P.; Majzlan, J.; Popp, J. Raman and infrared spectroscopic study of synthetic ungemachite, K3Na8Fe(SO4)6(NO3)2·6H2O. J. Mol. Struct. 2012, 1022, 147–152. [Google Scholar] [CrossRef]
- Vargas Jentzsch, P.; Ciobotă, V.; Rösch, P.; Popp, J. Reactions of alkaline minerals in the atmosphere. Angew. Chem. Int. Ed. 2013, 52, 1410–1413. [Google Scholar] [CrossRef]
- Vargas Jentzsch, P.; Kampe, B.; Ciobotă, V.; Rösch, P.; Popp, J. Inorganic salts in atmospheric particulate matter: Raman spectroscopy as an analytical tool. Spectrochim. Acta A 2013, 115, 697–708. [Google Scholar] [CrossRef]
- Ciobotă, V.; Salama, W.; Vargas Jentzsch, P.; Tarcea, N.; Rösch, P.; El Kammar, A.; Morsy, R.S.; Popp, J. Raman investigations of Upper Cretaceous phosphorite and black shale from Safaga District, Red Sea, Egypt. Spectrochim. Acta A 2014, 118, 42–47. [Google Scholar] [CrossRef]
- Kusic, D.; Kampe, B.; Rösch, P.; Popp, J. Identification of water pathogens by Raman microspectroscopy. Water Res. 2014, 48, 179–189. [Google Scholar] [CrossRef] [PubMed]
- Vasiliu, S.; Kampe, B.; Theil, F.; Dietzek, B.; Döhler, D.; Michael, P.; Binder, W.H.; Popp, J. Insights into the mechanism of polymer coating self-healing using Raman spectroscopy. Appl. Spectrosc. 2014, 68, 541–548. [Google Scholar] [CrossRef] [PubMed]
- Kloß, S.; Rösch, P.; Pfister, W.; Kiehntopf, M.; Popp, J. Toward culture-free Raman spectroscopic identification of pathogens in ascitic fluid. Anal. Chem. 2015, 87, 937–943. [Google Scholar] [CrossRef] [PubMed]
- Vargas Jentzsch, P.; Ciobotă, V. Raman spectroscopy as an analytical tool for analysis of vegetable and essential oils. Flavour. Frag. J. 2014, 29, 287–295. [Google Scholar] [CrossRef]
- Development-Core-Team R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2008.
- Baranska, M.; Schulz, H.; Reitzenstein, S.; Uhlemann, U.; Strehle, M.A.; Krüger, H.; Quilitzsch, R.; Foley, W.; Popp, J. Vibrational spectroscopic studies to acquire a quality control method of Eucalyptus essential oils. Biopolymers 2005, 78, 237–248. [Google Scholar] [CrossRef] [PubMed]
- Arslan, N.; Gürbüz, B.; Sarihan, E.O.; Bayrak, A.; Gümüşçü, A. Variation in essential oil content and composition in Turkish anise (Pimpinella. anisum L.) populations. Turk. J. Agric. For. 2004, 28, 173–177. [Google Scholar]
- Gudi, G.; Krähmer, A.; Krüger, H.; Hennig, L.; Schulz, H. Discrimination of fennel chemotypes applying IR and Raman spectroscopy: Discovery of a new γ-asarone chemotype. J. Agric. Food Chem. 2014, 62, 3537–3547. [Google Scholar] [CrossRef] [PubMed]
- Larkin, P. Infrared and Raman Spectroscopy: Principles and Spectral Interpretation; Elsevier Inc.: New York, NY, USA, 2011; pp. 81, 82, 86, 99, 100, 104. [Google Scholar]
- Zheljazkov, V.D.; Callahan, A.; Cantrell, C.L. Yield and oil composition of 38 Basil (Ocimum. basilicum L.) accessions grown in Mississippi. J. Agric. Food Chem. 2008, 56, 241–245. [Google Scholar] [CrossRef] [PubMed]
- Chalchat, J.C.; Özcan, M.M. Comparative essential oil composition of flowers, leaves and stems of Basil (Ocimum. basilicum L.) used as herb. Food Chem. 2008, 110, 501–503. [Google Scholar] [CrossRef]
- Schulz, H.; Schrader, B.; Quilitzsch, R.; Pfeffer, S.; Krüger, H. Rapid classification of basil chemotypes by various vibrational spectroscopy methods. J. Agric. Food Chem. 2003, 51, 2475–2481. [Google Scholar] [CrossRef] [PubMed]
- Daferera, D.J.; Tarantilis, P.A.; Polissiou, M.G. Characterization of essential oils from Lamiaceae species by Fourier transform Raman spectroscopy. J. Agric. Food Chem. 2002, 50, 5503–5507. [Google Scholar] [CrossRef] [PubMed]
- Lin-Vien, D.; Colthup, N.B.; Fateley, W.G.; Grasselli, J.G. The Handbook of Infrared and Raman Characteristic Frequencies of Organic Molecules, 1st ed.; Academic Press: Waltham, MA, USA, 1991; pp. 13, 284–287. [Google Scholar]
- Rao, R.B.R. Biomass yield, essential oil yield and essential oil composition of rose-scented geranium (Pelargonium species) as influenced by row spacings and intercropping with cornmint (Mentha. arvensis L.f. piperascens Malinv. ex Holmes). Ind. Crops Prod. 2002, 16, 133–144. [Google Scholar] [CrossRef]
- Babu, K.G.D.; Kaul, V.K. Variation in essential oil composition of rose-scented geranium (Pelargonium sp.) distilled by different distillation techniques. Flavour Frag. J. 2005, 20, 222–231. [Google Scholar] [CrossRef]
- Singh, G.; Maurya, S.; Catalan, C.; de Lampasona, M.P. Studies on essential oils, Part 42: Chemical, antifungal, antioxidant and sprout suppressant studies on ginger essential oil and its oleoresin. Flavour Fragr. J. 2005, 20, 1–6. [Google Scholar] [CrossRef]
- Wohlmuth, H.; Smith, M.K.; Brooks, L.O.; Myers, S.P.; Leach, D.N. Essential oil composition of diploid and tetraploid clones of ginger (Zingiber. officinale Roscoe) grown in Australia. J. Agric. Food Chem. 2006, 54, 1414–1419. [Google Scholar] [CrossRef] [PubMed]
- Wilson, N.D.; Ivanova, M.S.; Watt, R.A.; Moffat, A.C. The quantification of citral in lemongrass and lemon oils by near-infrared spectroscopy. J. Pharm. Pharmacol. 2002, 54, 1257–1263. [Google Scholar] [CrossRef] [PubMed]
- Strehle, K.R.; Rösch, P.; Berg, D.; Schulz, H.; Popp, J. Quality control of commercially available essential oils by means of Raman spectroscopy. J. Agric. Food Chem. 2006, 54, 7020–7026. [Google Scholar] [CrossRef] [PubMed]
- Verma, R.S.; Rahman, L.U.; Chanotiya, C.S.; Verma, R.K.; Chauhan, A.; Yadav, A.; Singh, A.; Yadav, A.K. Essential oil composition of Lavandula. angustifolia Mill. cultivated in the mid hills of Uttarakhand, India. J. Serb. Chem. Soc. 2010, 75, 343–348. [Google Scholar] [CrossRef]
- Bombarda, I.; Dupuy, N.; le van Daa, J.-P.; Gaydou, E.M. Comparative chemometric analyses of geographic origins and compositions of lavandin var. Grosso essential oils by mid infrared spectroscopy and gas chromatography. Anal. Chim. Acta 2008, 613, 31–39. [Google Scholar] [CrossRef] [PubMed]
- Verzera, A.; Trozzi, A.; Dugo, G.; Di Bella, G.; Cotroneo, A. Biological lemon and sweet orange essential oil composition. Flavour Fragr. J. 2004, 19, 544–548. [Google Scholar] [CrossRef]
- Schulz, H.; Schrader, B.; Quilitzsch, R.; Steuer, B. Quantitative analysis of various citrus oils by ATR/FT-IR and NIR-FT Raman spectroscopy. Appl. Spectrosc. 2002, 56, 117–124. [Google Scholar] [CrossRef]
- Schulz, H.; Baranska, M. Identification and quantification of valuable plant substances by IR and Raman spectroscopy. Vib. Spectrosc. 2007, 43, 13–25. [Google Scholar] [CrossRef]
- Jukić, M.; Politeo, O.; Miloš, M. Chemical composition and antioxidant effect of free volatile aglycones from nutmeg (Myristica. fragrans Houtt.) compared to its essential oil. Croat. Chem. Acta 2006, 79, 209–214. [Google Scholar]
- Schulz, H.; Baranska, M.; Quilitzsch, R.; Schütze, W.; Lösing, G. Characterization of peppercorn, pepper oil, and pepper oleoresin by vibrational spectroscopy methods. J. Agric. Food Chem. 2005, 53, 3358–3363. [Google Scholar] [CrossRef] [PubMed]
- Donelian, A.; Carlson, L.H.C.; Lopes, T.J.; Machado, R.A.F. Comparison of extraction of patchouli (Pogostemon. cablin) essential oil with supercritical CO2 and by steam distillation. J. Supercrit. Fluids 2009, 48, 15–20. [Google Scholar] [CrossRef]
- Verma, R.S.; Padalia, R.C.; Chauhan, A. Assessment of similarities and dissimilarities in the essential oils of patchouli and Indian Valerian. J. Essent. Oil Res. 2012, 24, 487–491. [Google Scholar] [CrossRef]
- Reverchon, E.; Ambruosi, A.; Senatore, F. Isolation of peppermint oil using supercritical CO2 extraction. Flavour Fragr. J. 1994, 9, 19–23. [Google Scholar] [CrossRef]
- Rohloff, J. Monoterpene composition of essential oil from peppermint (Mentha. × piperita L.) with regard to leaf position using solid-phase microextraction and gas chromatography/mass spectrometry analysis. J. Agric. Food Chem. 1999, 47, 3782–3786. [Google Scholar] [CrossRef] [PubMed]
- Findlay, W.P.; Bugay, D.E. Utilization of Fourier transform-Raman spectroscopy for the study of pharmaceutical crystal forms. J. Pharm. Biomed. Anal. 1998, 16, 921–930. [Google Scholar] [CrossRef] [PubMed]
- Schulz, H.; Özkan, G.; Baranska, M.; Krüger, H.; Özcan, M. Characterisation of essential oil plants from Turkey by IR and Raman spectroscopy. Vib. Spectrosc. 2005, 39, 249–256. [Google Scholar] [CrossRef]
- Chalchat, J.C.; Michet, A.; Pasquie, B. Study of clones of Salvia officinalis L. yields and chemical composition of essential oil. Flavour Frag. J. 1998, 13, 68–70. [Google Scholar] [CrossRef]
- Senatore, F. Influence of harvesting time on yield and composition of the essential oil of a thyme (Thymus pulegioides L.) growing wild in Campania (Southern Italy). J. Agric. Food Chem. 1996, 44, 1327–1332. [Google Scholar] [CrossRef]
- Tawaha, K.A.; Hudaib, M.M. Chemical composition of the essential oil from flowers, flower buds and leaves of Thymus capitatus Hoffmanns & Link from Jordan. J. Essent. Oil Bear. Plants 2012, 15, 988–996. [Google Scholar] [CrossRef]
© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jentzsch, P.V.; Ramos, L.A.; Ciobotă, V. Handheld Raman Spectroscopy for the Distinction of Essential Oils Used in the Cosmetics Industry. Cosmetics 2015, 2, 162-176. https://doi.org/10.3390/cosmetics2020162
Jentzsch PV, Ramos LA, Ciobotă V. Handheld Raman Spectroscopy for the Distinction of Essential Oils Used in the Cosmetics Industry. Cosmetics. 2015; 2(2):162-176. https://doi.org/10.3390/cosmetics2020162
Chicago/Turabian StyleJentzsch, Paul Vargas, Luis A. Ramos, and Valerian Ciobotă. 2015. "Handheld Raman Spectroscopy for the Distinction of Essential Oils Used in the Cosmetics Industry" Cosmetics 2, no. 2: 162-176. https://doi.org/10.3390/cosmetics2020162
APA StyleJentzsch, P. V., Ramos, L. A., & Ciobotă, V. (2015). Handheld Raman Spectroscopy for the Distinction of Essential Oils Used in the Cosmetics Industry. Cosmetics, 2(2), 162-176. https://doi.org/10.3390/cosmetics2020162