Graphene and Graphene Nanomesh Spintronics
Abstract
:1. Introduction
2. Recent Experimental Advancement of Spin-Based Phenomena in Graphenes
2.1. Advancement of Graphen Spintronics
2.1.1. Spin Coherence in Graphene
2.1.2. Spin Hall Effect
2.2. Magnetism and Spintronics on Pore Edge Spins in Graphene Nanomeshes
2.2.1. Ferromagnetism Arising from Zigzag-Type Pore Edges
2.2.1.1. Sample Fabrication for GNMs
2.2.1.2. Magnetism on Pore Edge Termination by Different Foreign Atoms
2.2.1.3. Theoretical Confirmation by Two Models: GNR Model and Lieb’s Theorem
2.2.2. Spin-Based Phenomena in MR Measurements of Few-Layer GNMs
3. Conclusions
Acknowledgments
Conflicts of Interest
References
- Baibich, M.N.; Broto, J.M.; Fert, A.; Van Dau, F.N.; Petroff, F.; Etienne, P.; Creuzet, G.; Friederich, A.; Chazelas, J. Giant magnetoresistance of (001)Fe/(001)Cr magnetic superlattices. Phys. Rev. Lett. 1988, 61, 2472. [Google Scholar] [CrossRef]
- Moodera, J.S.; Kinder, L.R.; Wong, T.M.; Meservey, R. Large magnetoresistance at room temperature in ferromagnetic thin film tunnel junctions. Phys. Rev. Lett. 1995, 74, 3273–3276. [Google Scholar] [CrossRef]
- Yuasa, S.; Nagahama, T.; Fukushima, A.; Suzuki, Y.; Ando, K. Giant room-temperature magnetoresistance in single-crystal Fe/MgO/Fe magnetic tunnel junctions. Nat. Mat. 2004, 3, 868–871. [Google Scholar] [CrossRef]
- Hayakawa, J.; Ikeda, S.; Lee, Y.M.; Matsukura, F.; Ohno, H. Effect of high annealing temperature on giant tunnel magnetoresistance ratio of magnetic tunnel junctions. Appl. Phys. Lett. 2006, 89, 232510. [Google Scholar] [CrossRef]
- Munekata, H.; Ohno, H.; von Molnar, S.; Segmüller, A.; Chang, L.L.; Esaki, L. Diluted magnetic III-V semiconductors. Phys. Rev. Lett. 1989, 63, 1849–1852. [Google Scholar] [CrossRef]
- Ohno, H.; Munekata, H.; Penney, T.; von Molnár, S.; Chang, L.L. Magnetotransport properties of p-type (In,Mn)As diluted magnetic III-V semiconductors. Phys. Rev. Lett. 1992, 68, 2664–2667. [Google Scholar] [CrossRef]
- Hai, P.N.; Ohya, S.; Tanaka, M.; Barnes, S.E.; Maekawa, S. Electromotive force and huge magnetoresistance in magnetic tunnel junctions. Nature 2009, 458, 489–492. [Google Scholar] [CrossRef]
- Lundeberg, M.B.; Yang, R.; Renard, J.; Folk, J.A. Defect-mediated spin relaxation and dephasing in graphene. Phys. Rev. Lett. 2013, 110, 156601. [Google Scholar] [CrossRef]
- Sun, Z.; Raji, A.O.; Zhu, Y.; Xiang, C.; Yan, Z.; Kittrell, C.; Samuel, E.L.G.; Tour, J.M. Large-area Bernal-stacked bi-, tri-, and tetralayer grapheme. Nano 2012, 6, 7615. [Google Scholar]
- Tombros, N.; Jozsa, C.; Popinciuc, M.; Jonkman, H.T.; Van Wees, B.J. Electronic spin transport and spin precession in single graphene layers at room temperature. Nature 2007, 448, 571–574. [Google Scholar] [CrossRef]
- Tombros, N.; Tanabe, S.; Veligura, A.; Jozsa, C.; Popinciuc, M.; Jonkman, H.T.; Van Wees, B.J. Anisotropic spin relaxation in graphene. Phys. Rev. Lett. 2008, 101, 046601. [Google Scholar]
- Abanin, D.A.; Morozov, S.V.; Ponomarenko, L.A.; Gorbachev, R.V.; Mayorov, A.S.; Katsnelson, M.I.; Watanabe, K.; Taniguchi, T.; Novoselov, K.S.; Levitov, L.S. Giant nonlocality near the Dirac point in graphene. Science 2011, 332, 328–330. [Google Scholar] [CrossRef]
- Murakami, S.; Nagaosa, N.; Zhang, S. Dissipationless quantum spin current at room temperature. Science 2003, 301, 1348–1351. [Google Scholar] [CrossRef]
- Kane, C.L.; Mele, E.J. Quantum spin hall effect in graphene. Phys. Rev. Lett. 2005, 95, 226801–226804. [Google Scholar] [CrossRef]
- Kane, C.L. Graphene and the quantum spin hall effect. J. Mod. Phys. B 2007, 21, 1155. [Google Scholar] [CrossRef]
- Schmidt, M.J.; Loss, D. Edge states and enhanced spin-orbit interaction at graphene/graphane interfaces. Phys. Rev. B 2010, 81, 165439. [Google Scholar] [CrossRef]
- Balakrishnan, J.; Koon, G.K.W.; Jaiswal, M.; Neto, A.H.C.; Özyilmaz, B. Colossal enhancement of spin-orbit coupling in weakly hydrogenated graphene. Nat. Phys. 2013, 9, 284–287. [Google Scholar] [CrossRef]
- Nakada, K.; Fujita, M.; Dresselhaus, G.; Dresselhaus, M.S. Edge state in graphene ribbons: Nanometer size effect and edge shape depend. Phys. Rev. B 1996, 54, 17954–17961. [Google Scholar] [CrossRef]
- Fujita, M.; Wakabayashi, K.; Nakada, K.; Kusakabe, K. Peculiar localized state at zigzag graphite edge. J. Phys. Soc. Jpn. 1996, 65, 1920–1923. [Google Scholar]
- Kusakabe, K.; Maruyama, M. Magnetic nanographite. Phys. Rev. B 2003, 67, 092406. [Google Scholar] [CrossRef]
- Okada, S.; Oshiyama, A. Magnetic Ordering in Hexagonally Bonded Sheets with First-Row Elements. Phys. Rev. Lett. 2001, 87, 146803. [Google Scholar] [CrossRef] [Green Version]
- Lee, H.; Son, Y.; Park, N.; Han, S.; Yu, J. Magnetic ordering at the edges of graphitic fragments: Magnetic tail interactions between the edge-localized states. Phys. Rev. B 2005, 72, 174431. [Google Scholar] [CrossRef]
- Veiga, R.G.A.; Miwa, R.H.; Srivastava, G.P. Quenching of local magnetic moment in oxygen adsorbed graphene nanoribbons. J. Chem. Phys. 2008, 128, 201101. [Google Scholar] [CrossRef]
- Lee, H.; Park, N.; Son, Y.; Han, S.; Yu, J. Ferromagnetism at the edges of the stacked graphitic fragments: An ab initio study. Chem. Phys. Lett. 2004, 398, 207–211. [Google Scholar] [CrossRef]
- Enoki, T.; Takai, K. The edge state of nanographene and the magnetism of the edge-state spins. Sol. Stat. Comm. 2009, 149, 1144–1150. [Google Scholar] [CrossRef]
- Son, Y.; Cohen, M.L.; Louie, S.G. Energy gaps in graphene nanoribbons. Phys. Rev. Lett. 2006, 97, 216803. [Google Scholar] [CrossRef]
- Yang, L.; Park, C.; Son, Y.; Cohen, M.L.; Louie, S.G. Quasiparticle energies and band gaps in graphene nanoribbons. Phys. Rev. Lett. 2007, 99, 186801. [Google Scholar] [CrossRef]
- Shima, N.; Aoki, H. Electronic structure of super-honeycomb systems: A peculiar realization of semimetal/semiconductor classes and ferromagnetism. Phys. Rev. Lett. 1993, 71, 4389–4392. [Google Scholar] [CrossRef]
- Rosser, J.F.; Palacios, J.J. Magnetism in Graphene Nanoislands. Phys. Rev. Lett. 2007, 99, 177204. [Google Scholar] [CrossRef]
- Jia, X.; Hofmann, M.; Meunier, V.; Sumpter, B.G.; Campos-Delgado, J.; Romo-Herrera, J.M.; Son, H.; Hsieh, Y.; Reina, A.; Kong, J. Controlled formation of sharp zigzag and armchair edges in graphitic nanoribbons. Science 2009, 323, 1701–1705. [Google Scholar] [CrossRef]
- Girit, Ç.Ö.; Meyer, J.C.; Erni, R.; Rossell, M.D.; Kisielowski, C.; Yang, L.; Park, C.; Crommie, M.F.; Cohen, M.L.; Louie, S.G. Graphene at the edge: Stability and dynamics. Science 2009, 323, 1705–1708. [Google Scholar] [CrossRef]
- Shimizu, T.; Haruyama, J.; Marcano, D.C.; Kosinkin, D.V.; Tour, J.M.; Hirose, K.; Suenaga, K. Large intrinsic energy bandgaps in annealed nanotube-derived graphene nanoribbons. Nat. Nanotech. 2011, 6, 45–50. [Google Scholar] [CrossRef]
- Han, M.Y.; Brant, J.C.; Kim, P. Electron transport in disordered graphene nanoribbons. Phys. Rev. Lett. 2010, 104, 056801. [Google Scholar] [CrossRef]
- Wang, X.; Ouyang, Y.; Li, X.; Wang, H.; Guo, J.; Dai, H. Room-temperature all-semiconducting sub-10-nm graphene nanoribbon field-effect transistors. Phys. Rev. Lett. 2008, 100, 206803. [Google Scholar] [CrossRef]
- Krauss, B.; Nemes-Incze, P.; Skakalova, V.; Biro, L.P.; von Klitzing, K.; Smet, J.H. Raman scattering at pure graphene zigzag edges. Nano Lett. 2010, 10, 4544–4548. [Google Scholar] [CrossRef]
- Bai, J.; Zhong, X.; Jiang, S.; Huang, Y.; Duan, X. Graphene nanomesh. Nat. Nanotech. 2010, 5, 190–194. [Google Scholar] [CrossRef]
- Son, Y.W.; Cohen, M.L.; Louie, S.G. Half-metallic graphene nanoribbons. Nature 2006, 444, 347–349. [Google Scholar] [CrossRef]
- Otani, M.; Koshino, M.; Takagi, Y.; Okada, S. Intrinsic magnetic moment on (0001) surfaces of rhombohedral graphitee. Phys. Rev. B 2010, 81, 161403 (R). [Google Scholar] [CrossRef]
- Yang, H.; Chshiev, M.; Boukhvalov, D.W.; Waintal, X.; Roche, S. Inducing and optimizing magnetism in graphene nanomeshes. Phys. Rev. B 2011, 84, 214404. [Google Scholar] [CrossRef]
- You, Y.M.; Ni, Z.H.; Yu, T.; Shen, Z.X. Edge chirality determination of graphene by Raman spectroscopy. Appl. Phys. Lett. 2008, 93, 163112. [Google Scholar] [CrossRef]
- Soriano, D.; Leconte, N.; Ordejón, P.; Charlier, J.; Palacios, J.; Roche, S. Magnetoresistance and magnetic ordering fingerprints in hydrogenated graphene. Phys. Rev. Lett. 2011, 107, 016602. [Google Scholar] [CrossRef]
- Shimizu, T.; Nakamura, J.; Tada, K.; Yagi, Y.; Haruyama, J. Magnetoresistance oscillations arising from edge-localized electrons in low-defect graphene antidot-lattices. Appl. Phys. Lett. 2012, 100, 023104. [Google Scholar] [CrossRef]
- Tada, K.; Hashimoto, T.; Haruyama, J.; Yang, H.; Chshiev, M. Spontaneous spin polarization and spin pumping effect on edges of graphene antidot lattices. Phys. Status Solidi 2012, 249, 2491–2496. [Google Scholar] [CrossRef]
- Ning, G.; Xu, C.; Hao, L.; Kazakova, O.; Fan, Z.; Wang, H.; Wang, K.; Gao, J.; Qian, W.; Wei, F. Ferromagnetism in nanomesh graphene. Carbon 2013, 51, 390–396. [Google Scholar] [CrossRef]
- Nair, R.R.; Sepioni, M.; Tsai, I.; Lehtinen, O.; Keinonen, J.; Krasheninnikov, A.V.; Thomson, T.; Geim, A.K.; Grigorieva, I.V. Spin-half paramagnetism in graphene induced by point defects. Nat. Phys. 2012, 8, 199–202. [Google Scholar] [CrossRef]
- Rao, S.S.; Jammalamadaka, S.N.; Stesmans, A.; Moshchalkov, V.V.; Van Tol, J.; Kosynkin, D.V.; Higginbotham-Duque, A.; Tour, J.M. Ferromagnetism in graphene nanoribbons: Split versus oxidative unzipped ribbons. Nano Lett. 2012, 12, 1210–1217. [Google Scholar] [CrossRef]
- Prével, B.; Benoit, J.-M.; Bardotti, L.; Mélinon, P.; Ouerghi, A.; Lucot, D.; Bourhis, E.; Gierak, J. Nanostructuring graphene on SiC by focused ion beam: Effect of the ion fluence. Appl. Phys. Lett. 2011, 98, 83116. [Google Scholar] [CrossRef]
- Takesue, I.; Haruyama, J.; Kobayashi, N.; Chiashi, S.; Maruyama, S.; Sugai, T.; Shinohara, H. Superconductivity in entirely end-bonded multiwalled carbon nanotubes. Phys. Rev. Lett. 2006, 96, 057001. [Google Scholar] [CrossRef]
- Niimi, Y.; Matsui, T.; Kambara, H.; Tagami, K.; Tsukada, M.; Fukuyama, H. Scanning tunneling microscopy and spectroscopy of the electronic local density of states of graphite surfaces near monoatomic step edges. Phys. Rev. B 2006, 73, 085421. [Google Scholar] [CrossRef]
- Asano, H.; Muraki, S.; Endo, H.; Bandow, S.; Iijima, S. Strong magnetism observed in carbon nanoparticles produced by the laser vaporization of a carbon pellet in hydrogen-containing Ar balance gas. J. Phys. 2010, 22, 334209. [Google Scholar]
© 2013 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Haruyama, J. Graphene and Graphene Nanomesh Spintronics. Electronics 2013, 2, 368-386. https://doi.org/10.3390/electronics2040368
Haruyama J. Graphene and Graphene Nanomesh Spintronics. Electronics. 2013; 2(4):368-386. https://doi.org/10.3390/electronics2040368
Chicago/Turabian StyleHaruyama, Junji. 2013. "Graphene and Graphene Nanomesh Spintronics" Electronics 2, no. 4: 368-386. https://doi.org/10.3390/electronics2040368
APA StyleHaruyama, J. (2013). Graphene and Graphene Nanomesh Spintronics. Electronics, 2(4), 368-386. https://doi.org/10.3390/electronics2040368