Nutritional Characterization of Sea Bass Processing By-Products
Abstract
:1. Introduction
2. Materials and Methods
2.1. Samples
2.2. Proximate Composition
2.3. Amino-Acid Profile
2.4. Fatty-Acid Profile
2.5. Mineral Profile
2.6. Statistical Analysis
3. Results
3.1. Chemical Composition
3.2. Amino-Acid Profile
3.3. Fatty-Acid Profile
3.4. Mineral Profile
4. Discussion
4.1. Chemical Composition
4.2. Protein and Amino-Acid Profile
4.3. Fat and Fatty Acids
4.4. Minerals
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Aronson, J.K. Defining ‘nutraceuticals’: Neither nutritious nor pharmaceutical. Br. J. Clin. Pharmacol. 2017, 83, 8–19. [Google Scholar] [CrossRef] [PubMed]
- Khan, R.S.; Grigor, J.; Winger, R.; Win, A. Functional food product development - Opportunities and challenges for food manufacturers. Trends Food Sci. Technol. 2013, 30, 27–37. [Google Scholar] [CrossRef]
- Siró, I.; Kápolna, E.; Kápolna, B.; Lugasi, A. Functional food. Product development, marketing and consumer acceptance—A review. Appetite 2008, 51, 456–467. [Google Scholar] [CrossRef] [PubMed]
- Saini, R.K.; Keum, Y.S. Omega-3 and omega-6 polyunsaturated fatty acids: Dietary sources, metabolism, and significance - A review. Life Sci. 2018, 203, 255–267. [Google Scholar] [CrossRef]
- Martins, D.A.; Custódio, L.; Barreira, L.; Pereira, H.; Ben-Hamadou, R.; Varela, J.; Abu-Salah, K.M. Alternative sources of n-3 long-chain polyunsaturated fatty acids in marine microalgae. Mar. Drugs 2013, 11, 2259–2281. [Google Scholar] [CrossRef] [Green Version]
- Jacobsen, C. Enrichment of foods with omega-3 fatty acids: A multidisciplinary challenge. Ann. N. Y. Acad. Sci. 2010, 1190, 141–150. [Google Scholar] [CrossRef]
- Wendisch, V.F.; Jorge, J.M.P.; Pérez-García, F.; Sgobba, E. Updates on industrial production of amino acids using Corynebacterium glutamicum. World J. Microbiol. Biotechnol. 2016, 32, 105. [Google Scholar] [CrossRef]
- Ayala-Bribiesca, E.; Lussier, M.; Chabot, D.; Turgeon, S.L.; Britten, M. Effect of calcium enrichment of Cheddar cheese on its structure, in vitro digestion and lipid bioaccessibility. Int. Dairy J. 2016, 53, 1–9. [Google Scholar] [CrossRef]
- Lorenzo, J.M.; Munekata, P.E.S.; Pateiro, M.; Campagnol, P.C.B.; Domínguez, R. Healthy Spanish salchichón enriched with encapsulated n − 3 long chain fatty acids in konjac glucomannan matrix. Food Res. Int. 2016, 89, 289–295. [Google Scholar] [CrossRef]
- Santillán-Urquiza, E.; Méndez-Rojas, M.Á.; Vélez-Ruiz, J.F. Fortification of yogurt with nano and micro sized calcium, iron and zinc, effect on the physicochemical and rheological properties. LWT Food Sci. Technol. 2017, 80, 462–469. [Google Scholar] [CrossRef]
- Oğur, S. Evaluation of amino acid changes and crumb hardness of enriched bread with tench (Tinca tinca L., 1758) flesh in Turkey. J. Food Nutr. Res. 2014, 2, 985–992. [Google Scholar] [CrossRef] [Green Version]
- Argo, C.K.; Patrie, J.T.; Lackner, C.; Henry, T.D.; De Lange, E.E.; Weltman, A.L.; Shah, N.L.; Al-Osaimi, A.M.; Pramoonjago, P.; Jayakumar, S.; et al. Effects of n-3 fish oil on metabolic and histological parameters in NASH: A double-blind, randomized, placebo-controlled trial. J. Hepatol. 2015, 62, 190–197. [Google Scholar] [CrossRef] [PubMed]
- Sibbel, A. The sustainability of functional foods. Soc. Sci. Med. 2007, 64, 554–561. [Google Scholar] [CrossRef] [PubMed]
- Sharma, S.K.; Bansal, S.; Mangal, M.; Dixit, A.K.; Gupta, R.K.; Mangal, A.K. Utilization of food processing by-products as dietary, functional, and novel fiber: A review. Crit. Rev. Food Sci. Nutr. 2016, 56, 1647–1661. [Google Scholar] [CrossRef] [PubMed]
- Jayathilakan, K.; Sultana, K.; Radhakrishna, K.; Bawa, A.S. Utilization of byproducts and waste materials from meat, poultry and fish processing industries: A review. J. Food Sci. Technol. 2012, 49, 278–293. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Al Khawli, F.; Pateiro, M.; Domínguez, R.; Lorenzo, J.M.; Gullón, P.; Kousoulaki, K.; Ferrer, E.; Berrada, H.; Barba, F.J. Innovative green technologies of intensification for valorization of seafood and their by-products. Mar. Drugs 2019, 17, 689. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gómez-Guillén, M.C.; Lopez-Caallero, M.E.; Alemán, A.; López de Lacey, A.; Giménez, B.; Montero, P. Antioxidant and antimicrobial peptide fractions from squid and tuna skin gelatin. Transw. Res. Netw. 2010, 661, 89–115. [Google Scholar]
- Behera, S.S. Dietary fish oil concentrates associated health benefits: A recent development of cardiovascular risk reduction. Curr. Pharm. Des. 2019, 25, 4053–4062. [Google Scholar] [CrossRef]
- Malde, M.K.; Graff, I.E.; Siljander-Rasi, H.; Venäläinen, E.; Julshamn, K.; Pedersen, J.I.; Valaja, J. Fish bones—A highly available calcium source for growing pigs. J. Anim. Physiol. Anim. Nutr. 2010, 94, e66–e76. [Google Scholar] [CrossRef]
- Food and Agriculture Organization of the United Nations Cultured Aquatic Species Information Programme—Dicentrarchus labrax (Linnaeus, 1758). Available online: http://www.fao.org/fishery/culturedspecies/Dicentrarchus_labrax/en (accessed on 15 December 2019).
- European Market Observatory for Fisheries and Aquaculture Products. Case Study in the EU Seabass; European Commission: Luxembourg, 2019. [Google Scholar]
- ISO 1442. Meat and Meat Products—Determination of Moisture Content (Reference Method), 2nd ed.; International Organization for Standarization: Geneva, Switzerland, 1997. [Google Scholar]
- ISO 937. Meat and Meat Products—Determination of Nitrogen Content (Reference Method), 1st ed.; International Organization for Standarization: Geneva, Switzerland, 1978. [Google Scholar]
- ISO 936. Meat and Meat Products—Determination of Total Ash, 2nd ed.; International Organization for Standarization: Geneva, Switzerland, 1998. [Google Scholar]
- AOCS Official Procedure Am5-04. Rapid Determination of Oil/Fat Utilizing High Temperature Solvent Extraction; American Oil Chemists Society: Urbana, IL, USA, 2005. [Google Scholar]
- Domínguez, R.; Borrajo, P.; Lorenzo, J.M. The effect of cooking methods on nutritional value of foal meat. J. Food Compos. Anal. 2015, 43, 61–67. [Google Scholar] [CrossRef]
- World Health Organization; Food and Agriculture Organization; United Nations University. Protein and Amino Acid Requirements in Human Nutrition; World Health Organization: Geneva, Switzerland, 2002. [Google Scholar]
- Bligh, E.G.; Dyer, W.J. A rapid method of total lipid extraction and purification. Can. J. Biochem. Physiol. 1959, 37, 911–917. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barros, J.C.; Munekata, P.E.S.; de Carvalho, F.A.L.; Pateiro, M.; Barba, F.J.; Domínguez, R.; Trindade, M.A.; Lorenzo, J.M. Use of tiger nut (Cyperus esculentus L.) oil emulsion as animal fat replacement in beef burgers. Foods 2020, 9, 1–15. [Google Scholar]
- Domínguez, R.; Crecente, S.; Borrajo, P.; Agregán, R.; Lorenzo, J.M. Effect of slaughter age on foal carcass traits and meat quality. Animal 2015, 9, 1713–1720. [Google Scholar] [CrossRef] [Green Version]
- Lorenzo, J.M.; Bermúdez, R.; Domínguez, R.; Guiotto, A.; Franco, D.; Purriños, L. Physicochemical and microbial changes during the manufacturing process of dry-cured lacón salted with potassium, calcium and magnesium chloride as a partial replacement for sodium chloride. Food Control. 2015, 50, 763–769. [Google Scholar] [CrossRef]
- Özyurt, G.; Polat, A. Amino acid and fatty acid composition of wild sea bass (Dicentrarchus labrax): A seasonal differentiation. Eur. Food Res. Technol. 2006, 222, 316–320. [Google Scholar] [CrossRef]
- Xiccato, G.; Trocino, A.; Tulli, F.; Tibaldi, E. Prediction of chemical composition and origin identification of european sea bass (Dicentrarchus labrax L.) by near infrared reflectance spectroscopy (NIRS). Food Chem. 2004, 86, 275–281. [Google Scholar] [CrossRef]
- Jobling, M.; Koskela, J.; Savolainen, R. Influence of dietary fat level and increased adiposity on growth and fat deposition in rainbow trout, Oncorhynchus mykiss (Walbaum). Aquac. Res. 1998, 29, 601–607. [Google Scholar] [CrossRef]
- Li, X.-F.; Liu, W.-B.; Jiang, Y.-Y.; Zhu, H.; Ge, X.-P. Effects of dietary protein and lipid levels in practical diets on growth performance and body composition of blunt snout bream (Megalobrama amblycephala) fingerlings. Aquaculture 2010, 303, 65–70. [Google Scholar] [CrossRef]
- Kim, K.D.; Kang, Y.J.; Lee, H.Y.M.; Kim, K.W.; Jang, M.S.; Choi, S.M.; Lee, S.M.; Cho, S.H. Effects of dietary protein and lipid levels on growth and body composition of subadult olive flounder, Paralichthys olivaceus, at a suboptimal water temperature. J. World Aquac. Soc. 2010, 41, 263–269. [Google Scholar] [CrossRef]
- Baki, B.; Gönener, S.; Kaya, D. Comparison of food, amino acid and fatty acid compositions of wild and cultivated Sea bass (Dicentrarchus labrax L., 1758). Turkish J. Fish. Aquat. Sci. 2015, 15, 175–179. [Google Scholar] [CrossRef]
- Oluwaniyi, O.O.; Dosumu, O.O.; Awolola, G.V. Effect of local processing methods (boiling, frying and roasting) on the amino acid composition of four marine fishes commonly consumed in Nigeria. Food Chem. 2010, 123, 1000–1006. [Google Scholar] [CrossRef]
- Peng, S.; Chen, C.; Shi, Z.; Wang, L. Amino acid and fatty acid composition of the muscle tissue of yellowfin tuna (Thunnus Albacares) and bigeye tuna (Thunnus Obesus). J. Food Nutr. Res. 2013, 1, 42–45. [Google Scholar] [CrossRef]
- Adeyeye, E.I. Amino acid composition of three species of Nigerian fish: Clarias anguillaris, Oreochromis niloticus and Cynoglossus senegalensis. Food Chem. 2009, 113, 43–46. [Google Scholar] [CrossRef]
- Zhong, S.; Liu, S.; Cao, J.; Chen, S.; Wang, W.; Qin, X. Fish protein isolates recovered from silver carp (Hypophthalmichthys molitrix) by-products using alkaline pH solubilization and precipitation. J. Aquat. Food Prod. Technol. 2016, 25, 400–413. [Google Scholar] [CrossRef]
- Babangida, A.; Bwathondi, P.O.J.; Suleiman, M.; Ringim, A.S. A study on the amino acid profiles of five fresh water fishes commonly consumed in Tanzania. J. Zool. Biosci. Res. 2017, 42, 1–6. [Google Scholar] [CrossRef]
- Wu, T.; Mao, L. Influences of hot air drying and microwave drying on nutritional and odorous properties of grass carp (Ctenopharyngodon idellus) fillets. Food Chem. 2008, 110, 647–653. [Google Scholar] [CrossRef]
- European Parliament. Regulation (EU) No 1924/2006. Regulation (EC) No 1924/2006 of the European Parliament and of the Council of 20 December 2006 on nutrition and health claims made on foods. Off. J. Eur. Union L 2006, 404, 9–25. [Google Scholar]
- Bhouri, A.M.; Bouhlel, I.; Chouba, L.; Hammami, M.; El Cafsi, M.; Chaouch, A. Total lipid content, fatty acid and mineral compositions of muscles and liver in wild and farmed sea bass (Dicentrarchus labrax). African J. Food Sci. 2010, 4, 522–530. [Google Scholar]
- Sae-leaw, T.; Benjakul, S. Fatty acid composition, lipid oxidation, and fishy odour development in seabass (Lates calcarifer) skin during iced storage. Eur. J. Lipid Sci. Technol. 2014, 116, 885–894. [Google Scholar] [CrossRef]
- Mourente, G.; Bell, J.G. Partial replacement of dietary fish oil with blends of vegetable oils (rapeseed, linseed and palm oils) in diets for European sea bass (Dicentrarchus labrax L.) over a long term growth study: Effects on muscle and liver fatty acid composition and effectiv. Comp. Biochem. Physiol. - B Biochem. Mol. Biol. 2006, 145, 389–399. [Google Scholar] [CrossRef]
- Torrecillas, S.; Mompel, D.; Caballero, M.J.; Montero, D.; Merrifield, D.; Rodiles, A.; Robaina, L.; Zamorano, M.J.; Karalazos, V.; Kaushik, S.; et al. Effect of fishmeal and fish oil replacement by vegetable meals and oils on gut health of European sea bass (Dicentrarchus labrax). Aquaculture 2017, 468, 386–398. [Google Scholar] [CrossRef]
- Zotos, A.; Vouzanidou, M. Seasonal changes in composition, fatty acid, cholesterol and mineral content of six highly commercial fish species of Greece. Food Sci. Technol. Int. 2012, 18, 139–149. [Google Scholar] [CrossRef] [PubMed]
- Erkan, N.; Özden, Ö. Proximate composition and mineral contents in aqua cultured sea bass (Dicentrarchus labrax), sea bream (Sparus aurata) analyzed by ICP-MS. Food Chem. 2007, 102, 721–725. [Google Scholar] [CrossRef]
- Yildiz, M. Mineral composition in fillets of sea bass (Dicentrarchus labrax) and sea bream (Sparus aurata): A comparison of cultured and wild fish. J. Appl. Ichthyol. 2008, 24, 589–594. [Google Scholar] [CrossRef]
- Alasalvar, C.; Taylor, K.D.A.; Zubcov, E.; Shahidi, F.; Alexis, M. Differentiation of cultured and wild sea bass (Dicentrarchus labrax): Total lipid content, fatty acid and trace mineral composition. Food Chem. 2002, 79, 145–150. [Google Scholar] [CrossRef]
- Fernandes, D.; Bebianno, M.J.; Porte, C. Assessing pollutant exposure in cultured and wild sea bass (Dicentrarchus labrax) from the Iberian Peninsula. Ecotoxicology 2009, 18, 1043–1050. [Google Scholar] [CrossRef] [PubMed]
- Herpandi, N.H.; Rosma, A.; Wan Nadiah, W.A. The tuna fishing industry: A new outlook on fish protein hydrolysates. Compr. Rev. Food Sci. Food Saf. 2011, 10, 195–207. [Google Scholar] [CrossRef]
- Bubel, F.; Dobrzański, Z.; Bykowski, P.J.; Chojnacka, K.; Opaliński, S.; Trziszka, T. Production of calcium preparations by technology of saltwater fish by product processing. Open Chem. 2015, 13, 1333–1340. [Google Scholar] [CrossRef]
(g/100 g) | Fillet | Skin | Guts | Gills | Liver | Head | Fish Bone |
---|---|---|---|---|---|---|---|
Moisture | 72e | 54bc | 38a | 62de | 48ab | 59cd | 52b |
SEM | 0.4 | 1 | 2 | 0.4 | 1 | 0.8 | 1 |
Protein | 21ef | 25f | 8a | 16de | 12ab | 16cd | 15bc |
SEM | 0.08 | 0.7 | 0.6 | 0.1 | 0.5 | 0.2 | 0.4 |
Fat | 4a | 17bc | 53e | 13ab | 35de | 14ab | 19cd |
SEM | 0.5 | 1 | 3 | 0.5 | 2 | 0.6 | 0.6 |
Ash | 1.3bc | 3.0cd | 0.78a | 5.8de | 1.1ab | 10f | 7ef |
SEM | 0.02 | 0.3 | 0.03 | 0.2 | 0.07 | 0.6 | 0.4 |
Amino Acid (mg/100 g Protein) | Fillet | Skin | Guts | Gills | Liver | Head | Fish Bone |
---|---|---|---|---|---|---|---|
EAA | |||||||
Histidine | 464c | 534c | n.d.a | 435c | 236 | 455c | 463c |
SEM | 29 | 40 | - | 16 | 50 | 17 | 11 |
Arginine | 1173bc | 1595c | 96.41a | 215a | 205a | 1189bc | 1195bc |
SEM | 76 | 119 | 6 | 16 | 21 | 39 | 34 |
Threonine | 798c | 850c | 107a | 808c | 286a | 637ab | 688bc |
SEM | 46 | 71 | 5 | 23 | 80 | 22 | 26 |
Valine | 922c | 897bc | 155a | 672a | 510a | 666a | 701ab |
SEM | 49 | 80 | 4 | 57 | 97 | 27 | 25 |
Methionine | 437d | 247c | n.d.a | n.d.a | 109b | 199bc | 197bc |
SEM | 21 | 33 | - | - | 10 | 9 | 8 |
Lysine | 1646d | 1532cd | 108a | 799ab | 407a | 1055ab | 1232bc |
SEM | 99 | 168 | 4 | 48 | 147 | 54 | 58 |
Isoleucine | 837c | 739bc | 112a | 451a | 365a | 547ab | 583ab |
SEM | 42 | 75 | 4 | 39 | 74 | 25 | 24 |
Leucine | 1350c | 1230bc | 169a | 7839ab | 609a | 899ab | 938ab |
SEM | 68 | 118 | 15 | 61 | 128 | 41 | 39 |
Phenylalanine | 799c | 771.87b | 124a | 554ab | 399a | 608ab | 601ab |
SEM | 43 | 60 | 7 | 24 | 82 | 22 | 18 |
Σ EAA | 8427d | 8397cd | 872a | 4718ab | 3126a | 6256ab | 6598bc |
SEM | 465 | 723 | 126 | 293 | 656 | 231 | 222 |
NEAA | |||||||
Aspartic acid | 1638cd | 1695d | 225a | 1001ab | 520ab | 1258abc | 1350bcd |
SEM | 91 | 160 | 1 | 63 | 68 | 53 | 50 |
Serine | 686b | 841b | 129a | 624ab | 361ab | 692b | 679b |
SEM | 45 | 64 | 11 | 29 | 74 | 23 | 19 |
Glutamic acid | 2486c | 2546d | 340a | 1559ab | 913ab | 1887b | 1985bc |
SEM | 142 | 236 | 25 | 94 | 89 | 79 | 72 |
Glycine | 975b | 2086c | 252a | 1706c | 434ab | 1651c | 1469c |
SEM | 68 | 225 | 56 | 12 | 141 | 87 | 71 |
Alanine | 864ab | 1336c | 198a | 1048bc | 510a | 927bc | 954bc |
SEM | 42 | 139 | 0.8 | 54 | 131 | 40 | 33 |
Proline | 551bc | 1208e | 141a | 1097de | 402ab | 957de | 818cd |
SEM | 32 | 145 | 27 | 52 | 56 | 60 | 35 |
Tyrosine | 660c | 524bc | 40a | 299a | 203a | 413ab | 416ab |
SEM | 40 | 50 | 0.5 | 16 | 36 | 20 | 18 |
Σ NEAA | 7860b | 10237c | 1324a | 7334ab | 3344a | 7784b | 7671b |
SEM | 451 | 844 | 160 | 315 | 385 | 271 | 207 |
EAA/NEAA | 1.07d | 0.82abc | 0.66ab | 0.641a | 0.93cd | 0.80ab | 0.86bc |
SEM | 0.006 | 0.03 | 0.01 | 0.004 | 0.05 | 0.02 | 0.02 |
EAA | Fillet | Skin | Guts | Gills | Liver | Head | Fish Bone |
---|---|---|---|---|---|---|---|
Histidine | 148bc | 147b | n.d.a | 174bcd | 154bc | 198cd | 217d |
SEM | 9 | 12 | - | 19 | 5 | 8 | 6 |
Threonine | 255de | 235cde | 81a | 323e | 186abc | 181ab | 211bcd |
SEM | 14 | 23 | 2 | 36 | 4 | 7 | 8 |
Valine | 295b | 249b | 118a | 269b | 331b | 111a | 127a |
SEM | 15 | 26 | 6 | 40 | 15 | 5 | 5 |
Methionine | 140c | 69.15b | n.d.a | n.d.a | 71b | 81b | 87b |
SEM | 6 | 11 | - | - | 4 | 4 | 4 |
Lysine | 526c | 426c | 82a | 322bc | 265bc | 153a | 193ab |
SEM | 31 | 54 | 5 | 34 | 17 | 9 | 9 |
Isoleucine | 267b | 205b | 85a | 180ab | 238b | 119a | 137a |
SEM | 13 | 24 | 5 | 30 | 12 | 6 | 6 |
Leucine | 431d | 341bc | 129abc | 314bcd | 397cd | 99.43a | 112ab |
SEM | 21 | 39 | 15 | 31 | 21 | 5 | 5 |
EAA index | 266c | 208bc | 26a | 115a | 208bc | 128a | 147ab |
SEM | 14 | 23 | 1 | 9 | 14 | 6 | 5 |
Fatty Acid (g/100 g Fatty Acids) | Fillet | Skin | Guts | Gills | Liver | Head | Fish Bone |
---|---|---|---|---|---|---|---|
C14:0 | 3.2bc | 3.4cd | 3.9e | 3.5de | 2.2a | 2.4a | 2.47ab |
SEM | 0.03 | 0.03 | 0.05 | 0.05 | 0.07 | 0.01 | 0.006 |
C15:0 | 0.298b | 0.307b | 0.320bc | 0.342c | 0.224a | 0.257a | 0.250a |
SEM | 0.003 | 0.004 | 0.007 | 0.006 | 0.01 | 0.001 | 0.0006 |
C16:0 | 17cd | 17cd | 17bc | 19de | 20e | 16ab | 15a |
SEM | 0.1 | 0.2 | 0.2 | 0.1 | 0.3 | 0.04 | 0.03 |
C16:1n-7 | 4.3bc | 4.6cd | 5.2de | 5.3e | 4.0ab | 4.0ab | 3.96a |
SEM | 0.06 | 0.08 | 0.05 | 0.05 | 0.10 | 0.01 | 0.004 |
C17:0 | 0.24a | 0.253ab | 0.240ab | 0.257b | 0.318c | 0.495d | 0.501d |
SEM | 0.01 | 0.003 | 0.003 | 0.003 | 0.008 | 0.002 | 0.003 |
C17:1n-7 | 0.192b | 0.204b | 0.211bc | 0.253cd | 0.248cd | 0.00a | 0.366d |
SEM | 0.007 | 0.007 | 0.003 | 0.008 | 0.008 | 0.00 | 0.005 |
C18:0 | 3.63d | 3.40cd | 3.14bc | 2.93ab | 5.23d | 2.82a | 3.09bc |
SEM | 0.07 | 0.07 | 0.08 | 0.07 | 0.45 | 0.008 | 0.01 |
C18:1n-9 | 29a | 31ab | 32b | 32b | 38d | 34c | 34c |
SEM | 0.3 | 0.2 | 0.2 | 0.2 | 0.7 | 0.04 | 0.03 |
C18:1n-7 | 2.8a | 3.0bc | 3.2c | 3.1c | 3.3d | 2.83ab | 2.7a |
SEM | 0.04 | 0.01 | 0.03 | 0.03 | 0.2 | 0.003 | 0.02 |
C18:2n-6 | 11ab | 12bc | 13cd | 11ab | 9a | 17de | 18e |
SEM | 0.09 | 0.1 | 0.1 | 0.1 | 0.4 | 0.02 | 0.02 |
C20:0 | 0.233bc | 0.243cd | 0.265d | 0.245cd | 0.186a | 0.199a | 0.211ab |
SEM | 0.003 | 0.004 | 0.005 | 0.004 | 0.005 | 0.001 | 0.002 |
C18:3n-6 | 0.210a | 0.223b | 0.224b | 0.208a | 0.272c | 0.289d | 0.265c |
SEM | 0.002 | 0.002 | 0.002 | 0.002 | 0.009 | 0.003 | 0.002 |
C20:1n-9 | 4.0bc | 4.3cd | 5d | 4.2bc | 3.0ab | 2.40a | 2.48a |
SEM | 0.05 | 0.05 | 0.1 | 0.04 | 0.04 | 0.004 | 0.004 |
C18:3n-3 | 3.0bc | 3.1c | 3.3cd | 2.7ab | 2a | 3.69de | 3.77e |
SEM | 0.03 | 0.03 | 0.05 | 0.03 | 0.1 | 0.007 | 0.006 |
C20:2n-6 | 0.67abc | 0.70bc | 0.73c | 0.63ab | 0.55a | 1.069d | 1.060d |
SEM | 0.01 | 0.01 | 0.02 | 0.01 | 0.01 | 0.004 | 0.003 |
C22:1n-9 | 0.418bc | 0.450cd | 0.51de | 0.420bc | 0.29ab | 0.257a | 0.668e |
SEM | 0.006 | 0.006 | 0.02 | 0.007 | 0.01 | 0.002 | 0.002 |
C20:3n-3 | 0.213bc | 0.221c | 0.232c | 0.178ab | 0.148a | 0.289d | 0.277d |
SEM | 0.007 | 0.004 | 0.005 | 0.002 | 0.006 | 0.001 | 0.002 |
C20:4n-6 | 0.58c | 0.446ab | 0.359a | 0.469b | 0.31a | 0.548c | 0.484b |
SEM | 0.02 | 0.006 | 0.003 | 0.009 | 0.02 | 0.001 | 0.001 |
C20:5n-3 | 5.6e | 5.1de | 4.2bc | 4.4cd | 3a | 3.5ab | 3.37a |
SEM | 0.07 | 0.06 | 0.08 | 0.07 | 0.2 | 0.01 | 0.005 |
C24:1n-9 | 0.361bc | 0.38cd | 0.41d | 0.379cd | 0.27ab | 0.232a | 0.212a |
SEM | 0.006 | 0.06 | 0.01 | 0.008 | 0.01 | 0.002 | 0.003 |
C22:5n-3 | 1.2c | 1.2c | 1.1b | 0.96ab | 0.84a | 1.20c | 1.06ab |
SEM | 0.02 | 0.02 | 0.02 | 0.02 | 0.05 | 0.007 | 0.004 |
C22:6n-3 | 9e | 7de | 5.3ab | 6.5cd | 4.5ab | 5.5bc | 4.4a |
SEM | 0.2 | 0.1 | 0.09 | 0.15 | 0.3 | 0.03 | 0.02 |
SFA | 25bc | 25bc | 24b | 26cd | 29d | 22a | 22a |
SEM | 0.1 | 0.2 | 0.3 | 0.2 | 0.65 | 0.06 | 0.04 |
MUFA | 41a | 43b | 46d | 46cd | 49d | 43ab | 44bc |
SEM | 0.3 | 0.2 | 0.1 | 0.2 | 0.5 | 0.04 | 0.04 |
PUFA | 32cd | 30bc | 28ab | 27a | 22a | 34e | 33de |
SEM | 0.3 | 0.3 | 0.3 | 0.3 | 1 | 0.06 | 0.03 |
n-3 | 19d | 17cd | 14b | 15bc | 11a | 13a | 13a |
SEM | 0.3 | 0.2 | 0.2 | 0.3 | 0.7 | 0.05 | 0.03 |
n-6 | 13bc | 13bc | 14cd | 12ab | 11a | 19de | 20e |
SEM | 0.09 | 0.1 | 0.2 | 0.1 | 0.4 | 0.02 | 0.02 |
n-6/n-3 | 0.67a | 0.76ab | 1.0cd | 0.84bc | 0.99cd | 1.37de | 1.55e |
SEM | 0.01 | 0.01 | 0.01 | 0.01 | 0.03 | 0.004 | 0.004 |
Long chain n-3 | 15e | 14de | 11bc | 12cd | 8a | 10ab | 8.9a |
SEM | 0.3 | 0.2 | 0.1 | 0.2 | 0.5 | 0.04 | 0.03 |
Mineral | Fillet | Skin | Guts | Gills | Liver | Head | Fish Bone |
---|---|---|---|---|---|---|---|
Macro-minerals (mg/100 g) | |||||||
Calcium | 32ab | 735bc | 26ab | 1382cd | 9a | 2507e | 2093de |
SEM | 4 | 108 | 3 | 47 | 1 | 116 | 121 |
Magnesium | 34c | 37c | 34c | 37c | 20a | 29bc | 25ab |
SEM | 0.9 | 4 | 3 | 0.9 | 2 | 2 | 0.6 |
Phosphorus | 206bc | 468cd | 113a | 743de | 175b | 1277e | 1166e |
SEM | 3 | 53 | 4 | 23 | 8 | 58 | 60 |
Potassium | 306c | 189b | 87a | 180b | 242b | 194b | 263c |
SEM | 4 | 7 | 4 | 5 | 45 | 3 | 10 |
Sodium | 139b | 161b | 144b | 251c | 163b | 163b | 96a |
SEM | 4 | 8 | 7 | 5 | 13 | 6 | 3 |
Micro-minerals (mg/100 g) | |||||||
Copper | 0.112b | 0.15c | 0.42d | 0.094ab | 14e | 0.034a | 0.110b |
SEM | 0.003 | 0.01 | 0.04 | 0.008 | 2 | 0.001 | 0.008 |
Iron | 0.55b | 0.53b | 1.03c | 1.23c | 2d | 0.29a | 0.52ab |
SEM | 0.05 | 0.03 | 0.07 | 0.06 | 0.2 | 0.04 | 0.03 |
Zinc | 0.47a | 2cd | 1.2ab | 1.4bc | 4.13d | 2.1cd | 1.3b |
SEM | 0.01 | 0.3 | 0.06 | 0.03 | 0.3 | 0.06 | 0.04 |
Manganese (μg/100 g) | 20a | 184bc | 145b | 500d | 110ab | 267cd | 270cd |
SEM | 1 | 36 | 17 | 52 | 9 | 18 | 7 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Munekata, P.E.S.; Pateiro, M.; Domínguez, R.; Zhou, J.; Barba, F.J.; Lorenzo, J.M. Nutritional Characterization of Sea Bass Processing By-Products. Biomolecules 2020, 10, 232. https://doi.org/10.3390/biom10020232
Munekata PES, Pateiro M, Domínguez R, Zhou J, Barba FJ, Lorenzo JM. Nutritional Characterization of Sea Bass Processing By-Products. Biomolecules. 2020; 10(2):232. https://doi.org/10.3390/biom10020232
Chicago/Turabian StyleMunekata, Paulo E. S., Mirian Pateiro, Rubén Domínguez, Jianjun Zhou, Francisco J. Barba, and Jose M. Lorenzo. 2020. "Nutritional Characterization of Sea Bass Processing By-Products" Biomolecules 10, no. 2: 232. https://doi.org/10.3390/biom10020232
APA StyleMunekata, P. E. S., Pateiro, M., Domínguez, R., Zhou, J., Barba, F. J., & Lorenzo, J. M. (2020). Nutritional Characterization of Sea Bass Processing By-Products. Biomolecules, 10(2), 232. https://doi.org/10.3390/biom10020232