Phenol Content and Antioxidant and Antiaging Activity of Safflower Seed Oil (Carthamus Tinctorius L.)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Oil Extraction
2.2. Polyphenol Extraction
2.3. Total Phenol Content
2.4. Antioxidant Activity Determination
2.5. Determination of Collagenase and Elastase Inhibition
2.6. Statistical Analyses
3. Results
3.1. Total Phenol Content
3.2. Antioxidant Activity
3.3. Antiaging Activity
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Mokhtari, N.; Rahimmalek, M.; Talebi, M.; Khorrami, M. Assessment of genetic diversity among and within carthamus species using sequence-related amplified polymorphism (SRAP) markers. Plant Syst. Evol. 2013, 299, 1285–1294. [Google Scholar] [CrossRef]
- Isabelle, M.; Lee, B.L.; Lim, M.T.; Koh, W.P.; Huang, D.; Ong, C.N. Antioxidant activity and profiles of common fruits in Singapore. Food Chem. 2010, 123, 77–84. [Google Scholar] [CrossRef]
- Koyama, N.; Kuribayashi, K.; Seki, T.; Kobayashi, K.; Furuhata, Y.; Suzuki, K.; Arisaka, H.; Nakano, T.; Amino, Y.; Ishii, K. Serotonin derivatives, major safflower (Carthamus tinctorius L.) seed antioxidants, inhibit low-density lipoprotein (LDL) oxidation and atherosclerosis in apolipoprotein E-deficient mice. J. Agric. Food Chem. 2006, 54, 4970–4976. [Google Scholar] [CrossRef] [PubMed]
- Ergönül, P.G.; Özbek, Z.A. Identification of bioactive compounds and total phenol contents of cold pressed oils from safflower and camelina seeds. J. Food Meas. Charac. 2018, 12, 2313–2323. [Google Scholar] [CrossRef]
- Xuan, T.D.; Gangqiang, G.; Minh, T.N.; Quy, T.N.; Khanh, T.D. An Overview of chemical profiles, antioxidant and antimicrobial activities of commercial vegetable edible oils marketed in Japan. Foods 2018, 7, 21. [Google Scholar] [CrossRef] [PubMed]
- Karamać, M.; Kosińska, A.; Estrella, I.; Hernández, T.; Dueñas, M. Antioxidant activity of phenolic compounds identified in sunflower seeds. Eur. Food Res. Technol. 2012, 235, 221–230. [Google Scholar] [CrossRef] [Green Version]
- Soumaya, K.; Chaouachi, F.; Ksouri, R.; El Gazzah, M. Polyphenolic composition in different organs of Tunisia populations of Cynara Cardunculus L. and their antioxidant activity. J. Food Nutr. Res. 2013, 1, 1–6. [Google Scholar] [CrossRef]
- Baghiani, A.; Boumerfeg, S.; Belkhiri, F.; Khennouf, S.; Charef, N.; Daoud Harzallah, D.; Arrar, L.; Abdel-Wahhab, M.A. Antioxidant and radical scavenging properties of Carthamus caeruleus L. extracts grow wild in Algeria flora. Commun. Sci. 2010, 1, 128–136. [Google Scholar] [CrossRef]
- Silva, S.A.M.; Michniak-Kohn, B.; Leonardi, G.R. An overview about oxidation in clinical practice of skin aging. Anais Brasileiros de Dermatologia 2017, 92, 367–374. [Google Scholar] [CrossRef] [Green Version]
- Mukherjee, P.K.; Maity, N.; Nema, N.K.; Sarkar, B.K. Bioactive compounds from natural resources against skin aging. Phytomedicine 2011, 19, 64–73. [Google Scholar] [CrossRef]
- Kacem, R. Phenolic compounds from medicinal plants as natural anti-elastase products for the therapy of pulmonary emphysema. J. Med. Plant Res. 2013, 7, 3499–3507. [Google Scholar] [CrossRef]
- Ollivier, D.; Boubault, E.; Pinatel, C.; Souillol, S.; Guérère, M.; Artaud, J. Analyse de la fraction phénoliques des huiles d’olive vierges. Ann. Falsif. Exp. Chim. Toxicol. 2004, 965, 169–196. [Google Scholar]
- Merouane, A.; Noui, A.; Medjahed, H.; Nedjari Benhadj Ali, K.; Saadi, A. Activité antioxydante des composés phénoliques d’huile d’olive extraite par méthode traditionnelle. Int. J. Biol. Chem. Sci. 2014, 8, 1865–1870. [Google Scholar] [CrossRef]
- Nogala-Kalucka, M.; Rudzinska, M.; Zadernowski, R.; Siger, A.; Krzyzostaniak, I. Phytochemical content and antioxidant properties of seeds of unconventional oil plants. J. Am. Oil Chem. Soc. 2010, 87, 1481–1487. [Google Scholar] [CrossRef]
- Wittenauer, J.; Mäckle, S.; Sußmann, D.; Schweiggert-Weisz, U.; Carle, R. Inhibitory effects of polyphenols from grape pomace extract on collagenase and elastase activity. Fitoterapia 2015, 101, 179–187. [Google Scholar] [CrossRef] [PubMed]
- Taha, E.; Matthäus, B. Effect of roasting temperature on safflower seeds and oil. J. Food Dairy Sci. 2018, 9, 103–109. [Google Scholar] [CrossRef]
- Ben Moumen, A.; Mansouri, F.; Richard, G.; Abid, M.; Fauconnier, M.L.; Sindic, M.; El Amrani, A.; Caid, H.S. Biochemical characterisation of the seed oils of four safflower (Carthamus tinctorius) varieties grown in north-eastern of Morocco. Int. J. Food Sci. Technol. 2014, 50, 804–810. [Google Scholar] [CrossRef]
- Yu, S.Y.; Lee, Y.J.; Kim, J.D.; Kang, S.N.; Lee, S.K.; Jang, J.Y.; Lee, H.K.; Lim, J.H.; Lee, O.H. Phenolic composition, antioxidant activity and anti-adipogenic effect of hot water extract from safflower (Carthamus tinctorius L.) seed. Nutrients 2013, 5, 4894–4907. [Google Scholar] [CrossRef]
- Sung, J.; Jeong, Y.; Kim, S.; Luitel, B.P.; Ko, H.; Hur, O.; Yoon, M.; Rhee, J.; Baek, H.; Ryu, K. Fatty acid composition and antioxidant activity in safflower germplasm collected from south Asia and Africa. J. Korean Soc. Int. Agric. 2016, 28, 342–351. [Google Scholar] [CrossRef]
- Kim, J.H.; Kim, J.K.; Kang, W.W.; Ha, Y.S.; Choi, S.W.; Moon, K.D. Chemical compositions and DPPH radical scavenger activity in different sections of safflower. J. Korean Soc. Food Sci. Nutr. 2003, 32, 733–738. [Google Scholar] [CrossRef]
- Shirvani, A.; Jafari, M.; Goli, S.A.H.; Soltani Tehrani, N.; Rahimmalek, M. The changes in proximate composition, antioxidant activity and fatty acid profile of germinating safflower (Carthamus tinctorius) seed. J. Agric. Sci. Technol. 2016, 18, 1967–1974. [Google Scholar]
- Aumeeruddy-Elalfi, Z.; Lall, N.; Fibrich, B.; Blom Van Staden, A.; Hosenally, M.; Mahomoodally, M.F. Selected essential oils inhibit key physiological enzymes and possess intracellular and extracellular antimelanogenic properties in vitro. J. Food Drug Anal. 2018, 26, 232–243. [Google Scholar] [CrossRef] [PubMed]
- Kawaguchi, T.; Nagata, K. Collagenase inhibition by water-pepper (Polygonum hydropiper L.) sprout extract. J. Herbmed. Pharmacol. 2019, 8, 114–119. [Google Scholar] [CrossRef]
- Roche, J.; Mouloungui, Z.; Cerny, M.; Merah, O. Effect of sowing dates on fatty acids and phytosterols patterns of Carthamus tinctorius L. Appl. Sci. 2019, 9, 2839. [Google Scholar] [CrossRef]
- De Leonardis, A.M.; Fragasso, M.; Beleggia, R.; Ficco, D.B.M.; De Vita, P.; Mastrangelo, A.M. Effects of heat stress on metabolite accumulation and composition, and nutritional properties of Durum Wheat grain. Int. J. Mol. Sci. 2015, 16, 30382–30404. [Google Scholar] [CrossRef] [PubMed]
- Jannat, B.; Oveisi, M.R.; Sadeghi, N.; Hajimahmoodi, M.; Behzad, M.; Choopankari, E.; Behfar, A.A. Effects of roasting temperature and time on healthy nutraceuticals of antioxidants and total phenolic content in iranian sesame seeds (Sesamum indicum L.). J. Environ. Health Sci. Eng. 2010, 7, 97–102. [Google Scholar]
- Palese, A.M.; Nuzzo, V.; Favati, F.; Pietrafesa, A.; Celano, G.; Xiloyannis, C. Effects of water deficit on the vegetative response, yield and oil quality of olive trees (Olea europaea L., cv Coratina) grown under intensive cultivation. Sci. Hort. 2010, 125, 222–229. [Google Scholar] [CrossRef]
- Gucci, R.; Caruso, G.; Gennai, C.; Esposto, S.; Urbani, S.; Servili, M. Fruit growth, yield and oil quality changes induced by deficit irrigation at different stages of olive fruit development. Agric. Water Manag. 2019, 212, 88–98. [Google Scholar] [CrossRef]
- Britz, S.J.; Kremer, D.F. Warm temperatures or drought during seed maturation increase free α-tocopherol in seeds of soybean (Glycine max [L.] Merr.). J. Agric. Food Chem. 2002, 50, 6058–6063. [Google Scholar] [CrossRef]
- Takadas, F.; Doker, O. Extraction method and solvent effect on safflower seed oil production. Chem. Proces. Eng. Res. 2017, 51, 9–17. [Google Scholar]
- Dobravalskytė, D.; Venskutonis, P.R.; Talou, T.; Zebib, B.; Merah, O.; Ragazinskienė, O. Antioxidant properties of deodorized extracts of Tussilago farfara L. Rec. Nat. Prod. 2013, 7, 201–209. [Google Scholar]
- Salem, N.; Msaada, K.; Hamdaoui, G.; Limam, F.; Marzouk, B. Variation in phenolic composition and antioxidant activity during flower development of safflower (Carthamus tinctorius L.). J. Agric. Food Chem. 2011, 59, 4455–4463. [Google Scholar] [CrossRef] [PubMed]
- Terpinc, P.; Čeh, B.; Ulrih, N.P.; Abramovič, H. Studies of the correlation between antioxidant properties and the total phenolic content of different oil cake extracts. Ind. Crops Prod. 2012, 39, 210–217. [Google Scholar] [CrossRef]
- Dasari, S.R.; Goud, V.V. Comparative extraction of castor seed oil using polar and non polar solvents. Int. J. Curr. Eng. Technol. 2013, 3, 121–123. [Google Scholar]
- Kallscheuer, N.; Vogt, M.; Marienhagen, J. A novel synthetic pathway enables microbial production of polyphenols independent from the endogenous aromatic amino acid metabolism. ACS Synth. Biol. 2017, 6, 410–415. [Google Scholar] [CrossRef] [PubMed]
- Oh, M.-M.; Trick, H.N.; Rajashekar, C.B. Secondary metabolism and antioxidants are involved in environmental adaptation and stress tolerance in lettuce. J. Plant Physiol. 2009, 166, 180–191. [Google Scholar] [CrossRef] [PubMed]
- Gharibi, S.; Sayed Tabatabaei, B.E.; Saeidi, G.; Talebi, M.; Matkowski, A. The effect of drought stress on polyphenolic compounds and expression of flavonoid biosynthesis related genes in Achillea pachycephala Rech.f. Phytochemistry 2019, 162, 90–98. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Yuan, B.; Huang, B. Differential heat-induced changes in phenolic acids associated with genotypic variations in heat tolerance for hard fescue. Crop Sci. 2019, 59, 667–674. [Google Scholar] [CrossRef]
- Commisso, M.; Toffali, K.; Strazzer, P.; Stocchero, M.; Ceoldo, S.; Baldan, B.; Levi, M.; Guzzo, F. Impact of phenylpropanoid compounds on heat stress tolerance in carrot cell cultures. Front. Plant Sci. 2016, 7, 1439. [Google Scholar] [CrossRef] [PubMed]
- Gündüz, K.; Özdemir, E. The effects of genotype and growing conditions on antioxidant capacity, phenolic compounds, organic acid and individual sugars of strawberry. Food Chem. 2014, 155, 298–303. [Google Scholar] [CrossRef]
- Zielińska-Dawidziak, M.; Siger, A. Effect of elevated accumulation of iron in ferritin on the antioxidants content in soybean sprouts. Eur. Food Res. Technol. 2012, 234, 1005–1012. [Google Scholar] [CrossRef] [Green Version]
- Reboredo-Rodríguez, P.; Varela-López, A.; Forbes-Hernández, T.Y.; Gasparrini, M.; Afrin, S.; Cianciosi, D.; Zhang, J.; Manna, P.P.; Bompadre, S.; Quiles, J.L.; et al. Phenolic compounds isolated from olive oil as nutraceutical tools for the prevention and management of cancer and cardiovascular diseases. Int. J. Mol. Sci. 2018, 19, 2305. [Google Scholar] [CrossRef] [PubMed]
- Singh, T.; Katiyar, S.K. Green tea polyphenol, (−)-epigallocatechin-3-gallate, induces toxicity in human skin cancer cells by targeting β-catenin signaling. Toxicol. Appl. Pharmacol. 2013, 273, 418–424. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.J.; Bae, Y.C.; Park, R.W.; Choi, S.W.; Cho, S.H.; Choi, Y.S.; Lee, W.J. Bone-protecting effect of safflower seeds in ovariectomized rats. Calcif. Tissue Int. 2002, 71, 88–94. [Google Scholar] [CrossRef] [PubMed]
- Cho, S.H.; Lee, H.R.; Kim, T.H.; Choi, S.W.; Lee, W.J.; Choi, Y. Effects of defatted safflower seed extract and phenolic compounds in diet on plasma and liver lipid in ovariectomized rats fed high-cholesterol diets. J. Nutr. Sci. Vitaminol. 2004, 50, 32–37. [Google Scholar] [CrossRef] [PubMed]
- Singhal, G.; Singh, P.; Bhagyawant, S.S.; Srivastava, N. Anti-nutritional factors in safflower (Carthamus tinctorius L.) seeds and their pharmaceutical applications. Int. J. Rec. Sci. Res. 2018, 9, 28859–28864. [Google Scholar] [CrossRef]
- Kim, D.H.; Lee, J.H.; Ahn, E.M.; Lee, Y.H.; Baek, N.I.; Kim, I.H. Phenolic glycosides isolated from safflower (Carthamus tinctorius L.) seeds increase the alkaline phosphatase (ALP) activity of humain Osteoblast-like cells. Food Sci. Biotechnol. 2006, 15, 781–785. [Google Scholar]
- Park, G.H.; Hong, S.C.; Jeong, J.B. Anticancer activity of the safflower seeds (Carthamus tinctorius L.) through inducing cyclin D1 proteasomal degradation in human colorectal cancer cells. Korean J. Plant Res. 2016, 29, 297–304. [Google Scholar] [CrossRef]
- Kim, E.O.; Oh, J.H.; Lee, S.K.; Lee, J.Y.; Choi, S.W. Antioxidant properties and quantification of phenolic compounds from safflower (Carthamus tinctorius L.) seeds. Food Sci. Biotechnol. 2007, 16, 71–77. [Google Scholar]
- Danby, S.G.; AlEnezi, T.; Sultan, A.; Lavender, T.; Chittock, J.; Brown, K.; Cork, M.J. Effect of olive and sunflower seed oil on the adult skin barrier: Implications for neonatal skin care. Pediatr. Dermatol. 2013, 30, 42–50. [Google Scholar] [CrossRef]
- Budiyanto, A.; Ahmed, N.U.; Wu, A.; Bito, T.; Nikaido, O.; Osawa, T.; Ueda, M.; Ichihashi, M. Protective effect of topically applied olive oil against photocarcinogensis following UVB exposure of mice. Carcinogenesis 2000, 21, 2085–2090. [Google Scholar] [CrossRef] [PubMed]
- Abdul Karim, A.; Azlan, A.; Ismail, A.; Hashim, P.; Abd Gani, S.S.; Zainudin, B.H.; Abdullah, N.A. Phenolic composition, antioxidant, anti-wrinkles and tyrosinase inhibitory activities of cocoa pod extract. BMC Complement. Altern. Med. 2014, 14, 381–393. [Google Scholar] [CrossRef] [PubMed]
- Qiraouani Boucetta, K.; Charrouf, Z.; Aguenaou, H.; Derouiche, A.; Bensouda, Y. The effect of dietary and/or cosmetic argan oil on postmenopausal skin elasticity. Clin. Interv. Aging 2015, 10, 339–349. [Google Scholar] [CrossRef] [PubMed]
- Qiraouani Boucetta, K.; Charrouf, Z.; Derouiche, A.; Rahali, Y.; Bensouda, Y. Skin hydration in postmenopausal women: Argan oil benefit with oral and/or topical use. Przeglad Menopauzalny 2014, 13, 280–288. [Google Scholar] [CrossRef] [PubMed]
- Zhaomu, W.; Lijie, D. Current situation and prospects of safflower products development in China. In Proceedings of the 5th International Safflower Conference, Williston, VT, USA, 23–27 July 2001. [Google Scholar]
- Cai, J.; Wen, R.; Li, W.; Wang, X.; Tian, H.; Yi, S.; Zhang, L.; Li, X.; Jiang, C.; Li, H. Oil body bound oleosin-rhFGF9 fusion protein expressed in safflower (Carthamus tinctorius L.) stimulates hair growth and wound healing in mice. BMC Biotechnol. 2018, 18, 51–61. [Google Scholar] [CrossRef] [PubMed]
- Dakhil, I.A.; Abbas, I.S.; Marie, N.K. Preparation, evaluation, and clinical application of safflower cream as topical nutritive agent. Asian J. Pharm. Clin. Res. 2018, 11, 495–497. [Google Scholar] [CrossRef]
- Garg, C.; Khurana, P.; Garg, M. Molecular mechanisms of skin photoaging and plant inhibitors. Inter. J. Green Pharm. 2017, 11, 217–232. [Google Scholar] [CrossRef]
- Zhang, S.; Duan, E. Fighting against skin aging: The way from bench to bedside. Cell Transplan. 2018, 27, 729–738. [Google Scholar] [CrossRef] [PubMed]
Accession | Country | Flower Color | Absence/Presence of Thorns | Precocity |
---|---|---|---|---|
Toughourt | Algeria | y,r | - | Late |
Gila | France | w,y,r | + | Early |
Alep | Syria | y,r | + | Early |
Month | Temperature (°C) | Rainfall (mm) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
2015 | 2016 | 2017 | 2015 | 2016 | 2017 | |||||||
Mean | Max | Min | Mean | Max | Min | Mean | Max | Min | ||||
April | 15.3 | 23.5 | 7.1 | 12.8 | 19.9 | 5.6 | 13.0 | 20.1 | 6.0 | 0.0 | 24.6 | 6.8 |
May | 19.2 | 28.3 | 10.1 | 16.4 | 24.3 | 8.6 | 19.8 | 29.0 | 10.6 | 12.7 | 26.7 | 26 |
June | 21.1 | 29.3 | 12.9 | 21.7 | 30.4 | 12.9 | 25.2 | 34.0 | 16.5 | 7.4 | 6.5 | 0.4 |
July | 27.0 | 36.2 | 17.8 | 26.7 | 35.7 | 17.7 | 26.8 | 35.1 | 18.5 | 0.0 | 0.2 | 1.0 |
August | 27.0 | 34.6 | 19.3 | 25.6 | 34.7 | 16.4 | 27.7 | 36 | 19.5 | 12.0 | 0 | 4.8 |
Mean | 21.9 | 30.4 | 13.4 | 20.6 | 29.0 | 12.2 | 22.5 | 30.4 | 16.3 | |||
Total | 32.1 | 58.0 | 39.0 |
Source of Variation | df | Phenol Content | Antioxidant Activity | Anti-Collagenase Activity | Anti-Elastase Activity |
---|---|---|---|---|---|
Accession | 2 | 7.63 ** | 53.48 *** | 33.84 *** | 86.21 *** |
Year | 2 | 407.69 *** | 744.44 *** | 79.6 *** | 102.3 *** |
Accession Year | 4 | 43.25 *** | 281.72 *** | 124.2 *** | 187.9 *** |
Year | Accession | Total Phenol Content (mgEAG/kg of oil) | Antioxidant Activity (%) |
---|---|---|---|
2015 | Syria | 140.9 ± 7.0a | 20.6 ± 0.6a |
France | 199.5 ± 2.9c | 33.1 ± 1.0c | |
Algeria | 168.1 ± 7.1b | 24.7 ± 0.7b | |
Mean | 169.5 ± 16.9 | 26.15 ± 3.7 | |
2016 | Syria | 186 ± 4.0a | 27.6 ± 0.6a |
France | 210.9 ± 0.4b | 38.8 ± 0.0c | |
Algeria | 192.6 ± 4.3a | 33 ± 0.8b | |
Mean | 196.5 ± 7.4 | 33.13 ± 3.2 | |
2017 | Syria | 412.8 ± 1.3b | 68.9 ± 0.4b |
France | 289.2 ± 8.1a | 38.9 ± 1.3a | |
Algeria | 305.8 ± 17.9a | 40.5 ± 0.7a | |
Mean | 335.9 ± 38.7 | 49.4 ± 9.7 |
Year | Accession | Anti-Collagenase Activity | Anti-Elastase Activity | ||
---|---|---|---|---|---|
IC50 (μg/mL) | Inhibition % at 500 μg/mL | IC50 (μg/mL) | Inhibition % at 1000 μg/mL | ||
Control | Control | 38.7 ± 0.2b | 83.1 ± 0.2a | 32.3 ± 0.2c | 75.8 ± 0.1a |
2015 | Syria | 135.9 ± 0.3a | 65.2 ± 0.1b | 202.8 ± 0.4a | 66.7 ± 0.4b |
France | 132.7 ± 0.2a | 59.1 ± 0.2c | 180.7 ± 0.1b | 59.8 ± 0.3c | |
Algeria | 133.8 ± 0.4a | 63.2 ± 0.3b | 198.4 ± 0.2a | 64.2 ± 0.5b | |
Mean | 134.1 ± 0.9 | 62.5 ± 1.8 | 194 ± 6.7 | 63.6 ± 2.0 | |
2016 | Syria | 130.1 ± 0.2a | 72.1 ± 0.6b | 178.6 ± 0.9a | 42.4 ± 0.4b |
France | 124.6 ± 0.2b | 61.6 ± 0.3c | 163.7 ± 0.8c | 49.1 ± 0.01b | |
Algeria | 123.4 ± 0.2b | 64.9 ± 0.4c | 171.4 ± 0.9b | 32.2 ± 0.2b | |
Mean | 126.03 ± 2.1 | 66.2 ± 3.1 | 171.2 ± 4.3 | 41.2 ± 4.9 | |
2017 | Syria | 144.5 ± 0.2a | 47.0 ± 0.4b | 298.1 ± 1.2a | 70.3 ± 0.6ab |
France | 134.7 ± 0.2b | 52.8 ± 0.3b | 254.3 ± 0.9a | 63.2 ± 0.4b | |
Algeria | 136.1 ± 0.2b | 49.9 ± 0.8b | 274.6 ± 1.1a | 67.2 ± 0.8b | |
Mean | 138.4 ± 3.1 | 49.9 ± 1.7 | 275.7 ± 12.6 | 66.9 ± 2.0 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zemour, K.; Labdelli, A.; Adda, A.; Dellal, A.; Talou, T.; Merah, O. Phenol Content and Antioxidant and Antiaging Activity of Safflower Seed Oil (Carthamus Tinctorius L.). Cosmetics 2019, 6, 55. https://doi.org/10.3390/cosmetics6030055
Zemour K, Labdelli A, Adda A, Dellal A, Talou T, Merah O. Phenol Content and Antioxidant and Antiaging Activity of Safflower Seed Oil (Carthamus Tinctorius L.). Cosmetics. 2019; 6(3):55. https://doi.org/10.3390/cosmetics6030055
Chicago/Turabian StyleZemour, Kamel, Amina Labdelli, Ahmed Adda, Abdelkader Dellal, Thierry Talou, and Othmane Merah. 2019. "Phenol Content and Antioxidant and Antiaging Activity of Safflower Seed Oil (Carthamus Tinctorius L.)" Cosmetics 6, no. 3: 55. https://doi.org/10.3390/cosmetics6030055
APA StyleZemour, K., Labdelli, A., Adda, A., Dellal, A., Talou, T., & Merah, O. (2019). Phenol Content and Antioxidant and Antiaging Activity of Safflower Seed Oil (Carthamus Tinctorius L.). Cosmetics, 6(3), 55. https://doi.org/10.3390/cosmetics6030055