Utility of Kansas City Cardiomyopathy Questionnaire (KCCQ) in Assessing Quality of Life among Patients with Heart Failure Undergoing Exercise Training Rehabilitation: A Systematic Review
Abstract
:1. Introduction
2. Materials and Methods
2.1. Protocol and Registration
2.2. Eligibility Criteria
2.3. Definitions
- NYHA Class I: No limitation of physical activity. Ordinary physical activity does not cause undue fatigue, palpitation, or dyspnea.
- NYHA Class II: Slight limitation of physical activity. Comfortable at rest, but ordinary physical activity results in fatigue, palpitation, or dyspnea.
- NYHA Class III: Marked limitation of physical activity. Comfortable at rest, but less than ordinary activity causes fatigue, palpitation, or dyspnea.
- NYHA Class IV: Unable to carry on any physical activity without discomfort. Symptoms of HF at rest; if any physical activity is undertaken, discomfort increases.
2.4. Data Collection Process
2.5. Quality Assessment
3. Results
3.1. Study Characteristics
3.2. Participants’ Characteristics
3.3. Rehabilitation Program Characteristics
3.4. Survey Results
4. Discussion
4.1. Summary of Evidence
4.2. Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sapna, F.; Raveena, F.; Chandio, M.; Bai, K.; Sayyar, M.; Varrassi, G.; Khatri, M.; Kumar, S.; Mohamad, T. Advancements in Heart Failure Management: A Comprehensive Narrative Review of Emerging Therapies. Cureus 2023, 15, e46486. [Google Scholar] [CrossRef]
- Budea, C.M.; Pricop, M.; Bratosin, F.; Bogdan, I.; Saenger, M.; Ciorica, O.; Braescu, L.; Domuta, E.M.; Grigoras, M.L.; Citu, C.; et al. Antibacterial and Antifungal Management in Relation to the Clinical Characteristics of Elderly Patients with Infective Endocarditis: A Retrospective Analysis. Antibiotics 2022, 11, 956. [Google Scholar] [CrossRef]
- Cordeiro, A.L.L.; da Silva Miranda, A.; de Almeida, H.M.; Santos, P. Quality of Life in Patients With Heart Failure Assisted By Telerehabilitation: A Systematic Review and Meta-Analysis. Int. J. Telerehabil. 2022, 14, e6456. [Google Scholar] [CrossRef]
- Fildan, A.P.; Rajnoveanu, R.M.; Cirjaliu, R.; Pohrib, I.; Tudorache, E.; Ilie, A.C.; Oancea, C.; Tofolean, D. Biological therapies targeting the type 2 inflammatory pathway in severe asthma (Review). Exp. Ther. Med. 2021, 22, 1263. [Google Scholar] [CrossRef]
- Braescu, L.; Gaspar, M.; Buriman, D.; Aburel, O.M.; Merce, A.-P.; Bratosin, F.; Aleksandrovich, K.S.; Alambaram, S.; Mornos, C. The Role and Implications of Epicardial Fat in Coronary Atherosclerotic Disease. J. Clin. Med. 2022, 11, 4718. [Google Scholar] [CrossRef]
- Nicola, A.; Oancea, C.; Barata, P.I.; Adelina, M.; Mateescu, T.; Manolescu, D.; Bratosin, F.; Fericean, R.M.; Pingilati, R.A.; Paleru, C. Health-Related Quality of Life and Stress-Related Disorders in Patients with Bronchiectasis after Pulmonary Resection. J. Pers. Med. 2023, 13, 1310. [Google Scholar] [CrossRef]
- Spertus, J.A.; Jones, P.G. Development and Validation of a Short Version of the Kansas City Cardiomyopathy Questionnaire. Circ. Cardiovasc. Qual. Outcomes 2015, 8, 469–476. [Google Scholar] [CrossRef]
- Lee, K.E.; Choi, M.; Jeoung, B. Effectiveness of Rehabilitation Exercise in Improving Physical Function of Stroke Patients: A Systematic Review. Int. J. Environ. Res. Public Health 2022, 19, 12739. [Google Scholar] [CrossRef]
- Crisan, A.F.; Oancea, C.; Timar, B.; Fira-Mladinescu, O.; Tudorache, V. Falls, an underestimated risk in COPD. Eur. Respir. J. 2015, 46, PA3070. [Google Scholar] [CrossRef]
- Barata, P.I.; Crisan, A.F.; Maritescu, A.; Negrean, R.A.; Rosca, O.; Bratosin, F.; Citu, C.; Oancea, C. Evaluating Virtual and Inpatient Pulmonary Rehabilitation Programs for Patients with COPD. J. Pers. Med. 2022, 12, 1764. [Google Scholar] [CrossRef]
- Kołodziej, M.; Wyszyńska, J.; Bal-Bocheńska, M. COVID-19: A New Challenge for Pulmonary Rehabilitation? J. Clin. Med. 2021, 10, 3361. [Google Scholar] [CrossRef]
- Bota, A.V.; Bratosin, F.; Bogdan, I.; Septimiu-Radu, S.; Ilie, A.C.; Burtic, S.-R.; Razvan, D.V.; Tudor, R.; Indries, M.F.; Csep, A.N.; et al. Assessing the Quality of Life, Coping Strategies, Anxiety, and Depression Levels in Patients with Long-COVID-19 Syndrome: A Six-Month Follow-Up Study. Diseases 2024, 12, 21. [Google Scholar] [CrossRef]
- Pilut, C.N.; Citu, C.; Gorun, F.; Bratosin, F.; Gorun, O.M.; Burlea, B.; Citu, I.M.; Grigoras, M.L.; Manolescu, D.; Gluhovschi, A. The Utility of Laboratory Parameters for Cardiac Inflammation in Heart Failure Patients Hospitalized with SARS-CoV-2 Infection. Diagnostics 2022, 12, 824. [Google Scholar] [CrossRef]
- Mateescu, M.C.; Grigorescu, S.; Socea, B.; Bloanca, V.; Grigorescu, O.D. Contribution to the Personalized Management of Nosocomial Infections: A New Paradigm Regarding the Influence of the Community Microbial Environment on the Incidence of Healthcare-Associated Infections (HAI) in Emergency Hospital Surgical Departments. J. Pers. Med. 2023, 13, 210. [Google Scholar] [CrossRef]
- Fericean, R.M.; Rosca, O.; Citu, C.; Manolescu, D.; Bloanca, V.; Toma, A.O.; Boeriu, E.; Dumitru, C.; Ravulapalli, M.; Barbos, V.; et al. COVID-19 Clinical Features and Outcomes in Elderly Patients during Six Pandemic Waves. J. Clin. Med. 2022, 11, 6803. [Google Scholar] [CrossRef]
- Daw, P.; Withers, T.M.; van Zanten, J.J.C.S.V.; Harrison, A.; Greaves, C.J. A Systematic Review of Provider- and System-Level Factors Influencing the Delivery of Cardiac Rehabilitation for Heart Failure. BMC Health Serv. Res. 2021, 21, 1267. [Google Scholar] [CrossRef]
- Rajnoveanu, R.M.; Rajnoveanu, A.G.; Ardelean, A.B.; Todea, D.A.; Pop, C.M.; Antoniu, S.A.; Motoc, N.S.; Chis, A.F.; Fildan, A.P.; Man, M.A. Pulmonologists’ Adherence to the Chronic Obstructive Pulmonary Disease GOLD Guidelines: A Goal to Improve. Medicina 2020, 56, 422. [Google Scholar] [CrossRef]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 Statement: An Updated Guideline for Reporting Systematic Reviews. Syst. Rev. 2021, 10, 89. [Google Scholar] [CrossRef]
- Behnoush, A.H.; Khalaji, A.; Naderi, N.; Ashraf, H.; von Haehling, S. ACC/AHA/HFSA 2022 and ESC 2021 Guidelines on Heart Failure Comparison. ESC Heart Fail. 2023, 10, 1531–1544. [Google Scholar] [CrossRef]
- Caraballo, C.; Desai, N.R.; Mulder, H.; Alhanti, B.; Wilson, F.P.; Fiuzat, M.; Felker, G.M.; Piña, I.L.; O’Connor, C.M.; Lindenfeld, J.; et al. Clinical Implications of the New York Heart Association Classification. J. Am. Heart Assoc. 2019, 8, e014240. [Google Scholar] [CrossRef]
- Norman, J.F.; Pozehl, B.J.; Duncan, K.A.; Hertzog, M.A.; Krueger, S.K. Effects of Exercise Training versus Attention on Plasma B-type Natriuretic Peptide, 6-Minute Walk Test and Quality of Life in Individuals with Heart Failure. Cardiopulm. Phys. Ther. J. 2012, 23, 19–25. [Google Scholar] [CrossRef]
- Kitzman, D.W.; Brubaker, P.; Morgan, T.; Haykowsky, M.; Hundley, G.; Kraus, W.E.; Eggebeen, J.; Nicklas, B.J. Effect of Caloric Restriction or Aerobic Exercise Training on Peak Oxygen Consumption and Quality of Life in Obese Older Patients With Heart Failure With Preserved Ejection Fraction: A Randomized Clinical Trial. JAMA 2016, 315, 36–46. [Google Scholar] [CrossRef]
- Parikh, K.S.; Coles, A.; Schulte, P.J.; Kraus, W.E.; Fleg, J.L.; Keteyian, S.J.; Piña, I.L.; Fiuzat, M.; Whellan, D.J.; O’Connor, C.M.; et al. Relation of Angina Pectoris to Outcomes, Quality of Life, and Response to Exercise Training in Patients With Chronic Heart Failure (from HF-ACTION). Am. J. Cardiol. 2016, 118, 1211–1216. [Google Scholar] [CrossRef]
- Mueller, S.; Winzer, E.B.; Duvinage, A.; Gevaert, A.B.; Edelmann, F.; Haller, B.; Pieske-Kraigher, E.; Beckers, P.; Bobenko, A.; Hommel, J.; et al. Effect of High-Intensity Interval Training, Moderate Continuous Training, or Guideline-Based Physical Activity Advice on Peak Oxygen Consumption in Patients With Heart Failure With Preserved Ejection Fraction: A Randomized Clinical Trial. JAMA 2021, 325, 542–551. [Google Scholar] [CrossRef]
- Kitzman, D.W.; Whellan, D.J.; Duncan, P.; Pastva, A.M.; Mentz, R.J.; Reeves, G.R.; Nelson, M.B.; Chen, H.; Upadhya, B.; Reed, S.D.; et al. Physical Rehabilitation for Older Patients Hospitalized for Heart Failure. N. Engl. J. Med. 2021, 385, 203–216. [Google Scholar] [CrossRef]
- Güder, G.; Wilkesmann, J.; Scholz, N.; Leppich, R.; Düking, P.; Sperlich, B.; Rost, C.; Frantz, S.; Morbach, C.; Sahiti, F.; et al. Establishing a Cardiac Training Group for Patients with Heart Failure: The “HIP-in-Würzburg” Study. Clin. Res. Cardiol. 2022, 111, 406–415. [Google Scholar] [CrossRef]
- Murray, E.M.; Whellan, D.J.; Chen, H.; Bertoni, A.G.; Duncan, P.; Pastva, A.M.; Kitzman, D.W.; Mentz, R.J. Physical Rehabilitation in Older Patients Hospitalized with Acute Heart Failure and Diabetes: Insights from REHAB-HF. Am. J. Med. 2022, 135, 82–90. [Google Scholar] [CrossRef]
- Chen, S.M.; Wang, L.Y.; Liaw, M.Y.; Wu, M.K.; Wu, P.J.; Wei, C.L.; Chen, A.N.; Su, T.L.; Chang, J.K.; Yang, T.H.; et al. Outcomes With Multidisciplinary Cardiac Rehabilitation in Post-acute Systolic Heart Failure Patients-A Retrospective Propensity Score-Matched Study. Front. Cardiovasc. Med. 2022, 9, 763217. [Google Scholar] [CrossRef]
- Whellan, D.; McCarey, M.M.; Chen, H.; Nelson, M.B.; Pastva, A.M.; Duncan, P.; Mentz, R.J.; Kitzman, D.W.; Reeves, G.; Reed, S.D. Quality of Life Trajectory and Its Mediators in Older Patients with Acute Decompensated Heart Failure Receiving a Multi-Domain Rehabilitation Intervention: Results from the Rehabilitation Therapy in Older Acute Heart Failure Patients Trial. Circ. Heart Fail. 2022, 15, e009695. [Google Scholar] [CrossRef]
- Nagatomi, Y.; Ide, T.; Higuchi, T.; Nezu, T.; Fujino, T.; Tohyama, T.; Nagata, T.; Higo, T.; Hashimoto, T.; Matsushima, S.; et al. Home-based cardiac rehabilitation using information and communication technology for heart failure patients with frailty. ESC Heart Fail. 2022, 9, 2407–2418. [Google Scholar] [CrossRef]
- Taylor, R.S.; Walker, S.; Smart, N.A.; Piepoli, M.F.; Warren, F.C.; Ciani, O.; Whellan, D.; O’Connor, C.; Keteyian, S.J.; Coats, A.; et al. Impact of Exercise Rehabilitation on Exercise Capacity and Quality-of-Life in Heart Failure: Individual Participant Meta-Analysis. J. Am. Coll. Cardiol. 2019, 73, 1430–1443. [Google Scholar] [CrossRef]
- Piotrowicz, E.; Stepnowska, M.; Leszczyńska-Iwanicka, K.; Piotrowska, D.; Kowalska, M.; Tylka, J.; Piotrowski, W.; Piotrowicz, R. Quality of life in heart failure patients undergoing home-based telerehabilitation versus outpatient rehabilitation—A randomized controlled study. Eur. J. Cardiovasc. Nurs. 2015, 14, 256–263. [Google Scholar] [CrossRef]
- Brubaker, P.H.; Avis, T.; Rejeski, W.J.; Mihalko, S.E.; Tucker, W.J.; Kitzman, D.W. Exercise Training Effects on the Relationship of Physical Function and Health-Related Quality of Life Among Older Heart Failure Patients With Preserved Ejection Fraction. J. Cardiopulm. Rehabil. Prev. 2020, 40, 427–433. [Google Scholar] [CrossRef]
- Slimani, M.; Ramirez-Campillo, R.; Paravlic, A.; Hayes, L.D.; Bragazzi, N.L.; Sellami, M. The Effects of Physical Training on Quality of Life, Aerobic Capacity, and Cardiac Function in Older Patients With Heart Failure: A Meta-Analysis. Front. Physiol. 2018, 9, 1564. [Google Scholar] [CrossRef]
- Guo, R.; Wen, Y.; Xu, Y.; Jia, R.; Zou, S.; Lu, S.; Liu, G.; Cui, K. The impact of exercise training for chronic heart failure patients with cardiac resynchronization therapy: A systematic review and meta-analysis. Medicine 2021, 100, e25128. [Google Scholar] [CrossRef]
- Tegegne, T.K.; Rawstorn, J.C.; Nourse, R.A.; Kibret, K.T.; Ahmed, K.Y.; Maddison, R. Effects of exercise-based cardiac rehabilitation delivery modes on exercise capacity and health-related quality of life in heart failure: A systematic review and network meta-analysis. Open Heart. 2022, 9, e001949. [Google Scholar] [CrossRef]
- Elendu, C.; Amaechi, D.C.; Elendu, T.C.; Ashna, M.; Ross-Comptis, J.; Ansong, S.O.; Egbunu, E.O.; Okafor, G.C.; Jingwa, K.A.; Akintunde, A.A.; et al. Heart failure and diabetes: Understanding the bidirectional relationship. Medicine 2023, 102, e34906. [Google Scholar] [CrossRef]
- Baldea, B.I.; Toader, S.; Orbai, P.; Barsan, S.; Olariu, R.; Grigorescu, D.O.; Penciu, M.; Nagy, A.L.; Georgescu, A.V. The influence of diabetes mellitus on survival of abdominal perforator flaps: An experimental study in rats with slowly induced diabetes mellitus. J. Reconstr. Microsurg. 2015, 31, 145–153. [Google Scholar] [CrossRef]
- Yao, F.; Zhang, Y.; Kuang, X.; Zhou, Q.; Huang, L.; Peng, J.; Hou, K.; Du, S. Effects of Cardiac Rehabilitation Training in Patients with Heart Failure Based on Traditional Chinese Exercise: A Systematic Review and Meta-Analysis. Evid. Based Complement. Alternat. Med. 2021, 2021, 1068623. [Google Scholar] [CrossRef]
- Ostman, C.; Jewiss, D.; Smart, N.A. The Effect of Exercise Training Intensity on Quality of Life in Heart Failure Patients: A Systematic Review and Meta-Analysis. Cardiology 2017, 136, 79–89. [Google Scholar] [CrossRef]
- Calabrese, M.; Garofano, M.; Palumbo, R.; Di Pietro, P.; Izzo, C.; Damato, A.; Venturini, E.; Iesu, S.; Virtuoso, N.; Strianese, A.; et al. Exercise Training and Cardiac Rehabilitation in COVID-19 Patients with Cardiovascular Complications: State of Art. Life 2021, 11, 259. [Google Scholar] [CrossRef]
- Zhang, X.; Luo, Z.; Yang, M.; Huang, W.; Yu, P. Efficacy and safety of digital therapeutics-based cardiac rehabilitation in heart failure patients: A systematic review. ESC Heart Fail 2022, 9, 3751–3760. [Google Scholar] [CrossRef]
- Świątkiewicz, I.; Di Somma, S.; De Fazio, L.; Mazzilli, V.; Taub, P.R. Effectiveness of Intensive Cardiac Rehabilitation in High-Risk Patients with Cardiovascular Disease in Real-World Practice. Nutrients 2021, 13, 3883. [Google Scholar] [CrossRef]
- Kourek, C.; Karatzanos, E.; Nanas, S.; Karabinis, A.; Dimopoulos, S. Exercise Training in Heart Transplantation. World J. Transpl. 2021, 11, 466–479. [Google Scholar] [CrossRef]
- Jones, A.V.; Evans, R.A.; Harrison, A.S.; Sherar, L.B.; Steiner, M.C.; Doherty, P.; Singh, S.J. Exercise rehabilitation in COPD and heart failure: Comparison of two national audits. ERJ Open Res. 2022, 8, 00131-2022. [Google Scholar] [CrossRef]
- Spielmanns, M.; Schaer, C.E.; Pekacka-Egli, A.M.; Spielmanns, S.; Ibish, O.; Gafina, G.; Stiube, A.; Hermann, M. Pulmonary Rehabilitation Outcomes of Post-Acute COVID-19 Patients during Different Waves of the Pandemic. Int. J. Env. Res. Public Health 2023, 20, 5907. [Google Scholar] [CrossRef]
- Polito, M.D.; Farinatti, P.T.V. Blood Pressure Behavior after Counter-Resistance Exercises: A Systematic Review on Determining Variables and Possible Mechanisms. Rev. Bras. Med. Esporte 2006, 12, 386–392. [Google Scholar] [CrossRef]
Study and Author | Country | Study Year | Study Design | Quality of Evidence |
---|---|---|---|---|
1 [21] Norman et al. | United States | 2012 | Prospective cohort | Medium |
2 [22] Kitzman et al. | United States | 2016 | Randomized trial | High |
3 [23] Parikh et al. | United States | 2016 | Randomized trial | High |
4 [24] Mueller et al. | Germany | 2021 | Randomized trial | High |
5 [25] Kitzman et al. | United States | 2021 | Randomized trial | High |
6 [26] Güder et al. | Germany | 2021 | Prospective cohort | Medium |
7 [27] Murray et al. | United States | 2021 | Randomized trial | High |
8 [28] Chen et al. | Taiwan | 2022 | Retrospective cohort | Medium |
9 [29] Nagatomi et al. | Japan | 2022 | Randomized trial | Medium |
Study Number | Age (years) | Sex (Men) | Intervention Group | Control Group | LVEF | BMI (kg/m2) | Natriuretic Peptides |
---|---|---|---|---|---|---|---|
1 [21] Norman et al. | Intervention: 56.0 Control: 63.0 | Intervention: 12 (60.0%) Control: 11 (55.0%) | 20 with HF | 20 with HF attention control | Intervention: 34.0% Control: 32.3% | Intervention: 33.0 Control: 33.2 | BNP (at finish) Intervention: 1.68 Control: 2.09 |
2 [22] Kitzman et al. | Intervention: 66.9 Control: 66.0 | Intervention: 10 (20%) Control: 9 (18%) | 51 obese with HFPEF | 49 obese with HFpEF no training | HFpEF Intervention: 60% Control: 60% | Intervention: 40.3 Control: 38.4 | BNP (baseline) Intervention: 24.9 Control: 21.6 |
3 [23] Parikh et al. | Intervention: 60 Control: 59 | Intervention: 297 (73%) Control: 1373 (71%) | 406 HF with angina | 1925 HF without angina | Intervention: 25% Control: 25% | Intervention: 30 Control: 30 | NT-proBNP Intervention: 716 Control: 839 |
4 [24] Mueller et al. | HIIT: 70 MCT: 70 Control: 69 | HIIT: 17 (29%) MCT: 23 (40%) Control: 19 (32%) | 58 with HF HIIT 58 with HF MCT | 60 with HF no training | HIIT: NR MCT: NR Control: NR | HIIT: 30.0 MCT: 31.1 Control: 29.0 | NT-proBNP (baseline) HIIT: 475 MCT: 656 Control: 875 |
5 [25] Kitzman et al. | Intervention: 73.1 Control: 72.2 | Intervention: 90 (51.4%) Control: 76 (43.6%) | 175 with HF | 174 with HF attention control | (≥45%) Intervention: 93 (53%) Control: 92 (53%) | Intervention: 32.9 Control: 33.0 | BNP (baseline) Intervention: 595 Control: 645 NT-proBNP (baseline) Intervention: 2527 Control: 3615 |
6 [26] Güder et al. | 64 | 9 (75%) | 12 with HF | No | 36% | 29.8 | NT-proBNP (baseline) 985 |
7 [27] Murray et al. | Intervention DM: 72.9 Control DM: 70.9 Intervention: 73.3 Control: 73.5 | Intervention DM: 55 (53.3%) Control DM: 35 (42.1%) Intervention: 35 (66.9%) Control: 41 (55.1%) | 103 with HF and DM 72 with HF | 83 with DM attention control 91 without DM attention control | (≥45%) Intervention DM: 63 (61.2%) Control DM: 43 (51.8%) Intervention: 30 (41.7%) Control: 49 (53.8%) | Intervention DM: 34.3 Control DM: 34.7 Intervention: 30.8 Control: 31.4 | BNP (baseline) Intervention DM: 383 Control DM: 473 Intervention: 759 Control: 673 |
8 [28] Chen et al. | Intervention: 57.7 Control: 58.8 | Intervention: 321 (84.3%) Control: 111 (81.0%) | 137 with HF <40% EF | 381 with HF <40% EF no training | Intervention: 29.0 Control: 29.3 | Intervention: 26.0 Control: 25.7 | NR |
9 [29] Nagatomi et al. | Intervention: 59.8 Control: 67.7 | Intervention: 9 (60%) Control: 7 (47%) | 15 with HF HBCR | 15 with HF | Intervention: 39.9 Control: 44.5 | Intervention: 20.2 Control: 21.1 | BNP (baseline) Intervention: 237 Control: 192 |
Study Number | Training Time, Follow-Up | Frequency of Training | Rehabilitation Program Description |
---|---|---|---|
1 [21] Norman et al. | 24 weeks | Aerobic: 3 days per week; 30 min + 15-min warm-up + 15-min cool-down; Resistance training: 2 days per week | Aerobic: 40% to 70% HRR or RPE 11–14 on the Borg scale; Resistance training: 8 to 10 exercises (upper and lower extremity), 1 set of 10 to 15 repetitions. |
2 [22] Kitzman et al. | 20 weeks | Aerobic: 3 days per week | Primarily walking, with individualized prescriptions based on test results. |
3 [23] Parikh et al. | 2.5 years | ≥90 min weekly exercise during months 1–3 and ≥120 min weekly thereafter | 36 supervised sessions followed by 2 years of home-based training. |
4 [24] Mueller et al. | 12 months | HIIT: 3 days per week MCT: 5 days per week | HIIT: 10-min warm-up at 35–50% HRR, followed by 4 × 4-min intervals at 80–90% HRR, with 3 min of active recovery between intervals. MCT: 40 min at 35–50% HRR. |
5 [25] Kitzman et al. | 3 months | Aerobic: 3 days per week | Facility-based: 36 sessions of 60 min over 12 weeks. Home-based: 30 min daily (low-intensity walking and strengthening exercises). |
6 [26] Güder et al. | 12 months | Group session: once per week Aerobic: daily | Group sessions: training intensity adjusted to target heart rate from CPET at 70% of peak VO2 ± 10 beats per minute; training goal was moderate intensity targeted (Borg’s scale 11–13). Session duration: 60 min; Aerobic: at least 60 min per day. |
7 [27] Murray et al. | 3 months | Aerobic: 3 days per week | Aerobic: 60 min three times weekly, focusing on strength, balance, mobility, and endurance. Home exercise: low-intensity walking and strengthening exercises on non-intervention days, after a safety check by study staff. |
8 [28] Chen et al. | 3 months | 3 days per week | Aerobic: 40 min sessions treadmill walking/jogging, cycling, stair climbing, elliptical training. Target intensity: 40–60% of peak oxygen consumption (VO2/kg) or 10 beats below CPET heart rate endpoints. Intensity increased fortnightly targeting Borg RPE of 12–14. Resistance exercise: 10–15 repetitions/set, 1–3 sets/session, 2–3 days/week after 4 weeks of moderate training. RPE intensity of 11–13. Flexibility exercises: As per ACSM guidelines, static stretches held for 10–30 s, advised to hold for at least 15 s with more than four repetitions. |
9 [29] Nagatomi et al. | 3 months | Aerobic: 3–5 times per week Resistance training: 2–3 times per week | Types of exercises: Stretching, resistance training (using weights), and aerobic exercises (ergometry or walking). Exercise intensity: Set at 11–13 on the Borg scale. |
Study Number | KCCQ (Baseline) | KCCQ (Finish) | 6MWT (Baseline) | 6MWT (Finish) | Significance |
---|---|---|---|---|---|
1 [21] Norman et al. | Intervention: 69.7 Control: 72.8 | Intervention: 81.0 Control: 77.9 | Intervention: 408 Control: 352 | Intervention: 463 Control: 384 | KCCQ—not statistically different between groups 6MWT—statistically different but no clinical significance |
2 [22] Kitzman et al. | Intervention: 75 Control: 73 | Difference (95% CI): 2 (−3, 7) | Intervention: 1503 Control: 1397 | Difference (95% CI): 106 (60, 152) | KCCQ—not statistically different between groups 6MWT—statistically different |
3 [23] Parikh et al. | Intervention: 60 Control: 70 | No significant change | Intervention: 373 Control: 370 | No significant change | KCCQ—not statistically different between groups 6MWT—not statistically different |
4 [24] Mueller et al. | HIIT: 68.0 MCT: 62.2 Control: 65.7 | HIIT: 80 MCT: 77 Control: 72 | NR | NR | KCCQ—significantly higher in HIIT vs. MCT and controls |
5 [25] Kitzman et al. | Intervention: 40 Control: 42 | Intervention: 69 Control: 62 | Intervention: 194 Control: 293 | Intervention: 193 Control: 260 | KCCQ—significantly higher and improved compared to controls 6MWT—significantly higher and improved compared to controls |
6 [26] Güder et al. | 62 | 73 | 450 m | 470 | KCCQ—not significantly improved 6MWT—not significantly improved |
7 [27] Murray et al. | Intervention DM: 40.1 Control DM: 41.0 Intervention: 40.3 Control: 42.0 | Intervention DM: 63.8 Control DM: 60.0 Intervention: 74.3 Control: 62.0 | Intervention DM: 183 Control DM: 178 Intervention: 209 Control: 206 | Intervention DM: 281 Control DM: 252 Intervention: 286 Control: 248 | KCCQ—not significantly improved regardless of DM status 6MWT—significantly improved in both study groups |
8 [28] Chen et al. | NR | Intervention: 32.9 points improvement Control: 20.3 points improvement | NR | NR | KCCQ—significantly improved |
9 [29] Nagatomi et al. | Intervention: 70 Control: 74 | Intervention: 70 Control: 78 | NR | Intervention: +52.1 difference Control: −4.3 difference | KCCQ—not significantly improved 6MWT—significantly improved |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sukosd, I.E.; Pescariu, S.A.; Faur, C.; Danila, A.I.; Prodan-Barbulescu, C.; Fira-Mladinescu, O. Utility of Kansas City Cardiomyopathy Questionnaire (KCCQ) in Assessing Quality of Life among Patients with Heart Failure Undergoing Exercise Training Rehabilitation: A Systematic Review. Diseases 2024, 12, 64. https://doi.org/10.3390/diseases12040064
Sukosd IE, Pescariu SA, Faur C, Danila AI, Prodan-Barbulescu C, Fira-Mladinescu O. Utility of Kansas City Cardiomyopathy Questionnaire (KCCQ) in Assessing Quality of Life among Patients with Heart Failure Undergoing Exercise Training Rehabilitation: A Systematic Review. Diseases. 2024; 12(4):64. https://doi.org/10.3390/diseases12040064
Chicago/Turabian StyleSukosd, Ilona Emoke, Silvius Alexandru Pescariu, Cosmin Faur, Alexandra Ioana Danila, Catalin Prodan-Barbulescu, and Ovidiu Fira-Mladinescu. 2024. "Utility of Kansas City Cardiomyopathy Questionnaire (KCCQ) in Assessing Quality of Life among Patients with Heart Failure Undergoing Exercise Training Rehabilitation: A Systematic Review" Diseases 12, no. 4: 64. https://doi.org/10.3390/diseases12040064