Does Methyl Jasmonate Effectively Protect Plants under Heavy Metal Contamination? Fatty Acid Content in Wheat Leaves Exposed to Cadmium with or without Exogenous Methyl Jasmonate Application
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material and Growth Conditions
- ‘Control’ seedlings growing in Hoagland solution(pH 6.2–6.4);
- ‘Control + MJ’ 7-day-old seedlings placed in MJ (1 µM) (Sigma-Aldrich, St. Louis, MO, USA) solution for 24 h and then placed back in Hoagland solution for 7 days;
- ‘Cd’ 8-day-old seedlings placed in CdSO4 solution (100 µM) for 7 days;
- ‘Cd + MJ’ 7-day-old seedlings placed in MJ (1 µM) (Sigma-Aldrich, St. Louis, MO, USA) solution for 24 h and then placed in CdSO4 solution (100 µM) for 7 days.
2.2. Determination of Cd Content in Wheat Leaves
2.3. Growth Parameters and Photosynthetic Rate Measurement
2.4. Lipid Extraction
2.5. Fatty Acid Analysis
2.6. Statistical Analysis
3. Results
3.1. Amount of Cd in Wheat Seedling Non- and Pre-Treated by MJ
3.2. Effect of MJ Pre-Treatment on Growth Parameters and Biomass Accumulation
3.3. Effect of MJ Pre-Treatment on Net Photosynthesis Rate of Wheat Seedlings
3.4. Effect of MJ Pre-Treatment on the FA Profile of Wheat Leaves
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Nagajyoti, P.C.; Lee, K.D.; Sreekanth, T.V.M. Heavy metals, occurrence and toxicity for plants: A review. Environ. Chem. Lett. 2010, 8, 199–216. [Google Scholar] [CrossRef]
- Riyazuddin, R.; Nisha, N.; Ejaz, B.; Khan, M.I.R.; Kumar, M.; Ramtake, P.W.; Gupta, R. A comprehensive review on the heavy metal toxicity and sequestration in plants. Biomolecules 2022, 12, 43. [Google Scholar] [CrossRef] [PubMed]
- Hameed, A.; Rasool, S.; Azooz, M.M.; Hossain, M.A.; Ahanger, M.A.; Ahmad, P. Heavy metal stress: Plant responses and signaling. In Plant Metal Interaction; Ahmad, P., Ed.; Elsevier: Amsterdam, The Netherlands, 2016; pp. 557–583. [Google Scholar] [CrossRef]
- Rai, P.K.; Lee, S.S.; Zhang, M.; Tsang, Y.F.; Kim, K.-H. Heavy metals in food crops: Health risks, fate, mechanisms, and management. Environ. Int. 2019, 125, 365–385. [Google Scholar] [CrossRef]
- Ghosh, R.; Roy, S. Cadmium toxicity in plants: Unveiling the physicochemical and molecular aspects. In Cadmium Tolerance in Plants: Agronomic, Molecular, Signaling, and Omic Approaches; Hasanuzzaman, M., Prasad, M., Nahar, K., Eds.; Elsevier: Amsterdam, The Netherlands, 2019; pp. 223–246. [Google Scholar] [CrossRef]
- Zulfiqar, U.; Ayub, A.; Hussain, S.; Waraich, E.A.; El-Esawi, M.; Ishfag, M.; Ahmad, M.; Ali, N.; Maqsood, M.F. Cadmium toxicity in plants: Recent progress on morpho-physiological effects and remediation strategies. J. Soil Sci. Plant Nutr. 2021, 22, 212–269. [Google Scholar] [CrossRef]
- Chandrakar, V.; Yadu, B.; Xalxo, R.; Kumar, M.; Keshavkant, S. Mechanisms of plant adaptation and tolerance to metal/metalloid toxicity. In Plant Ecophysiology and Adaptation under Climate Change: Mechanisms and Perspectives II; Hasanuzzaman, M., Ed.; Springer: Singapore, 2020; pp. 107–135. [Google Scholar] [CrossRef]
- Shah, S.H.; Islam, S.; Parrery, Z.A.; Mohammad, F. Role of exogenously applied plant growth regulators in growth and development of edible oilseed crops under variable environmental conditions: A review. J. Soil Sci. Plant Nutr. 2021, 21, 3284–3308. [Google Scholar] [CrossRef]
- Zhai, Q.; Yan, C.; Li, L.; Xie, D.; Li, C. Jasmonates. In Hormone Metabolism and Signaling in Plants; Li, J., Li, C., Smith, S., Eds.; Elsevier: Amsterdam, The Netherlands, 2017; pp. 243–272. [Google Scholar] [CrossRef]
- Farhangi-Abriz, S.; Ghassemi-Gilezani, K. Jasmonates: Mechanisms and functions in abiotic stress tolerance of plants. Biocat. Agricul. Biotech. 2019, 20, 101210. [Google Scholar] [CrossRef]
- Santisree, P.; Jalli, L.C.L.; Bhatnagar-Mathur, P.; Sharma, K.K. Emerging roles of salicylic acid and jasmonates in Plant abiotic stress responses. In Protective Chemical Agents in the Amelioration of Plant Abiotic Stress: Biochemical and Molecular Prospective; Roychoudhury, A., Tripathi, D.K., Eds.; John Wiley&Sons Ltd.: San Francisco, CA, USA, 2020; pp. 342–373. [Google Scholar]
- Li, Y.; Zhang, S.; Bao, Q.; Chu, Y.; Sun, H.; Huang, Y. Jasmonic acid alleviates cadmium toxicity through regulating the antioxidant response and enhancing the chelation of cadmium in rice. Environ. Pollut. 2022, 304, 119178. [Google Scholar] [CrossRef]
- Farooq, M.A.; Islam, F.; Yang, C.; Nawaz, A.; Athar, H.-R.; Gill, R.A.; Ali, B.; Song, W.; Zhou, W. Methyl jasmoante alleviates arsenic-induced oxidative damage and modulates the ascorbate-glutathione cycle in oilseed rape roots. Plant Growth Regul. 2018, 84, 135–148. [Google Scholar] [CrossRef]
- Wei, T.; Li, X.; Yashir, N.; Li, H.; Sun, Y.; Hua, L.; Ren, X.; Guo, J. Effect of exogenous silicon and methyl jasmonate on the alleviation of cadmium-induced phytotoxicity in tomato plants. Environ. Sci. Pollut. Res. 2021, 28, 51854–51864. [Google Scholar] [CrossRef] [PubMed]
- Napopoleão, T.A.; Soares, G.; Vital, C.E.; Bastos, C.; Castro, R.; Loureiro, M.E.; Giordano, A. Methyl jasmonate and salicylic acid are able to modify cell wall but only salicylic acid alters biomass digestibility in the model grass Brachypodium distachyon. Plant Sci. 2017, 263, 46–54. [Google Scholar] [CrossRef]
- Ahmad, P.; Alyemeni, M.N.; Wijaya, L.; Alam, P.; Ahanger, M.A.; Alamri, S.A. Jasmonic acid alleviates negative impacts of cadmium stress by modifying osmolytes and antioxidants in faba bean (Vicia faba L.). Arch. Agron. Soil Sci. 2017, 63, 1889–1899. [Google Scholar] [CrossRef]
- Ur Rahman, S.; Li, Y.; Hussain, S.; Hussain, B.; Khan, W.-D.; Riaz, L.; Ashraf, M.N.; Khaliq, M.A.; Du, Z.; Cheng, H. Role of phytohormones in heavy metal tolerance in plants: A review. Ecol. Indicat. 2023, 146, 109844. [Google Scholar] [CrossRef]
- Saini, S.; Kaur, N.; Pati, P.K. Phytohormones: Key players in the modulation of heavy metal stress tolerance in plants. Ecotoxicol. Environ. Saf. 2021, 223, 112578. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Yan, Z.; Li, X. Effect of methyl jasmonate on cadmium uptake and antioxidative capacity in Kandelia obovata seedlings under cadmium stress. Ecotox. Environ. Saf. 2014, 104, 349–356. [Google Scholar] [CrossRef] [PubMed]
- Bali, A.S.; Sidhu, G.P.S.; Kumar, V.; Bhardwaj, R. Mitigating cadmium toxicity in plants by phytohormones. In Cadmium Toxicity and Tolerance in Plants: From Physiology to Remediation; Hasanuzzaman, M., Prasad, M.N.V., Fujita, M., Eds.; Elsevier: London, UK, 2019; pp. 375–396. [Google Scholar] [CrossRef]
- Cassim, A.M.; Gouguet, P.; Gronnier, J.; Laurent, N.; Germain, V.; Grison, M.; Boutte, Y.; Gerbeau-Pissot, P.; Simon-Plas, F.; Mongrand, S. Plant lipids: Key players of plasma membrane organization and function. Prog. Lipid Res. 2019, 73, 1–27. [Google Scholar] [CrossRef] [PubMed]
- Weber, H. Fatty acid-derived signal in plants. Trends Plant Sci. 2002, 7, 217–224. [Google Scholar] [CrossRef]
- Scotland, T.; Sandvig, K. Need more focus on lipid species in studies of biological and model membranes. Prog. Lipid Res. 2022, 86, 101160. [Google Scholar] [CrossRef]
- Guo, Z.-H.; Lung, S.-C.; Hamdan, M.F.; Chye, M.L. Interactions between plant lipid-binding proteins and their ligands. Prog. Lipid Res. 2022, 86, 101156. [Google Scholar] [CrossRef]
- Zhukov, A.V. On qualitative composition of membrane lipids in plant cells. Rus. J. Plant Physiol. 2021, 68, 367–383. [Google Scholar] [CrossRef]
- Folch, J.; Lees, M.; Sloane Stanley, G.H. A simple method for the isolation and purification of total lipids from animal tissue. J. Biol. Chem. 1957, 226, 497–509. [Google Scholar] [CrossRef]
- Pandita, D. Jasmonates: The fine-tuning bio-regulators and their crosstalk with plant reproductive biology. In Jasmonates and Salicylates Signaling in Plants; Aftab, T., Yusuf, M., Eds.; Signaling and Communication in Plants; Springer: Singapore, 2021; pp. 185–205. [Google Scholar] [CrossRef]
- D’Onofrio, C.; Matarese, F.; Cuzzola, A. Effect of methyl jasmonate on the arome of Sangiovese grapes and wines. Food Chem. 2018, 242, 352–361. [Google Scholar] [CrossRef] [PubMed]
- Zalewski, K.; Czaplicki, S.; Rafałowski, R.; Stryiński, R.; Okorski, A.; Nitkiewicz, B. The effect of exogenous methyl jasmonate on the fatty acid composition of germinating triticale kernels (×Triticosecale Wittmack, cv. Ugo). Curr. Plant Biol. 2021, 28, 100225. [Google Scholar] [CrossRef]
- Yang, F.; Tang, J.; Yang, D.; Yang, T.; Liu, H.; Luo, W.; Wu, J.; Wu, J.; Wang, L. Jasmonyl-L-isoleucine and allene oxide cyclase-derived jasmonates differently regulate gibberellins metabolism in herbivory-induced inhibition of plant growth. Plant Sci. 2020, 300, 110627. [Google Scholar] [CrossRef] [PubMed]
- Verma, G.; Srivastava, D.; Narayan, S.; Shirke, P.V. Exogenous application of methyl jasmonate alleviates arsenic toxicity by modulating its uptake and translocation in rice (Oryza sativa L.). Ecotoxicol. Environ. Saf. 2020, 201, 110735. [Google Scholar] [CrossRef]
- Shahzad, R.; Waqas, M.; Khan, A.L.; Hamayun, M.; Kang, S.-M.; Lee, I.-J. Foliar application of methyl jasmonate induced physio-hormonal changes in Pisum sativum under diverse temperature regimes. Plant Physiol. Biochem. 2015, 96, 406–416. [Google Scholar] [CrossRef]
- Mabood, F.; Zhou, X.; Lee, K.-D.; Smith, D.L. Methyl jasmonate. Alone or in combination with genistein. And Bradyrhizobium japonicum increases soybean (Glycine max L.) plant dry matter production and grain yield under short season conditions. Field Crops Res. 2006, 95, 412–419. [Google Scholar] [CrossRef]
- Mohammadzadeh-Shahir, M.; Noormohammadi, Z.; Farahani, F.; Atyabi, S.M. The potential use of methyl jasmonate. Putrescine and cold atmospheric plasma on genetic variability and seedling growth improvement in medicinal plant Catharanthus roseus L. cultivar. Ind. Crops Prod. 2019, 140, 111601. [Google Scholar] [CrossRef]
- Abbas, T.; Fan, R.; Hussain, S.; Sattar, A.; Khalid, S.; Butt, M.; Shahzad, U.; Atif, H.M.; Batool, M.; Ullah, S.; et al. Protective effect of jasmonic acid and potassium against cadmium stress in peas (Pisum sativum L.). Saudi J. Biol. Sci. 2022, 29, 2626–2633. [Google Scholar] [CrossRef]
- Allagulova, C.; Avalbaev, A.; Fedorova, K.; Shakirova, F. Methyl jasmonate alleviates water stress-induced damages by promoting dehydrins accumulation in wheat plants. Plant Physiol. Biochem. 2020, 155, 676–682. [Google Scholar] [CrossRef]
- Liu, R.; Wang, Z.; Zheng, J.; Xu, Z.; Tang, X.; Huang, Z.; Zhang, N.; Dong, Y.; Li, T. The effect of methyl jasmonate on growth. Gene expression and metabolite accumulation in Isatisindigotica Fort. Ind. Crops Prod. 2022, 177, 114482. [Google Scholar] [CrossRef]
- Per, T.S.; Khan, M.I.R.; Anjum, N.A.; Masood, A.; Hussain, S.j.; Khan, N.A. Jasmonates in plants under abiotic stresses: Crosstalk with other phytohormones matters. Environ. Exp. Bot. 2018, 145, 104–120. [Google Scholar] [CrossRef]
- Kulsum, P.G.; Khanam, R.; Das, S.; Nayak, A.K.; Tack, F.M.G.; Meers, E.; Vithanage, M.; Shahid, M.; Kumar, A.; Chakraborty, S.; et al. A state-of-the-art review on cadmium uptake, toxicity, and tolerance in rice: From physiological response to remediation process. Environ. Res. 2022, 28, 115098. [Google Scholar] [CrossRef]
- Kaznina, N.; Batova, Y.; Repkina, N.; Laidinen, G.; Titov, A. Cadmium treatment effects on the growth and antioxidant system in barley plants under optimal and low temperatures. Acta Agricul. Slov. 2018, 111, 169–176. [Google Scholar] [CrossRef] [Green Version]
- Qiu, C.-W.; Zhang, C.; Wang, N.-H.; Mao, W.; Wu, F. Stringolactone GR24 improves cadmium tolerance by regulating cadmium uptake, nitric oxide signaling and antioxidant metabolism in barley (Hordeum vulgare L.). Environ. Pollut. 2021, 273, 116486. [Google Scholar] [CrossRef] [PubMed]
- Xu, Z.; Zhu, Z.; Zhao, Y.; Huang, Z.; Fei, J.; Han, Y.; Wang, M.; Yu, P.; Peng, J.; Huang, Y.; et al. Foliar uptake, accumulation, and distribution of cadmium in rice (Oryza sativa L.) at different stages in wet deposition conditions. Environ. Pollut. 2022, 306, 119390. [Google Scholar] [CrossRef]
- Wu, J.; Zhao, N.; Zhang, P.; Zhu, L.; Lu, Y.; Lei, X.; Bai, Z. Nitrate enhances cadmium accumulation through modulating sulfur metabolism in sweet sorghum. Chemosphere 2023, 313, 137413. [Google Scholar] [CrossRef]
- Qin, S.; Liu, H.; Nie, Z.; Rengel, Z.; Gao, W.; Li, C.; Zhao, P. Toxicity of cadmium and its competition with mineral nutrients for uptake by plants: A review. Pedosphere 2020, 30, 168–180. [Google Scholar] [CrossRef]
- Zaid, A.; Mohammad, F. Methyl jasmonate and nitrogen interact to alleviate cadmium stress in Mentha arvensis by regulating physio-biochemical damages and ROS detoxification. J. Plant Growth Reg. 2018, 37, 1331–1348. [Google Scholar] [CrossRef]
- Ahmadi, F.I.; Karimi, K.; Struik, P.C. Effect of exogenous application of methyl jasmonate on physiological and biochemical characteristics of Brassica napus L. cv. Talaye under salinity stress. S. Afr. J. Bot. 2018, 115, 5–11. [Google Scholar] [CrossRef]
- Salachna, P.; Mikiciuk, M.; Zawadzińske, A.; Piechocki, R.; Ptak, P.; Mikiciuk, G.; Pietrak, A.; Łopusiewicz, Ł. Changes in growth and physiological parameters of×Amarine following an exogenous application of gibberellic acid and methyl jasmonate. Agronomy 2020, 10, 980. [Google Scholar] [CrossRef]
- Szopiński, M.; Sitko, K.; Gieroń, Ż.; Rusinowski, S.; Corso, M.; Hermans, C.; Verbruggen, N.; Małkowski, E. Toxic Effects of Cd and Zn on the photosynthetic apparatus of the Arabidopsis halleri and Arabidopsis arenosa pseudo-metallophytes. Front. Plant Sci. 2019, 10, 748. [Google Scholar] [CrossRef] [Green Version]
- Piršelová, B.; Kubová, V.; Boleček, P.; Hegedűsová, A. Impact of cadmium toxicity on leaf area and stomatal characteristics in faba bean. J. Microbiol. Biotech. Food. Sci. 2021, 11, e3718. [Google Scholar] [CrossRef]
- Yan, Z.; Chen, J.; Li, X. Methyl jasmonate as modulator of Cd toxicity in Capsicum frutescens var. fasciculatum seedlings. Ecotoxicol. Environ. Saf. 2013, 98, 203–209. [Google Scholar] [CrossRef] [PubMed]
- Per, T.S.; Khan, N.A.; Masood, A.; Fatma, M. Methyl jasmonate alleviates cadmium-induced photosynthetic damages through increased S-assimilation and glutathione production in mustard. Front. Plant Sci. 2016, 7, 1933. [Google Scholar] [CrossRef] [Green Version]
- Parrotta, L.; Guerriero, G.; Sergeant, K.; Cai, G.; Hausman, J.-F. Target or barrier? The cell wall of early- and –later-diverging plants vs cadmium toxicity:differences in the response mechanisms. Front. Plant Sci. 2015, 6, 133. [Google Scholar] [CrossRef] [Green Version]
- Li, N.; Xu, C.; Li-Beisson, Y.; Philippar, K. Fatty acid and lipid transport in plant cells. Trends Plant Sci. 2016, 21, 145–158. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Singer, S.D.; Zou, J.; Weselake, R.J. Abiotic factors influence plant storage lipid accumulation and composition. Plant Sci. 2016, 243, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Ma, D.; Zhang, Z.; Wang, S.; Du, S.; Deng, X.; Yin, L. Plant lipid remodeling in response to abiotic stresses. Environ. Exp. Bot. 2019, 165, 174–184. [Google Scholar] [CrossRef]
- García-Pastor, M.E.; Serrano, M.; Guillén, F.; Zapata, P.J.; Valero, D. Preharvest or a combination of preharvest and postharvest treatments with methyl jasmonate reduced chilling injury, by maintaining higher unsaturated fatty acids, and increased aril colour and phenolics content in pomegranate. Postharv. Biol. Technol. 2020, 167, 111226. [Google Scholar] [CrossRef]
- Shishova, M.F.; Yemelyanov, V.V. Proteome and lipidome of plant cell membranes during development. Rus. J. Plant Physiol. 2021, 68, 800–817. [Google Scholar] [CrossRef]
- Murzina, S.A.; Pekkoeva, S.N.; Kondakova, E.A.; Nefedova, Z.A.; Filippova, K.A.; Nemova, N.N.; Orlov, A.M.; Berge, J.; Falk-Petersen, S. Tiny but Fatty: Lipids and Fatty Acids in the Daubed Shanny (Leptoclinus maculatus), a Small Fish in Svalbard Waters. Biomolecules 2020, 10, 368. [Google Scholar] [CrossRef] [Green Version]
- Huan, C.; Yang, X.; Wang, L.; Kebben, M.; Wang, Y.; Dai, B.; Shen, S.; Zheng, X.; Zhou, H. Methyl jasmonate treatment regulates α-linolenic acid metabolism and jasmonate acid signaling pathway to improve chilling tolerance in both stony hard and melting flesh peaches. Postharv. Biol. Technol. 2022, 190, 111960. [Google Scholar] [CrossRef]
- Rabinovich, A.L.; Ripatti, P.O.; Balabaev, N.K.; Leermakers, F.A.M. Molecular dynamics simulations of hydrated unsaturated lipid bilayers in the liquid-crystal phase and comparison to self-consistent field modeling. Phys. Rev. E 2003, 67, 011909_1–011909_14. [Google Scholar] [CrossRef] [Green Version]
- Rabinovich, A.L.; Ripatti, P.O. On the conformational. Physical properties and functions of polyunsaturated acyl chains. Biochem. Biophys. Acta BBA—Lipids Lipid Metab. 1991, 1085, 53–62. [Google Scholar] [CrossRef] [PubMed]
- Zhukov, A.V. Very long-chain fatty acids in composition of plant membrane lipids. Rus. J. Plant Physiol. 2018, 65, 784–800. [Google Scholar] [CrossRef]
- Zhukov, A.V. Palmitic acid and its role in the structure and functions of plant cell membranes. Rus. J. Plant Physiol. 2015, 62, 706–713. [Google Scholar] [CrossRef]
- Zamanová, V.; Pavlík, M.; Kyjaková, P.; Pavlíková, D. Fatty acid profiles of ecotypes of hyperaccumulator Noccaeacaerulescens growing under cadmium stress. J. Plant Physiol. 2015, 180, 27–34. [Google Scholar] [CrossRef]
- Morita, N.; Nakazato, H.; Okuyama, H.; Kim, Y. Thompson Jr. G.A. Evidence for a glycosylinositolphospholipid anchored alkaline phosphatase in the aquatic plant Spirodelaoligorrhiza. Biochem. Biophys. Acta 1996, 1290, 53–62. [Google Scholar] [CrossRef]
- Ammar, W.B.; Nouairi, I.; Zarrouk, M.; Jemal, F. The effect of cadmium on lipid and fatty acid biosynthesis in tomato leaves. Biologia 2008, 63, 86–93. [Google Scholar] [CrossRef]
- Chaffai, R.; Seybou, T.N.; Merzouk, B.; El Ferjani, E. A comparative analysis of fatty acid composition of root and shoot lipids in Zea mays under copper and cadmium stress. Acta Biol. Hung. 2009, 60, 109–125. [Google Scholar] [CrossRef]
- Nouairi, I.; Ghnaya, T.; Youssef, N.B.; Zarrouk, M.; Ghorbel, M.H. Changes in content and fatty acid profiles of total lipids of two halophytes: Sesuvium portulacastrum and Mesembryanthemum crystallinum under cadmium stress. J. Plant Physiol. 2006, 163, 1198–1202. [Google Scholar] [CrossRef] [PubMed]
- Rozentsvet, O.A.; Bogdanova, E.S.; Murzaeva, S.V. Composition of lipids and fatty acids in the forming leaves of the fern Matteuccias thruthiopteris in the presence of cadmium. Transac. Karel. Res. Cent. Rus. Acad. Sci. Exp. Biol. 2011, 3, 97–104. (In Russian) [Google Scholar]
- Singh, I.; Shah, K. Exogenous application of methyl jasmonate lowers the effect of cadmium-induced oxidative injury in rice seedlings. Phytochemistry 2014, 108, 57–66. [Google Scholar] [CrossRef] [PubMed]
- Maksymiec, W.; Wójcik, M.; Krupa, Z. Variation in oxidative stress and photochemical activity in Arabidopsis thaliana leaves subjected to cadmium and excess copper in the presence or absence of jasmonate and ascorbate. Chemosphere 2007, 66, 421–427. [Google Scholar] [CrossRef]
Plant Organ | Variant | Exposure, h | ||
---|---|---|---|---|
24 | 72 | 168 | ||
Roots | Cd Cd + MJ | 199.00 ± 3.89 e | 643.50 ± 18.59 c | 1075.25 ± 30.49 a |
137.00 ± 3.29 f | 406.25 ± 4.57 d | 836.75 ± 18.06 b | ||
Leaves | Cd Cd + MJ | 2.65 ± 0.27 ij | 4.76 ± 0.32 h | 6.09 ± 0.51 g |
1.37 ± 0.25 k | 2.11 ± 0.18 j | 3.57 ± 0.40 i |
Variant | Exposure, h | |||
---|---|---|---|---|
0 | 24 | 72 | 168 | |
Control | 18.64 ± 0.10 f | 21.06 ± 0.18 de | 23.69 ± 0.28 c | 34.71 ± 0.42 a |
Control + MJ | 18.33 ± 0.09 f | 20.09 ± 0.18 e | 21.84 ± 0.24 d | 32.49 ± 0.44 b |
Cd | 18.64 ± 0.10 f | 20.68 ± 0.15 e | 21.62 ± 0.25 d | 25.11 ± 0.44 c |
Cd + MJ | 18.33 ± 0.09 f | 19.98 ± 0.15 e | 20.53 ± 0.17 e | 23.01 ± 0.33 c |
Variant | Exposure, h | |||
---|---|---|---|---|
0 | 24 | 72 | 168 | |
Control | 153.11 ± 3.44 j | 191.88 ± 5.81 f | 236.96 ± 14.02 c | 334.11 ± 12.30 b |
Control + MJ | 161.27 ± 3.71 i | 183.01 ± 4.40 g | 245.46 ± 11.95 c | 388.71 ± 12.88 a |
Cd | 153.11 ± 3.44 j | 174.06 ± 3.12 h | 195.06 ± 4.80 f | 216.03 ± 3.08 d |
Cd + MJ | 161.27 ± 3.71 i | 180.17 ± 4.33 g | 202.22 ± 4.81 e | 224.84 ± 2.83 c |
Variant | Exposure, h | |||
---|---|---|---|---|
0 | 24 | 72 | 168 | |
Control | 3.27 ± 0.10 b | 3.67 ± 0.06 a | 3.18 ± 0.03 c | 2.24 ± 0.09 e |
Control + MJ | 3.30 ± 0.09 b | 3.66 ± 0.08 a | 3.33 ± 0.05 b | 2.36 ± 0.09 e |
Cd | 3.27 ± 0.10 b | 2.16 ± 0.07 de | 1.95 ± 0.08 e | 0.64 ± 0.06 g |
Cd + MJ | 3.30 ± 0.09 b | 2.26 ± 0.08 d | 2.22 ± 0.08 d | 0.91 ± 0.06 f |
Variant of Exposure and Duration (h) | Myristic C 14:0 | Pentadecanoic C 15:0 | Palmitic C 16:0 | Margaric C 17:0 | Stearic C 18:0 | Total |
---|---|---|---|---|---|---|
Control | ||||||
0 | 25.44 | 0.80 | 221.93 | 3.47 | 44.53 | 296.17 |
24 | 1.13 | 0.00 | 90.65 | 1.01 | 20.51 | 113.3 |
72 | 0.00 | 0.00 | 32.84 | 0.30 | 11.06 | 44.20 |
168 | 0.00 | 0.00 | 38.30 | 0.41 | 12.51 | 51.22 |
Control + MJ | ||||||
0 | 24.29 | 0.16 | 201.00 | 2.64 | 38.05 | 266.14 |
24 | 0.00 | 0.00 | 58.26 | 0.51 | 17.81 | 76.58 |
72 | 0.00 | 0.00 | 87.88 | 0.60 | 24.17 | 112.65 |
168 | 0.00 | 0.00 | 38.47 | 0.32 | 12.97 | 51.76 |
Cd | ||||||
0 | 25.44 | 0.80 | 221.93 | 3.47 | 44.53 | 296.17 |
24 | 0.00 | 0.00 | 90.62 | 0.89 | 20.80 | 112.31 |
72 | 0.00 | 0.00 | 83.65 | 0.66 | 23.01 | 107.32 |
168 | 0.00 | 0.00 | 69.08 | 0.49 | 18.90 | 88.47 |
Cd + MJ | ||||||
0 | 24.29 | 0.16 | 201.00 | 2.64 | 38.05 | 266.14 |
24 | 0.00 | 0.00 | 44.17 | 0.44 | 12.95 | 57.56 |
72 | 0.00 | 0.00 | 61.92 | 0.36 | 17.37 | 79.65 |
168 | 0.00 | 0.00 | 55.27 | 0.42 | 15.56 | 71.25 |
Variant of Exposure and Duration (h) | Hexadecenoic C 16:1n-7 | Oleic C 18:1n-9 | Linoleic C 18:2n-6 | Linolenic C 18:3n-3 | Eicosenoic C 20:1n-9 | Eicosadienoic C 20:2n-6 | Eicosapentaenoic C 20:5n-3 | Docosahexaenoic C 22:6n-3 | Total |
---|---|---|---|---|---|---|---|---|---|
Control | |||||||||
0 | 91.24 | 285.88 | 30.95 | 94.60 | 10.42 | 5.28 | 9.12 | 29.8 | 557.29 |
24 | 18.55 | 64.77 | 18.34 | 116.72 | 5.12 | 3.56 | 2.13 | 6.72 | 235.91 |
72 | 1.41 | 6.21 | 15.57 | 123.89 | 1.78 | 3.16 | 0.81 | 2.53 | 178.55 |
168 | 2.11 | 9.55 | 16.03 | 66.29 | 1.84 | 3.17 | 1.12 | 3.77 | 103.88 |
Control + MJ | |||||||||
0 | 61.80 | 234.59 | 30.83 | 88.90 | 12.34 | 4.84 | 7.55 | 24.30 | 465.15 |
24 | 3.34 | 12.70 | 19.96 | 181.94 | 2.12 | 3.25 | 0.92 | 2.80 | 227.03 |
72 | 6.66 | 27.10 | 25.76 | 161.63 | 2.61 | 3.40 | 2.17 | 7.82 | 237.15 |
168 | 0.62 | 3.37 | 15.25 | 48.12 | 1.63 | 3.1 | 0.73 | 2.84 | 75.66 |
Cd | |||||||||
0 | 91.24 | 285.88 | 30.95 | 94.60 | 10.42 | 5.28 | 9.12 | 29.8 | 557.29 |
24 | 14.58 | 46.63 | 23.62 | 166.71 | 4.30 | 3.54 | 2.55 | 8.77 | 270.70 |
72 | 7.95 | 27.06 | 22.26 | 122.27 | 2.94 | 3.39 | 1.95 | 6.79 | 229.62 |
168 | 2.24 | 14.62 | 25.00 | 58.56 | 1.91 | 3.21 | 1.14 | 3.74 | 110.42 |
Cd + MJ | |||||||||
0 | 61.80 | 234.59 | 30.83 | 88.90 | 12.34 | 4.84 | 7.55 | 24.30 | 465.15 |
24 | 3.49 | 12.27 | 18.20 | 134.39 | 2.21 | 3.22 | 1.02 | 3.23 | 178.03 |
72 | 1.43 | 6.40 | 21.97 | 99.62 | 1.79 | 3.25 | 0.81 | 2.52 | 137.78 |
168 | 2.04 | 17.68 | 22.86 | 35.18 | 1.91 | 3.17 | 0.98 | 3.10 | 86.92 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Repkina, N.; Murzina, S.A.; Voronin, V.P.; Kaznina, N. Does Methyl Jasmonate Effectively Protect Plants under Heavy Metal Contamination? Fatty Acid Content in Wheat Leaves Exposed to Cadmium with or without Exogenous Methyl Jasmonate Application. Biomolecules 2023, 13, 582. https://doi.org/10.3390/biom13040582
Repkina N, Murzina SA, Voronin VP, Kaznina N. Does Methyl Jasmonate Effectively Protect Plants under Heavy Metal Contamination? Fatty Acid Content in Wheat Leaves Exposed to Cadmium with or without Exogenous Methyl Jasmonate Application. Biomolecules. 2023; 13(4):582. https://doi.org/10.3390/biom13040582
Chicago/Turabian StyleRepkina, Natalia, Svetlana A. Murzina, Viktor P. Voronin, and Natalia Kaznina. 2023. "Does Methyl Jasmonate Effectively Protect Plants under Heavy Metal Contamination? Fatty Acid Content in Wheat Leaves Exposed to Cadmium with or without Exogenous Methyl Jasmonate Application" Biomolecules 13, no. 4: 582. https://doi.org/10.3390/biom13040582