A Thorough Evaluation of GaN HEMT Degradation under Realistic Power Amplifier Operation
Abstract
:1. Introduction
2. Characterization Technique
3. Implementation and Definition of the Stress Measurement
- DC stress: a bias point is applied to the DUT for a time , during which the DC currents and voltages are periodically measured with a sampling time In this case, no signal is applied to the DUT.
- Low-frequency stress: a large-signal operating condition at a low frequency is applied to the DUT for a time , during which both average currents and voltages as well as the incident and reflected waveforms are periodically measured. The sampling time for the DC quantities () and for the waveforms () can be different.
- DC measurements: DC I/V characteristics are measured over a grid of bias points defined by the user.
- Low-frequency measurements: a large-signal low-frequency characterization is carried out on the DUT. The investigated condition can be different with respect to the one used for the stress measurement and the user can choose among a single load line, a power sweep, a load sweep or both.
4. Measurement Description
5. Experimental Results
5.1. Tuned-Load Class-AB Stress at 30 °C
5.2. Class-E Stress at 30 °C
5.3. Comparison of the Degradation Obtained at 30 °C
5.4. Tuned-Load Class-AB Stress at 100 °C
5.5. Class-E Stress at 100 °C
5.6. Comparison of the Degradation Obtained at 100 °C
6. Conclusions
- The level of degradation reached by the device under test depends on the actual RF operating condition adopted for the stress experiment. This confirms the need for realistic stress tests to understand what specific degradation mechanisms can impact on the active device when used in actual applications and estimate its realistic lifetime.
- Thermal degradation effects, magnified by the saturated class-AB condition, are more critical than the effects due to high fields, and dominant when the active device was operated under class-E condition.
- The developed characterization methodology and the achieved experimental findings can be used to accurately and deeply investigate the degradation and failure mechanisms affecting microwave technology to enhance its performance and robustness for realistic operation in practical microwave applications.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Formicone, F.; Burger, J.; Custer, J.; Bosi, G.; Raffo, A.; Vannini, G. Solid-state RF power amplifiers for ISM CW applications based on 100 V GaN technology. In Proceedings of the 11th European Microwave Integrated Circuits Conference, London, UK, 3–4 October 2016. [Google Scholar]
- Pace, L.; Colangeli, S.; Ciccognani, W.; Longhi, P.E.; Limiti, E.; Leblanc, R.; Feudale, M.; Vitobello, F. Design and validation of 100 nm GaN-On-Si Ka-band LNA based on custom noise and small signal models. Electronics 2020, 9, 150. [Google Scholar] [CrossRef] [Green Version]
- Camarchia, V.; Quaglia, R.; Piacibello, A.; Nguyen, D.P.; Wang, H.; Pham, A.-V. A review of technologies and design techniques of millimeter-wave power amplifiers. IEEE Trans. Microw. Theory Tech. 2020, 68, 2957–2983. [Google Scholar] [CrossRef]
- Ramella, C.; Pirola, M.; Florian, C.; Colantonio, P. Space-Compliant Design of a Millimeter-Wave GaN-on-Si Stacked Power Amplifier Cell through Electro-Magnetic and Thermal Simulations. Electronics 2021, 10, 1784. [Google Scholar] [CrossRef]
- Ghisotti, S.; Pisa, S.; Colantonio, P. S-band hybrid power amplifier in GaN Technology with Input/Output Multi Harmonic Tuned Terminations. Electronics 2021, 10, 2318. [Google Scholar] [CrossRef]
- Nasri, A.; Estebsari, M.; Toofan, S.; Piacibello, A.; Pirola, M.; Camarchia, V.; Ramella, C. Broadband class-J GaN Doherty power amplifier. Electronics 2022, 11, 552. [Google Scholar] [CrossRef]
- Scappaviva, F.; Bosi, G.; Biondi, A.; D’Angelo, S.; Cariani, L.; Vadalà, V.; Raffo, A.; Resca, D.; Cipriani, E.; Vannini, G. Advances in Ku-Band GaN single chip front end for space SARs: From system specifications to technology selection. Electronics 2022, 11, 2998. [Google Scholar] [CrossRef]
- Zeng, F.; An, J.X.; Zhou, G.; Li, W.; Wang, H.; Duan, T.; Jiang, L.; Yu, H. A comprehensive review of recent progress on GaN high electron mobility transistors: Devices, fabrication and reliability. Electronics 2018, 7, 377. [Google Scholar] [CrossRef] [Green Version]
- Meneghini, M.; De Santi, C.; Abid, I.; Buffolo, M.; Cioni, M.; Khadar, R.A.; Nela, L.; Zagni, N.; Chini, A.; Medjdoub, F.; et al. GaN-based power devices: Physics, reliability, and perspectives. J. Appl. Phys. 2021, 130, 181101. [Google Scholar] [CrossRef]
- McGenn, W.; Benedikt, J.; Tasker, P.; Powell, J.; Uren, M. RF waveform investigation of VSWR sweeps on GaN HFETs. In Proceedings of the 6th European Microwave Integrated Circuit Conference, Manchester, UK, 10–12 October 2011. [Google Scholar]
- Meneghesso, G.; Verzellesi, G.; Danesin, F.; Rampazzo, F.; Zanon, F.; Tazzoli, A.; Meneghini, M.; Zanoni, E. Reliability of GaN high-electron-mobility transistors: State of the art and perspectives. IEEE Trans. Device Mater. Relib. 2008, 8, 332–343. [Google Scholar] [CrossRef]
- Joh, J.; Del Alamo, J.A. Critical voltage for electrical degradation of GaN high-electron mobility transistors. IEEE Electron Device Lett. 2008, 29, 287–289. [Google Scholar] [CrossRef]
- Pazirandeh, R.; Wurfl, J.; Trankle, G. Comparison of DC measurement methods to determine GaN HEMT reliability. In Proceedings of the Reliability of Compound Semiconductors Digest, Greensboro, NC, USA, 11 October 2009. [Google Scholar]
- Meneghini, M.; Rossetto, I.; Rizzato, V.; Stoffels, S.; Van Hove, M.; Posthuma, N.; Wu, T.-L.; Marcon, D.; Decoutere, S.; Meneghesso, G.; et al. Gate stability of GaN-Based HEMTs with P-Type gate. Electronics 2016, 5, 14. [Google Scholar] [CrossRef]
- Rodriguez, J.A.; Tsoi, T.; Graves, D.; Bayne, S.B. Evaluation of GaN HEMTs in H3TRB reliability testing. Electronics 2022, 11, 1532. [Google Scholar] [CrossRef]
- Menozzi, R. Hot electron effects and degradation of GaAs and InP HEMTs for microwave and millimetre-wave applications. Semicond. Sci. Technol. 1998, 13, 1053–1063. [Google Scholar] [CrossRef]
- Meneghini, M.; Stocco, A.; Silvestri, R.; Meneghesso, G.; Zanoni, E. Degradation of AlGaN/GaN high electron mobility transistors related to hot electrons. Appl. Phys. Lett. 2012, 100, 233508. [Google Scholar] [CrossRef]
- Ruzzarin, M.; Meneghini, M.; Rossetto, I.; Van Hove, M.; Stoffels, S.; Wu, T.-L.; Decoutere, S.; Meneghesso, G.; Zanoni, E. Evidence of hot-electron degradation in GaN-Based MIS-HEMTs submitted to high temperature constant source current stress. IEEE Electron Device Lett. 2016, 37, 1415–1417. [Google Scholar] [CrossRef]
- Tanaka, K.; Morita, T.; Ishida, M.; Hatsuda, T.; Ueda, T.; Yokoyama, K.; Ikoshi, A.; Hikita, M.; Toki, M.; Yanagihara, M.; et al. Reliability of hybrid-drain-embedded gate injection transistor. In Proceedings of the IEEE International Reliability Physics Symposium, Monterey, CA, USA, 2–6 April 2017. [Google Scholar]
- McGenn, W.; Choi, H.; Lees, J.; Uren, M.J.; Benedikt, J.; Tasker, P.J. Development of a RF waveform stress test procedure for GaN HFETs subjected to infinite VSWR sweeps. In Proceedings of the IEEE/MTT-S International Microwave Symposium Digest, Montreal, QC, Canada, 17–22 June 2012. [Google Scholar]
- Brazzini, T.; Casbon, M.A.; Sun, H.; Uren, M.J.; Lees, J.; Tasker, P.J.; Jung, H.; Blank, H.; Kuball, M. Study of hot electrons in AlGaN/GaN HEMTs under RF Class B and Class J operation using electroluminescence. Microelectron. Reliab. 2015, 55, 2493–2498. [Google Scholar] [CrossRef]
- Saugnon, D.; Tartarin, J.G.; Franc, B.; Maher, H.; Boone, F. Fully automated RF-thermal stress workbench with S-parameters tracking for GaN reliability analysis. In Proceedings of the 13th European Microwave Integrated Circuits Conference, Madrid, Spain, 23–25 September 2018. [Google Scholar]
- Moultif, N.; Latry, O.; Joubert, E.; Ndiaye, M.; Moreau, C.; Goupy, J.-F.; Carton, P. Reliability assessment of AlGaN/GaN HEMTs on the SiC substrate under the RF stress. IEEE Trans. Power Electron. 2021, 36, 7442–7450. [Google Scholar] [CrossRef]
- Joh, J.; Del Alamo, J.; Chowdhury, U.; Jimenez, J. Correlation between RF and DC reliability in GaN high electron mobility transistors. In Proceedings of the Reliability of Compound Semiconductors Workshop, Monterey, CA, USA, 12 October 2008. [Google Scholar]
- Chini, A.; Fantini, F.; Di Lecce, V.; Esposto, M.; Stocco, A.; Ronchi, N.; Zanon, F.; Meneghesso, G.; Zanoni, E. Correlation between DC and rf degradation due to deep levels in AlGaN/GaN HEMTs. In Proceedings of the International Electron Devices Meeting, Baltimore, MD, USA, 7–9 December 2009. [Google Scholar]
- Verspecht, J. Large-Signal Network Analysis. IEEE Microw. 2005, 6, 82–92. [Google Scholar] [CrossRef]
- Teppati, V.; Ferrero, A.; Pisani, U. Recent Advances in Real-Time Load-Pull Systems. IEEE Trans. Instrum. Meas. 2008, 57, 2640–2646. [Google Scholar] [CrossRef] [Green Version]
- Teppati, V.; Bolognesi, C.R. Evaluation and reduction of calibration residual uncertainty in load-pull measurements at millimeter-wave frequencies. IEEE Trans. Instrum. Meas. 2012, 61, 817–822. [Google Scholar] [CrossRef]
- Benedikt, J.; Gaddi, R.; Tasker, P.J.; Goss, M. High-power time-domain measurement system with active harmonic load-pull for high-efficiency base-station amplifier design. IEEE Trans. Microw. Theory Tech. 2000, 48, 2617–2624. [Google Scholar] [CrossRef]
- Rumiantsev, A.; Ridler, N. VNA Calibration. IEEE Microw. 2008, 9, 86–99. [Google Scholar] [CrossRef]
- Raffo, A.; Di Falco, S.; Vadalà, V.; Vannini, G. Characterization of GaN HEMT low-frequency dispersion through a multiharmonic measurement system. IEEE Trans. Microw. Theory Tech. 2010, 58, 2490–2496. [Google Scholar] [CrossRef]
- Vadalà, V.; Raffo, A.; Di Falco, S.; Bosi, G.; Nalli, A.; Vannini, G. A load–pull characterization technique accounting for harmonic tuning. IEEE Trans. Microw. Theory Tech. 2013, 61, 2695–2704. [Google Scholar] [CrossRef]
- Raffo, A.; Bosi, G.; Vadalà, V.; Vannini, G. Behavioral modeling of GaN FETs: A load-line approach. IEEE Trans. Microw. Theory Tech. 2014, 62, 73–82. [Google Scholar] [CrossRef]
- Cripps, S.C. RF Power Amplifiers for Wireless Communications; Artech House: Boston, MA, USA, 2006. [Google Scholar]
- Colantonio, P.; Giannini, F.; Limiti, E. High Efficiency RF and Microwave Solid State Power Amplifiers; J. Wiley: Chichester, UK, 2009. [Google Scholar]
- Nalli, A.; Raffo, A.; Avolio, G.; Vadalà, V.; Bosi, G.; Schreurs, D.M.M.-P.; Vannini, G. Extremely low-frequency measurements using an active bias tee. In Proceedings of the 2013 IEEE MTT-S International Microwave Symposium, Seattle, WA, USA, 2–7 June 2013. [Google Scholar]
- Raffo, A.; Avolio, G.; Vadalà, V.; Bosi, G.; Vannini, G.; Schreurs, D. Assessing GaN FET performance degradation in power amplifiers for pulsed radar systems. IEEE Microw. Wirel. Comp. Lett. 2018, 28, 1035–1037. [Google Scholar] [CrossRef]
- Gryglewski, D.; Wojtasiak, W.; Kamińska, E.; Piotrowska, A. Characterization of self-heating process in GaN-based HEMTs. Electronics 2020, 9, 1305. [Google Scholar] [CrossRef]
- Angelotti, A.M.; Gibiino, G.P.; Florian, C.; Santarelli, A. Trapping dynamics in GaN HEMTs for millimeter-wave applications: Measurement-based characterization and technology comparison. Electronics 2021, 10, 137. [Google Scholar] [CrossRef]
- Raja, P.V.; Subramani, N.K.; Gaillard, F.; Bouslama, M.; Sommet, R.; Nallatamby, J.-C. Identification of buffer and surface traps in Fe-doped AlGaN/GaN HEMTs using Y21 frequency dispersion properties. Electronics 2021, 10, 3096. [Google Scholar] [CrossRef]
- Wang, W.; Liang, Y.; Zhang, M.; Lin, F.; Wen, F.; Wang, H. Mechanism analysis of dynamic on-state resistance degradation for a commercial GaN HEMT using double pulse test. Electronics 2021, 10, 1202. [Google Scholar] [CrossRef]
- Cioni, M.; Zagni, N.; Selmi, L.; Meneghesso, G.; Meneghini, M.; Zanoni, E.; Chini, A. Electric field and self-heating effects on the emission time of iron traps in GaN HEMTs. IEEE Trans. Electron Devices 2021, 68, 3325–3332. [Google Scholar] [CrossRef]
- Modolo, N.; De Santi, C.; Baratella, G.; Bettini, A.; Borga, M.; Posthuma, N.; Bakeroot, B.; You, S.; Decoutere, S.; Bevilacqua, A.; et al. Compact modeling of nonideal trapping/detrapping processes in GaN power devices. IEEE Trans. Electron Devices 2022, 69, 4432–4437. [Google Scholar] [CrossRef]
- Raffo, A.; Colantonio, P.; Cipriani, E.; Vadalà, V.; Bosi, G.; Martin-Guerrero, T.M.; Vannini, G.; Giannini, F. Theoretical consideration on harmonic manipulated amplifiers based on experimental data. In Proceedings of the Integrated Nonlinear Microwave and Millimetre-Wave Circuits Workshop, Taormina, Italy, 1–2 October 2015. [Google Scholar]
- Musio, A.; Vadalà, V.; Scappaviva, F.; Raffo, A.; Di Falco, S.; Vannini, G. A new approach to Class-E power amplifier design. In Proceedings of the 2011 Workshop on Integrated Nonlinear Microwave and Millimetre-Wave Circuits, Vienna, Austria, 18–19 April 2011. [Google Scholar]
- Camarchia, V.; Cipriani, E.; Colantonio, P.; Pirola, M.; Quaglia, R.; Cabria, L.; Ayllon, N. Characterization of a high power GaN device for class E PA design with non-sinusoidal stimulus. In Proceedings of the 11th European Microwave Integrated Circuits Conference, London, UK, 3–4 October 2016. [Google Scholar]
- Mediano, A.; Sokal, N.O. A Class-E RF power amplifier with a flat-top transistor-voltage waveform. IEEE Trans. Power Electron. 2013, 28, 5215–5221. [Google Scholar] [CrossRef]
- Mikolajewski, M. An off-nominal class E amplifier—Design oriented analysis. Electronics 2023, 12, 2203. [Google Scholar] [CrossRef]
Phase | Description | Details |
---|---|---|
Preliminary/Final Control Measurements | Full DC I/V Characteristics | VG = −4–2 V, step 0.5 V, VD = 0–30 V, step 2 V |
DC IG—VD Transcharacteristic | VG = −4 V, VD = 0–30 V, step 0.5 V | |
DC ID—VG Transcharacteristic | VG = −4–2 V, step 0.1 V, VD = 4 V | |
Stress Sessions | Low-Frequency Tuned-Load Class AB | 60 h total stress time divided into 8 sessions (1 h–1 h–4 h–6 h–12 h–12 h–12 h–12 h) |
Low-Frequency Class-E | ||
Intermediate Control Measurements | DC IG—VD Transcharacteristic | VG = −4 V, VD = 0–30 V, step 0.5 V |
DC ID—VG Transcharacteristic | VG = −4–2 V, step 0.1 V, VD = 4 V |
Parameter | Symbol | Tuned-Load Class AB | Class-E |
---|---|---|---|
Quiescent Gate Voltage | VGQ | −1.8 V | −1.9 V |
Quiescent Drain Voltage | VDQ * | 28 V | 28 V |
Quiescent Drain Current | IDQ | 80 mA/mm | 60 mA/mm |
Fundamental Frequency | f0 | 2 MHz | 2 MHz |
Load | ZL | 60.5 + j4.7 Ω ∙ mm @ f0 | 85.3 + 112 Ω ∙ mm @ f0 |
4.6 − j0.2 Ω ∙ mm @ 2f0 | 35.8 − 144 Ω ∙ mm @ 2f0 | ||
3.7 + j0.4 Ω ∙ mm @ 3f0 | 6.40 − j64.0 Ω ∙ mm @ 3f0 | ||
Average Gate Current | IG0 | 0.63 mA/mm | ≈0 mA/mm |
Average Drain Current | ID0 | 285 mA/mm | 185 mA/mm |
Input Power Available | Pav | 16.3 dBm | 14.9 dBm |
Output Power | Pout | 5.1 W/mm | 3.5 W/mm |
Dissipated Power | Pdiss | 2.7 W/mm | 1.4 W/mm |
Drain Efficiency | ηD | 65% | 67.8% |
Maximum Drain Voltage | vDmax | 53.2 V | 86.7 V |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bosi, G.; Raffo, A.; Vadalà, V.; Giofrè, R.; Crupi, G.; Vannini, G. A Thorough Evaluation of GaN HEMT Degradation under Realistic Power Amplifier Operation. Electronics 2023, 12, 2939. https://doi.org/10.3390/electronics12132939
Bosi G, Raffo A, Vadalà V, Giofrè R, Crupi G, Vannini G. A Thorough Evaluation of GaN HEMT Degradation under Realistic Power Amplifier Operation. Electronics. 2023; 12(13):2939. https://doi.org/10.3390/electronics12132939
Chicago/Turabian StyleBosi, Gianni, Antonio Raffo, Valeria Vadalà, Rocco Giofrè, Giovanni Crupi, and Giorgio Vannini. 2023. "A Thorough Evaluation of GaN HEMT Degradation under Realistic Power Amplifier Operation" Electronics 12, no. 13: 2939. https://doi.org/10.3390/electronics12132939