- Article
Multi-Time-Scale Coordinated Optimization Scheduling Strategy for Wind–Solar–Hydrogen–Ammonia Systems
- Ziyun Xie,
- Yanfang Fan and
- Xueyan Bai
- + 1 author
To address the inherent mismatch between the fluctuating power output of renewable energy and the continuous production requirements of ammonia in off-grid wind–solar–hydrogen–ammonia systems, this paper proposes a “day-ahead–intraday–real-time” multi-time-scale coordinated optimization scheduling strategy. In the day-ahead layer, Wasserstein Distributionally Robust Optimization (WDRO) is employed to determine a conservative and stable baseline plan for ammonia load under high uncertainty of wind and solar output. The intraday layer utilizes Model Predictive Control (MPC) with a 2-h prediction horizon and 15-min rolling steps to correct short-term forecast deviations. The real-time layer achieves minute-level power balancing through priority dispatch and deadband control. Furthermore, hydrogen storage tanks serve as a material buffer between hydrogen production and ammonia synthesis, with their state variables transmitting across layers to achieve flexible multi-time-scale coupling. Simulation results demonstrate that, although this strategy slightly reduces the theoretical maximum ammonia yield, it completely avoids load-shedding risks. Compared with the deterministic scheduling (Scheme 1), which suffers a net loss due to severe penalty costs, the proposed strategy achieves a positive daily profit of CNY 277,700, representing an absolute increase of CNY 429,300. Furthermore, it provides an additional daily profit of CNY 65,800 compared to the stochastic optimization approach (Scheme 2), demonstrating superior economic robustness in off-grid environments.
12 February 2026








