Serum Amino Acids in Association with Prevalent and Incident Type 2 Diabetes in A Chinese Population
Abstract
:1. Introduction
2. Results
2.1. Method Validation
2.2. Participant Characteristics
2.3. Associations Between Amino Acids and Type 2 Diabetes
2.4. Predictive Value of Amino Acids for Incident Type 2 Diabetes
3. Discussion
4. Materials and Methods
4.1. Chemicals and Reagents
4.2. Study Population
4.3. Prevalent and Incident Type 2 Diabetes: Patient Regrouping
4.4. Lipid Assays
4.5. Amino Acid Quantification
4.6. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Mathers, C.D.; Loncar, D. Projections of global mortality and burden of disease from 2002 to 2030. PLoS Med. 2006, 3, e442. [Google Scholar] [CrossRef] [PubMed]
- Olokoba, A.B.; Obateru, O.A.; Olokoba, L.B. Type 2 diabetes mellitus: A review of current trends. Oman Med. J. 2012, 27, 269–273. [Google Scholar] [CrossRef] [PubMed]
- Wang, T.J.; Larson, M.G.; Vasan, R.S.; Cheng, S.; Rhee, E.P.; McCabe, E.; Lewis, G.D.; Fox, C.S.; Jacques, P.F.; Fernandez, C.; et al. Metabolite profiles and the risk of developing diabetes. Nat. Med. 2011, 17, 448–453. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Floegel, A.; Stefan, N.; Yu, Z.; Muhlenbruch, K.; Drogan, D.; Joost, H.G.; Fritsche, A.; Haring, H.U.; Hrabe de Angelis, M.; Peters, A.; et al. Identification of serum metabolites associated with risk of type 2 diabetes using a targeted metabolomic approach. Diabetes 2013, 62, 639–648. [Google Scholar] [CrossRef]
- Menni, C.; Fauman, E.; Erte, I.; Perry, J.R.; Kastenmuller, G.; Shin, S.Y.; Petersen, A.K.; Hyde, C.; Psatha, M.; Ward, K.J.; et al. Biomarkers for type 2 diabetes and impaired fasting glucose using a nontargeted metabolomics approach. Diabetes 2013, 62, 4270–4276. [Google Scholar] [CrossRef] [PubMed]
- Xu, F.; Tavintharan, S.; Sum, C.F.; Woon, K.; Lim, S.C.; Ong, C.N. Metabolic signature shift in type 2 diabetes mellitus revealed by mass spectrometry-based metabolomics. J. Clin. Endocrinol. Metab. 2013, 98, E1060-5. [Google Scholar] [CrossRef] [PubMed]
- Walford, G.A.; Ma, Y.; Clish, C.; Florez, J.C.; Wang, T.J.; Gerszten, R.E.; Diabetes Prevention Program Research Group. Metabolite profiles of diabetes incidence and intervention response in the Diabetes Prevention Program. Diabetes 2016, 65, 1424–1433. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lu, Y.; Wang, Y.; Ong, C.N.; Subramaniam, T.; Choi, H.W.; Yuan, J.M.; Koh, W.P.; Pan, A. Metabolic signatures and risk of type 2 diabetes in a Chinese population: An untargeted metabolomics study using both LC-MS and GC-MS. Diabetologia 2016, 59, 2349–2359. [Google Scholar] [CrossRef] [PubMed]
- Tillin, T.; Hughes, A.D.; Wang, Q.; Wurtz, P.; Ala-Korpela, M.; Sattar, N.; Forouhi, N.G.; Godsland, I.F.; Eastwood, S.V.; McKeigue, P.M.; et al. Diabetes risk and amino acid profiles: Cross-sectional and prospective analyses of ethnicity, amino acids and diabetes in a South Asian and European cohort from the SABRE (Southall And Brent REvisited) Study. Diabetologia 2015, 58, 968–979. [Google Scholar] [CrossRef] [PubMed]
- Lee, C.C.; Watkins, S.M.; Lorenzo, C.; Wagenknecht, L.E.; Il’yasova, D.; Chen, Y.D.; Haffner, S.M.; Hanley, A.J. Branched-chain amino acids and insulin metabolism: The Insulin Resistance Atherosclerosis Study (IRAS). Diabetes Care 2016, 39, 582–588. [Google Scholar] [CrossRef]
- Zheng, Y.; Li, Y.; Qi, Q.; Hruby, A.; Manson, J.E.; Willett, W.C.; Wolpin, B.M.; Hu, F.B.; Qi, L. Cumulative consumption of branched-chain amino acids and incidence of type 2 diabetes. Int. J. Epidemiol. 2016, 45, 1482–1492. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Isanejad, M.; LaCroix, A.Z.; Thomson, C.A.; Tinker, L.; Larson, J.C.; Qi, Q.; Qi, L.; Cooper-DeHoff, R.M.; Phillips, L.S.; Prentice, R.L.; et al. Branched-chain amino acid, meat intake and risk of type 2 diabetes in the Women’s Health Initiative. Br. J. Nutr. 2017, 117, 1523–1530. [Google Scholar] [CrossRef] [PubMed]
- Nagata, C.; Nakamura, K.; Wada, K.; Tsuji, M.; Tamai, Y.; Kawachi, T. Branched-chain amino acid intake and the risk of diabetes in a Japanese community: The Takayama study. Am. J. Epidemiol. 2013, 178, 1226–1232. [Google Scholar] [CrossRef] [PubMed]
- Layman, D.K. The role of leucine in weight loss diets and glucose homeostasis. J. Nutr. 2003, 133, 261s–267s. [Google Scholar] [CrossRef] [PubMed]
- Tai, E.S.; Tan, M.L.; Stevens, R.D.; Low, Y.L.; Muehlbauer, M.J.; Goh, D.L.; Ilkayeva, O.R.; Wenner, B.R.; Bain, J.R.; Lee, J.J.; et al. Insulin resistance is associated with a metabolic profile of altered protein metabolism in Chinese and Asian-Indian men. Diabetologia 2010, 53, 757–767. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guasch-Ferre, M.; Hruby, A.; Toledo, E.; Clish, C.B.; Martinez-Gonzalez, M.A.; Salas-Salvado, J.; Hu, F.B. Metabolomics in prediabetes and diabetes: A systematic review and meta-analysis. Diabetes Care 2016, 39, 833–846. [Google Scholar] [CrossRef]
- Chen, T.; Ni, Y.; Ma, X.; Bao, Y.; Liu, J.; Huang, F.; Hu, C.; Xie, G.; Zhao, A.; Jia, W.; et al. Branched-chain and aromatic amino acid profiles and diabetes risk in Chinese populations. Sci. Rep. 2016, 6, 20594. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pedersen, H.K.; Gudmundsdottir, V.; Nielsen, H.B.; Hyotylainen, T.; Nielsen, T.; Jensen, B.A.; Forslund, K.; Hildebrand, F.; Prifti, E.; Falony, G.; et al. Human gut microbes impact host serum metabolome and insulin sensitivity. Nature 2016, 535, 376–381. [Google Scholar] [CrossRef]
- Nishitani, S.; Matsumura, T.; Fujitani, S.; Sonaka, I.; Miura, Y.; Yagasaki, K. Leucine promotes glucose uptake in skeletal muscles of rats. Biochem. Biophys. Res. Commun. 2002, 299, 693–696. [Google Scholar] [CrossRef]
- Newgard, C.B. Interplay between lipids and branched-chain amino acids in development of insulin resistance. Cell Metab. 2012, 15, 606–614. [Google Scholar] [CrossRef]
- Newgard, C.B.; An, J.; Bain, J.R.; Muehlbauer, M.J.; Stevens, R.D.; Lien, L.F.; Haqq, A.M.; Shah, S.H.; Arlotto, M.; Slentz, C.A.; et al. A branched-chain amino acid-related metabolic signature that differentiates obese and lean humans and contributes to insulin resistance. Cell Metab. 2009, 9, 311–326. [Google Scholar] [CrossRef]
- Wurtz, P.; Soininen, P.; Kangas, A.J.; Ronnemaa, T.; Lehtimaki, T.; Kahonen, M.; Viikari, J.S.; Raitakari, O.T.; Ala-Korpela, M. Branched-chain and aromatic amino acids are predictors of insulin resistance in young adults. Diabetes Care 2013, 36, 648–655. [Google Scholar] [CrossRef] [PubMed]
- Unluturk, U.; Erbas, T. Diabetes and Tryptophan Metabolism. In Tryptophan Metabolism: Implications for Biological Processes, Health and Disease; Springer: Berlin, Germany, 2015; pp. 147–171. [Google Scholar]
- Wurtz, P.; Tiainen, M.; Makinen, V.P.; Kangas, A.J.; Soininen, P.; Saltevo, J.; Keinanen-Kiukaanniemi, S.; Mantyselka, P.; Lehtimaki, T.; Laakso, M.; et al. Circulating metabolite predictors of glycemia in middle-aged men and women. Diabetes Care 2012, 35, 1749–1756. [Google Scholar] [CrossRef] [PubMed]
- Stancakova, A.; Civelek, M.; Saleem, N.K.; Soininen, P.; Kangas, A.J.; Cederberg, H.; Paananen, J.; Pihlajamaki, J.; Bonnycastle, L.L.; Morken, M.A.; et al. Hyperglycemia and a common variant of GCKR are associated with the levels of eight amino acids in 9,369 Finnish men. Diabetes 2012, 61, 1895–1902. [Google Scholar] [CrossRef]
- Seibert, R.; Abbasi, F.; Hantash, F.M.; Caulfield, M.P.; Reaven, G.; Kim, S.H. Relationship between insulin resistance and amino acids in women and men. Physiol Rep. 2015, 3. [Google Scholar] [CrossRef] [PubMed]
- Cheng, S.; Rhee, E.P.; Larson, M.G.; Lewis, G.D.; McCabe, E.L.; Shen, D.; Palma, M.J.; Roberts, L.D.; Dejam, A.; Souza, A.L.; et al. Metabolite profiling identifies pathways associated with metabolic risk in humans. Circulation 2012, 125, 2222–2231. [Google Scholar] [CrossRef] [PubMed]
- Lu, Y.; Wang, Y.; Zou, L.; Liang, X.; Ong, C.N.; Tavintharan, S.; Yuan, J.M.; Koh, W.P.; Pan, A. Serum Lipids in Association with Type 2 Diabetes Risk and Prevalence in a Chinese Population. J. Clin. Endocrinol. Metab. 2018, 103, 671–680. [Google Scholar] [CrossRef]
- American Diabetes Association. Report of the expert committee on the diagnosis and classification of diabetes mellitus. Diabetes Care 1997, 20, 1183–1197. [Google Scholar]
- American Diabetes Association. Diagnosis and classification of diabetes mellitus. Diabetes Care 2010, 33 (Suppl. 1), S62–S69. [Google Scholar] [CrossRef]
- McGeechan, K.; Macaskill, P.; Irwig, L.; Liew, G.; Wong, T.Y. Assessing new biomarkers and predictive models for use in clinical practice: A clinician’s guide. Arch. Intern. Med. 2008, 168, 2304–2310. [Google Scholar] [CrossRef]
Baseline Characteristics | Prevalent Type 2 Diabetes | Incident Type 2 Diabetes | ||||
---|---|---|---|---|---|---|
Case (n = 144) | Control (n = 144) | p Value | Case (n = 160) | Control (n = 160) | p Value | |
HbA1c | ||||||
% | 7.7 ± 1.6 | 5.6 ± 0.3 | 5.9 ± 0.4 | 5.5 ± 0.2 | ||
mmol/mol | 60.7 ± 12.6 | 37.7 ± 2.0 | 41.0 ± 2.8 | 36.6 ± 1.3 | ||
Random glucose (mmol/L) | 8.8 ± 4.2 | 4.9 ± 1.3 | <0.001 | 5.8 ± 2.0 | 4.9 ± 1.2 | <0.001 |
Age (years) | 62.7 ± 6.1 | 62.7 ± 5.9 | 0.834 | 61.6 ± 5.6 | 61.9 ± 6.0 | 0.163 |
Sex, n (%) | 1.000 | 1.000 | ||||
Male | 62 (43.1) | 62 (43.1) | 79 (49.4) | 79 (49.4) | ||
Female | 82 (56.9) | 82 (56.9) | 81 (50.6) | 81 (50.6) | ||
BMI (kg/m2) | 24.6 ± 3.6 | 23.1 ± 3.3 | <0.001 | 24.6 ± 3.4 | 22.6 ± 3.5 | <0.001 |
History of hypertension, n (%) | 0.066 | <0.001 | ||||
No | 84 (58.3) | 99 (68.7) | 75 (46.9) | 118 (73.8) | ||
Yes | 60 (41.7) | 45 (31.3) | 85 (53.1) | 42 (26.3) | ||
Smoking status, n (%) | 0.700 | 0.721 | ||||
Non-smoker | 99 (68.8) | 102 (70.8) | 106 (66.3) | 109 (68.1) | ||
Smoker | 45 (31.2) | 42 (29.2) | 54 (33.7) | 51 (31.9) | ||
Alcohol consumption, n (%) | 0.733 | 0.867 | ||||
< 1 drink/week | 125 (86.8) | 123 (85.4) | 139 (86.9) | 140 (87.5) | ||
≥1 drink/week | 19 (13.2) | 21 (14.6) | 21 (13.1) | 20 (12.5) | ||
Physical activity, n (%) | 0.879 | 0.689 | ||||
<0.5 hours/week | 118 (81.9) | 117 (81.3) | 125 (78.1) | 122 (76.3) | ||
≥0.5 hours/week | 26 (18.1) | 27 (18.7) | 35 (21.9) | 38 (23.7) | ||
Education, n (%) | 0.405 | 0.657 | ||||
None | 37 (25.7) | 31 (21.5) | 29 (18.1) | 26 (16.3) | ||
Primary and above | 107 (74.3) | 113 (78.5) | 131 (81.9) | 134 (83.7) | ||
Fasting status, n (%) | 0.372 | 0.360 | ||||
Non-fasting | 96 (66.7) | 103 (71.5) | 118 (73.8) | 125 (78.1) | ||
Fasting | 48 (33.3) | 41 (28.5) | 42 (26.3) | 35 (21.9) | ||
HDL-cholesterol (mmol/L) | 1.1 ± 0.2 | 1.2 ± 0.3 | <0.001 | 1.1 ± 0.3 | 1.2 ± 0.3 | <0.001 |
Triglycerides (mmol/L) | 2.6 ± 1.9 | 2.0 ± 1.3 | 0.001 | 2.4 ± 1.3 | 1.7 ± 0.9 | <0.001 |
Amino Acids | OR Across Tertiles (T) a | OR Per SD Increment a | ||||||
---|---|---|---|---|---|---|---|---|
T1 | T2, OR (95% CI) | T3, OR (95% CI) | p for Trend | FDR | OR (95% CI) | p Value | FDR | |
Essential amino acids | ||||||||
Valine | 1.00 | 5.00 (2.05, 12.18) | 5.13 (2.05, 12.86) | 0.001 | 0.006 | 1.85 (1.30, 2.64) | 0.001 | 0.006 |
Leucine | 1.00 | 2.43 (1.24, 4.73) | 2.63 (1.27, 5.48) | 0.007 | 0.033 | 1.55 (1.12, 2.13) | 0.008 | 0.038 |
Isoleucine | 1.00 | 2.79 (1.39, 5.62) | 2.22 (1.08, 4.57) | 0.026 | 0.068 | 1.34 (0.98, 1.85) | 0.069 | 0.133 |
Phenylalanine | 1.00 | 1.99 (1.03, 3.84) | 2.12 (1.05, 4.26) | 0.030 | 0.068 | 1.44 (1.05, 1.96) | 0.022 | 0.073 |
Lysine | 1.00 | 0.88 (0.45, 1.74) | 2.28 (1.11, 4.68) | 0.032 | 0.068 | 1.42 (1.04, 1.94) | 0.027 | 0.073 |
Methionine | 1.00 | 2.75 (1.39, 5.46) | 1.86 (0.92, 3.80) | 0.077 | 0.124 | 1.21 (0.90, 1.65) | 0.209 | 0.265 |
Threonine | 1.00 | 0.83 (0.42, 1.63) | 0.54 (0.27, 1.08) | 0.085 | 0.124 | 0.81 (0.62, 1.07) | 0.134 | 0.219 |
Tryptophan | 1.00 | 0.62 (0.31, 1.25) | 1.79 (0.78, 4.14) | 0.222 | 0.301 | 1.43 (0.97, 2.11) | 0.070 | 0.133 |
Histidine | 1.00 | 1.49 (0.75, 2.93) | 0.85 (0.44, 1.65) | 0.644 | 0.723 | 0.81 (0.62, 1.07) | 0.138 | 0.219 |
Non-essential amino acids | ||||||||
Glutamic acid | 1.00 | 2.96 (1.37, 6.39) | 4.04 (1.79, 9.12) | 0.001 | 0.006 | 1.89 (1.34, 2.67) | <0.001 | 0.006 |
Alanine | 1.00 | 1.73 (0.82, 3.65) | 3.41 (1.63, 7.14) | 0.001 | 0.006 | 1.73 (1.23, 2.42) | 0.001 | 0.006 |
Glutamine | 1.00 | 0.66 (0.27, 1.62) | 0.32 (0.12, 0.87) | 0.017 | 0.057 | 0.65 (0.44, 0.97) | 0.035 | 0.083 |
Glycine | 1.00 | 0.51 (0.26, 1.00) | 0.47 (0.26, 0.87) | 0.018 | 0.057 | 0.73 (0.55, 0.96) | 0.024 | 0.073 |
Tyrosine | 1.00 | 1.82 (0.90, 3.66) | 2.12 (1.03, 4.37) | 0.044 | 0.084 | 1.23 (0.90, 1.68) | 0.186 | 0.252 |
Serine | 1.00 | 1.27 (0.70, 2.32) | 1.81 (0.93, 3.52) | 0.083 | 0.124 | 1.21 (0.91, 1.60) | 0.186 | 0.252 |
Asparagine | 1.00 | 1.20 (0.63, 2.29) | 0.66 (0.32, 1.36) | 0.299 | 0.379 | 0.86 (0.63, 1.18) | 0.362 | 0.430 |
Arginine | 1.00 | 0.95 (0.47, 1.90) | 0.86 (0.46, 1.62) | 0.647 | 0.723 | 0.92 (0.71, 1.20) | 0.541 | 0.605 |
Proline | 1.00 | 1.70 (0.83, 3.47) | 1.00 (0.49, 2.07) | 0.935 | 0.970 | 1.00 (0.76, 1.32) | 0.997 | 0.997 |
Aspartic acid | 1.00 | 0.67 (0.33, 1.38) | 1.04 (0.43, 2.50) | 0.970 | 0.970 | 1.05 (0.78, 1.41) | 0.767 | 0.810 |
Amino acids | C-Statistics a | IDI | NRI | |
---|---|---|---|---|
AUC (95%CI) | p Value | p Value | p Value | |
Essential | ||||
Valine | 0.76 (0.70, 0.81) | 0.34 | 0.03 | 0.01 |
Tryptophan | 0.75 (0.70, 0.81) | 0.51 | 0.05 | 0.09 |
Phenylalanine | 0.76 (0.70, 0.81) | 0.33 | 0.07 | 0.06 |
Leucine | 0.75 (0.70, 0.80) | 0.46 | 0.08 | 0.03 |
Isoleucine | 0.75 (0.70, 0.80) | 0.82 | 0.20 | 0.91 |
Histidine | 0.75 (0.70, 0.80) | 0.60 | 0.31 | 0.02 |
Methionine | 0.75 (0.70, 0.80) | 0.88 | 0.44 | 0.99 |
Lysine | 0.75 (0.70, 0.80) | 0.94 | 0.59 | 0.15 |
Threonine | 0.75 (0.69, 0.80) | 0.61 | 0.91 | 0.99 |
Non-essential | ||||
Tyrosine | 0.76 (0.71, 0.81) | 0.21 | 0.02 | 0.01 |
Aspartic acid | 0.75 (0.70, 0.81) | 0.36 | 0.10 | 0.50 |
Glycine | 0.75 (0.70, 0.81) | 0.38 | 0.14 | 0.99 |
Alanine | 0.75 (0.70, 0.80) | 0.62 | 0.31 | 0.31 |
Glutamic acid | 0.75 (0.70, 0.80) | 0.76 | 0.38 | 0.37 |
Arginine | 0.75 (0.69, 0.80) | 0.92 | 0.69 | 0.50 |
Proline | 0.75 (0.70, 0.80) | 0.56 | 0.77 | 0.37 |
Serine | 0.75 (0.69, 0.80) | 0.87 | 0.80 | 0.58 |
Glutamine | 0.75 (0.70, 0.80) | 0.89 | 0.83 | 0.65 |
Asparagine | 0.75 (0.69, 0.80) | 0.08 | 0.99 | 0.65 |
Combinations | ||||
Combination 1 | 0.76 (0.71, 0.82) | 0.15 | <0.01 | <0.01 |
Combination 2 | 0.77 (0.72, 0.82) | 0.12 | <0.01 | <0.01 |
Combination 3 | 0.77 (0.72, 0.82) | 0.07 | <0.01 | <0.01 |
Combination 4 | 0.78 (0.73, 0.83) | 0.04 | <0.01 | <0.01 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lu, Y.; Wang, Y.; Liang, X.; Zou, L.; Ong, C.N.; Yuan, J.-M.; Koh, W.-P.; Pan, A. Serum Amino Acids in Association with Prevalent and Incident Type 2 Diabetes in A Chinese Population. Metabolites 2019, 9, 14. https://doi.org/10.3390/metabo9010014
Lu Y, Wang Y, Liang X, Zou L, Ong CN, Yuan J-M, Koh W-P, Pan A. Serum Amino Acids in Association with Prevalent and Incident Type 2 Diabetes in A Chinese Population. Metabolites. 2019; 9(1):14. https://doi.org/10.3390/metabo9010014
Chicago/Turabian StyleLu, Yonghai, Yeli Wang, Xu Liang, Li Zou, Choon Nam Ong, Jian-Min Yuan, Woon-Puay Koh, and An Pan. 2019. "Serum Amino Acids in Association with Prevalent and Incident Type 2 Diabetes in A Chinese Population" Metabolites 9, no. 1: 14. https://doi.org/10.3390/metabo9010014
APA StyleLu, Y., Wang, Y., Liang, X., Zou, L., Ong, C. N., Yuan, J. -M., Koh, W. -P., & Pan, A. (2019). Serum Amino Acids in Association with Prevalent and Incident Type 2 Diabetes in A Chinese Population. Metabolites, 9(1), 14. https://doi.org/10.3390/metabo9010014