Numerical-Sampling-Functionalized Real-Time Index Regulation for Direct k-Domain Calibration in Spectral Domain Optical Coherence Tomography
Abstract
:1. Introduction
2. Materials and Methods
2.1. OCT System Configuration
2.2. Comparison of the Direct Real-Time k-Domain Modeling Algorithm with Conventional Hybrid Wavelength Scanning Filter Calibration and Spline Interpolation Techniques
3. Results and Discussion
3.1. Experimental Validation of Sensitivity Roll-Off
3.2. Evaluation of Depth Dependent Signal-To-Noise Ratio (SNR) and Axial Resolution Comparison
3.3. Image Quality Assessment and Comparison of Non-linearized, Conventional, and Proposed Techniques
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- De Boer, J.F.; Cense, B.; Park, B.H.; Pierce, M.C.; Tearney, G.J.; Bouma, B.E. Improved signal-to-noise ratio in spectral-domain compared with time-domain optical coherence tomography. Opt. Lett. 2003, 28, 2067–2069. [Google Scholar] [CrossRef] [PubMed]
- Spaide, R.F.; Koizumi, H.; Pozonni, M.C. Enhanced depth imaging spectral-domain optical coherence tomography. Am. J. Ophthalmol. 2008, 146, 496–500. [Google Scholar] [CrossRef] [PubMed]
- Leitgeb, R.; Hitzenberger, C.; Fercher, A.F. Performance of fourier domain vs. Time domain optical coherence tomography. Opt. Express 2003, 11, 889–894. [Google Scholar] [CrossRef] [PubMed]
- Fercher, A.F. Optical coherence tomography. J. Biomed. Opt. 1996, 1, 157–174. [Google Scholar] [CrossRef] [PubMed]
- Huang, D.; Swanson, E.A.; Lin, C.P.; Schuman, J.S.; Stinson, W.G.; Chang, W.; Hee, M.R.; Flotte, T.; Gregory, K.; Puliafito, C.A. Optical coherence tomography. Science 1991, 254, 1178–1181. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cense, B.; Nassif, N.A.; Chen, T.C.; Pierce, M.C.; Yun, S.-H.; Park, B.H.; Bouma, B.E.; Tearney, G.J.; de Boer, J.F. Ultrahigh-resolution high-speed retinal imaging using spectral-domain optical coherence tomography. Opt. Express 2004, 12, 2435–2447. [Google Scholar] [CrossRef] [PubMed]
- Nassif, N.; Cense, B.; Park, B.; Pierce, M.; Yun, S.; Bouma, B.; Tearney, G.; Chen, T.; De Boer, J. In vivo high-resolution video-rate spectral-domain optical coherence tomography of the human retina and optic nerve. Opt. Express 2004, 12, 367–376. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wijesinghe, R.E.; Park, K.; Jung, Y.; Kim, P.; Jeon, M.; Kim, J. Industrial resin inspection for display production using automated fluid-inspection based on multimodal optical detection techniques. Opt. Lasers Eng. 2017, 96, 75–82. [Google Scholar] [CrossRef]
- Cho, N.H.; Park, K.; Kim, J.-Y.; Jung, Y.; Kim, J. Quantitative assessment of touch-screen panel by nondestructive inspection with three-dimensional real-time display optical coherence tomography. Opt. Lasers Eng. 2015, 68, 50–57. [Google Scholar] [CrossRef]
- Wijesinghe, R.E.H.; Lee, S.-Y.; Kim, P.; Jung, H.-Y.; Jeon, M.; Kim, J. Optical sensing method to analyze germination rate of capsicum annum seeds treated with growth-promoting chemical compounds using optical coherence tomography. J. Biomed. Opt. 2017, 22, 091502. [Google Scholar] [CrossRef] [PubMed]
- Wijesinghe, R.E.; Lee, S.-Y.; Ravichandran, N.K.; Han, S.; Jeong, H.; Han, Y.; Jung, H.-Y.; Kim, P.; Jeon, M.; Kim, J. Optical coherence tomography-integrated, wearable (backpack-type), compact diagnostic imaging modality for in situ leaf quality assessment. Appl. Opt. 2017, 56, D108–D114. [Google Scholar] [CrossRef] [PubMed]
- Lee, C.; Kim, K.; Han, S.; Kim, S.; Lee, J.H.; kyun Kim, H.; Kim, C.; Jung, W.; Kim, J. Stimulated penetrating keratoplasty using real-time virtual intraoperative surgical optical coherence tomography. J. Biomed. Opt. 2014, 19, 030502. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, D.; Lee, C.; Kim, S.; Zhou, Q.; Kim, J.; Kim, C. In vivo near infrared virtual intraoperative surgical photoacoustic optical coherence tomography. Sci. Rep. 2016, 6, 35176. [Google Scholar] [CrossRef] [PubMed]
- Hu, Z.; Rollins, A.M. Fourier domain optical coherence tomography with a linear-in-wavenumber spectrometer. Opt. Lett. 2007, 32, 3525–3527. [Google Scholar] [CrossRef] [PubMed]
- Wang, K.; Ding, Z. Spectral calibration in spectral domain optical coherence tomography. Chin. Opt. Lett. 2008, 6, 902–904. [Google Scholar] [CrossRef]
- Gelikonov, V.; Gelikonov, G.; Shilyagin, P. Linear-wavenumber spectrometer for high-speed spectral-domain optical coherence tomography. Opt. Spectrosc. 2009, 106, 459–465. [Google Scholar] [CrossRef]
- Ke, J.; Lam, E.Y. Image reconstruction from nonuniformly spaced samples in spectral-domain optical coherence tomography. Biomed. Opt. Express 2012, 3, 741–752. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van der Jeught, S.; Bradu, A.; Podoleanu, A.G. Real-time resampling in fourier domain optical coherence tomography using a graphics processing unit. J. Biomed. Opt. 2010, 15, 030511. [Google Scholar] [CrossRef] [PubMed]
- Chan, K.K.; Tang, S. High-speed spectral domain optical coherence tomography using non-uniform fast fourier transform. Biomed. Opt. Express 2010, 1, 1309–1319. [Google Scholar] [CrossRef] [PubMed]
- Zhang, N.; Huo, T.; Wang, C.; Chen, T.; Zheng, J.-G.; Xue, P. Compressed sensing with linear-in-wavenumber sampling in spectral-domain optical coherence tomography. Opt. Lett. 2012, 37, 3075–3077. [Google Scholar] [CrossRef] [PubMed]
- Xu, D.; Huang, Y.; Kang, J.U. Compressive sensing with dispersion compensation on non-linear wavenumber sampled spectral domain optical coherence tomography. Biomed. Opt. Express 2013, 4, 1519–1532. [Google Scholar] [CrossRef] [PubMed]
- Lan, G.; Li, G. Design of a k-space spectrometer for ultra-broad waveband spectral domain optical coherence tomography. Sci. Rep. 2017, 7, 42353. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hagen, N.; Tkaczyk, T.S. Compound prism design principles, iii: Linear-in-wavenumber and optical coherence tomography prisms. Appl. Opt. 2011, 50, 5023–5030. [Google Scholar] [CrossRef] [PubMed]
- Kwon, O.-J.; Kim, S.; Yoon, M.-S.; Han, Y.-G. All-fiber spectral-domain optical coherence tomography with high resolution by using a pcf-based broadband coupler and a k-domain linearization method. J. Korean Phys. Soc. 2012, 61, 1485–1489. [Google Scholar] [CrossRef]
- Jeon, M.; Kim, J.; Jung, U.; Lee, C.; Jung, W.; Boppart, S.A. Full-range k-domain linearization in spectral-domain optical coherence tomography. Appl. Opt. 2011, 50, 1158–1163. [Google Scholar] [CrossRef] [PubMed]
- Leitgeb, R.; Drexler, W.; Unterhuber, A.; Hermann, B.; Bajraszewski, T.; Le, T.; Stingl, A.; Fercher, A. Ultrahigh resolution fourier domain optical coherence tomography. Opt. Express 2004, 12, 2156–2165. [Google Scholar] [CrossRef] [PubMed]
- Kraus, M.F.; Potsaid, B.; Mayer, M.A.; Bock, R.; Baumann, B.; Liu, J.J.; Hornegger, J.; Fujimoto, J.G. Motion correction in optical coherence tomography volumes on a per a-scan basis using orthogonal scan patterns. Biomed. Opt. Express 2012, 3, 1182–1199. [Google Scholar] [CrossRef] [PubMed]
- Vergnole, S.; Lévesque, D.; Lamouche, G. Experimental validation of an optimized signal processing method to handle non-linearity in swept-source optical coherence tomography. Opt. Express 2010, 18, 10446–10461. [Google Scholar] [CrossRef] [PubMed]
- Wijesinghe, R.E.; Cho, N.H.; Park, K.; Jeon, M.; Kim, J. Bio-photonic detection and quantitative evaluation method for the progression of dental caries using optical frequency-domain imaging method. Sensors 2016, 16, 2076. [Google Scholar] [CrossRef] [PubMed]
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Han, S.; Kwon, O.; Wijesinghe, R.E.; Kim, P.; Jung, U.; Song, J.; Lee, C.; Jeon, M.; Kim, J. Numerical-Sampling-Functionalized Real-Time Index Regulation for Direct k-Domain Calibration in Spectral Domain Optical Coherence Tomography. Electronics 2018, 7, 182. https://doi.org/10.3390/electronics7090182
Han S, Kwon O, Wijesinghe RE, Kim P, Jung U, Song J, Lee C, Jeon M, Kim J. Numerical-Sampling-Functionalized Real-Time Index Regulation for Direct k-Domain Calibration in Spectral Domain Optical Coherence Tomography. Electronics. 2018; 7(9):182. https://doi.org/10.3390/electronics7090182
Chicago/Turabian StyleHan, Sangyeob, Oeon Kwon, Ruchire Eranga Wijesinghe, Pilun Kim, Unsang Jung, Jaewon Song, Changho Lee, Mansik Jeon, and Jeehyun Kim. 2018. "Numerical-Sampling-Functionalized Real-Time Index Regulation for Direct k-Domain Calibration in Spectral Domain Optical Coherence Tomography" Electronics 7, no. 9: 182. https://doi.org/10.3390/electronics7090182
APA StyleHan, S., Kwon, O., Wijesinghe, R. E., Kim, P., Jung, U., Song, J., Lee, C., Jeon, M., & Kim, J. (2018). Numerical-Sampling-Functionalized Real-Time Index Regulation for Direct k-Domain Calibration in Spectral Domain Optical Coherence Tomography. Electronics, 7(9), 182. https://doi.org/10.3390/electronics7090182