Computational Studies of Glutamate Transporters
Abstract
:1. Introduction
2. Computational Methods
2.1. Molecular Dynamics
2.2. Free Energy Calculations
3. MD Simulations of Glutamate Transporters
3.1. Prokaryotic Homolog Glt
- (i)
- the order of binding of the ligands in the outward-facing conformation is Na3, Na1, Asp, (Outward gate closes), and Na2 (the Na2 site forms only after HP2 gate closes);
- (ii)
- the binding free energies of the ligands are very similar in the outward- and inward-facing conformations, consistent with the observation that the binding pockets are preserved in the corresponding crystal structures;
- (iii)
- release of the ligands in the inward-facing conformation follows the reverse of the order of binding, that is, Na2, (Inward gate opens), Asp, Na1, and, Na3.
Ligand | Outward | Inward |
---|---|---|
Na3 | –18.7 ± 1.1 | –16.3 ± 1.1 |
Na1 (Na3) | –7.1 ± 1.3 | –7.3 ± 1.3 |
Asp (Na1, Na3) | –3.8 ± 1.0 | –4.9 ± 1.1 |
Na2 (Na1, Na3, Asp) | –2.7 ± 1.3 | –2.4 ± 1.2 |
3.2. Excitatory Amino Acid Transporters
Glt | Y89 | T92 | S93 | Q242 | R276 | S277 | S278 | G306 | T308 |
EAAT1 | Y127 | T130 | T131 | H328 | S363 | S364 | S365 | G394 | T396 |
EAAT2 | Y124 | T127 | T128 | H326 | A361 | S362 | S363 | G392 | T394 |
EAAT3 | Y98 | T101 | T102 | H296 | S331 | S332 | S333 | G362 | T364 |
Glt | N310 | D312 | T314 | Y317 | Q318 | S349 | I350 | T352 | G354 |
EAAT1 | N398 | D400 | T402 | Y405 | E406 | S437 | I438 | A440 | G442 |
EAAT2 | N396 | D398 | T400 | Y403 | E404 | S435 | I436 | A438 | S440 |
EAAT3 | N366 | D368 | T370 | Y373 | E374 | S405 | I406 | A408 | G410 |
Glt | V355 | G359 | D390 | D394 | M395 | R397 | T398 | N401 | D405 |
EAAT1 | I443 | G447 | D472 | D476 | R477 | R479 | T480 | N483 | D487 |
EAAT2 | I441 | G445 | D470 | D474 | R475 | R477 | T478 | N481 | D485 |
EAAT3 | V411 | G415 | D440 | D444 | R445 | R447 | T448 | N451 | D455 |
- (i)
- Glu is stably bound when E374 is protonated but becomes unstable when E374 is deprotonated in both the outward and inward-facing states. Thus binding of Glu is contingent upon the protonation of E374, which is consistent with the experimental observations indicating E374 as the protonation site [65,66].
- (ii)
- The coordination shells for Na1, Na3, and Glu are very similar to those in Glt, consistent with the expectations from the alignment diagram in Table 2. The Na2 coordination is somewhat different from that of Glt in that S405 carbonyl and T364 hydroxyl are not involved in the coordination of Na2, and Na2 is not stably bound. It is possible the Na2 site is not conserved in EAATs. Further experimental and computational work is required to determine the Na2 binding site in EAATs.
- (iii)
- Gating in the outward-facing state is very similar to that in Glt but a rather different mechanism occurs in the inward-facing state—HP1 and HP2 move about similar amounts, leading to a much larger opening of the gate compared to that in Glt. This can be traced to the transfer of an arginine (R276) from HP1 in Glt to TM8 in EAAT3 as mentioned above. In Glt, R276 forms a salt bridge with D394, which prevents opening of HP1. Transfer of this arginine (R445) to TM8—which still makes a salt bridge with D444—enables larger opening of HP1, facilitating the release of the larger Glu substrate.
- (iv)
- A number of sites have been proposed for binding of a K ion in the inward-facing state of EAATs. The most likely K sites, together with the complete coordination shells obtained from the MD simulations of the EAAT3 model, are listed in Table 3. Site 1 is very similar to the Na1 site, and is proposed because the mutations that turn the transporter into an exchanger (e.g., D455N) also impair its interaction with a K ion [68,69]. Site 2 corresponds to the proton binding site—when the proton leaves, K could bind there to neutralize the site [70]. The last site overlaps with the substrate α-amino group, and was predicted from electrostatic mapping calculations [37]. To assess the likelihood of each site being the K site, binding free energies and the K/Na selectivity free energies were calculated (Table 3). The selectivity free energies were calculated to check the hypothesis that the last Na ion is exchanged with a K ion in EAATs in order to speed up the very low transport rates observed in Glt [67]. Site 1 appears to be the most likely K site as it has the largest affinity for K. Also it is consistent with the K–Na exchange hypothesis as it has negligible K/Na selectivity. Recent crystal structure of Glt—a close homolog of Glt resolved in the apo state—provides further experimental support for this site [71]. The Glt structure exhibits some conformational differences from that of Glt in the vicinity of site 1, which are well reproduced in the computational model.
Site 1 | Site 2 | Site 3 | |
---|---|---|---|
Helix-Residue | TM7–G362 (O) | TM7–T370 (OH) | HP1–S331 (O) |
TM7–I365 (O) | TM7–T370 (O) | HP1–S331 (OH) | |
TM7–N366 (O) | TM7–E374 (O) | TM8–D444 (O) | |
TM8–D455 (O) | TM7–E374 (O) | TM8–D444 (O) | |
TM8–D455 (O) | H2O (1) | TM8–D444 (O) | |
H2O (1) | H2O (2) | TM8–T448 (OH) | |
H2O (2) | H2O | ||
(K) | –20.5 ± 1.1 | –9.5 ± 1.2 | –6.5 ± 0.8 |
(K/Na) | 0.5 ± 0.4 | 3.9 ± 0.4 | –3.1 ± 0.4 |
3.3. Neutral Amino-Acid Transporters
4. Conclusions and Future Prospects
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Lisman, J.E.; Raghavachari, S.; Tsien, R.W. The sequence of events that underlie quantal transmission at central glutamatergic synapses. Nat. Rev. Neurosci. 2007, 8, 597–609. [Google Scholar] [CrossRef] [PubMed]
- Danbolt, N.C. Glutamate uptake. Prog. Neurobiol. 2001, 65, 1–105. [Google Scholar] [CrossRef]
- El Mestikawy, S.; Wallén-Mackenzie, A.; Fortin, G.M.; Descarries, L.; Trudeau, L.E. From glutamate co-release to vesicular synergy: Vesicular glutamate transporters. Nat. Rev. Neurosci. 2011, 12, 204–216. [Google Scholar] [CrossRef] [PubMed]
- Herman, M.A.; Jahr, C.E. Extracellular glutamate concentration in hippocampal slice. J. Neurosci. 2007, 27, 9736–9741. [Google Scholar] [CrossRef] [PubMed]
- Hynd, M.R.; Scott, H.L.; Dodd, P.R. Glutamate-mediated excitotoxicity and neurodegeneration in Alzheimer’s disease. Neurochem. Int. 2004, 45, 583–595. [Google Scholar] [CrossRef] [PubMed]
- Rothstein, J.D.; Martin, L.J.; Kuncl, R.W. Decreased glutamate transport by the brain and spinal cord in amyotrophic lateral sclerosis. N. Engl. J. Med. 1992, 326, 1464–1468. [Google Scholar] [CrossRef] [PubMed]
- Rossi, D.J.; Oshima, T.; Attwell, D. Glutamate release in severe brain ischaemia is mainly by reversed uptake. Nature 2000, 403, 316–321. [Google Scholar] [PubMed]
- During, M.J.; Spencer, D.D. Extracellular hippocampal glutamate and spontaneous seizure in the conscious human brain. Lancet 1993, 341, 1607–1610. [Google Scholar] [CrossRef]
- Zerangue, N.; Kavanaugh, M.P. Flux coupling in a neuronal glutamate transporter. Nature 1996, 383, 634–637. [Google Scholar] [CrossRef] [PubMed]
- Levy, L.M.; Warr, O.; Attwell, D. Stoichiometry of the glial glutamate transporter GLT-1 expressed inducibly in a Chinese hamster ovary cell line selected for low endogenous Na+-dependent glutamate uptake. J. Neurosci. 1998, 18, 9620–9628. [Google Scholar] [PubMed]
- Owe, S.G.; Marcaggi, P.; Attwell, D. The ionic stoichiometry of the GLAST glutamate transporter in salamander retinal glia. J. Physiol. 2006, 577, 591–599. [Google Scholar] [CrossRef] [PubMed]
- Slotboom, D.J.; Konings, W.N.; Lolkema, J.S. Structural features of the glutamate transporter family. Microbiol. Mol. Biol. Rev. 1999, 63, 293–307. [Google Scholar] [PubMed]
- Arriza, J.L.; Kavanaugh, M.P.; Fairman, W.A.; Wu, Y.N.; Murdoch, G.H.; North, R.A.; Amara, S.G. Cloning and expression of a human neutral amino acid transporter with structural similarity to the glutamate transporter gene family. J. Biol. Chem. 1993, 268, 15329–15332. [Google Scholar] [PubMed]
- Shafqat, S.; Tamarappoo, B.K.; Kilberg, M.S.; Puranam, R.S.; McNamara, J.O.; Guadano-Ferraz, A.; Fremeau, R.T. Cloning and expression of a novel Na+-dependent neutral amino acid transporter structurally related to mammalian Na+/glutamate cotransporters. J. Biol. Chem. 1993, 268, 15351–15355. [Google Scholar] [PubMed]
- Utsunomiya-Tate, N.; Endou, H.; Kanai, Y. Cloning and functional characterization of a system ASC-like Na+-dependent neutral amino acid transporter. J. Biol. Chem. 1996, 271, 14883–14890. [Google Scholar] [PubMed]
- Yernool, D.; Boudker, O.; Jin, Y.; Gouaux, E. Structure of a glutamate transporter homologue from Pyrococcus horikoshii. Nature 2004, 431, 811–818. [Google Scholar] [CrossRef] [PubMed]
- Boudker, O.; Ryan, R.M.; Yernool, D.; Shimamoto, K.; Gouaux, E. Coupling substrate and ion binding to extracellular gate of a sodium-dependent aspartate transporter. Nature 2007, 445, 387–393. [Google Scholar] [CrossRef] [PubMed]
- Reyes, N.; Ginter, C.; Boudker, O. Transport mechanism of a bacterial homologue of glutamate transporters. Nature 2009, 462, 880–885. [Google Scholar] [CrossRef] [PubMed]
- Verdon, G.; Boudker, O. Crystal structure of an asymmetric trimer of a bacterial glutamate transporter homolog. Nat. Struct. Mol. Biol. 2012, 19, 355–357. [Google Scholar] [CrossRef] [PubMed]
- Ryan, R.M.; Compton, E.L.R.; Mindell, J.A. Functional characterization of a Na+-dependent aspartate transporter from Pyrococcus horikoshii. J. Biol. Chem. 2009, 26, 17540–17548. [Google Scholar] [CrossRef] [PubMed]
- Vandenberg, R.J.; Ryan, R.M. Mechanism of glutamate transport. Physiol. Rev. 2013, 93, 1621–1657. [Google Scholar] [CrossRef] [PubMed]
- MacKerell, A.D. Empirical force fields for biological macromolecules: Overview and issues. J. Comput. Chem. 2004, 25, 1584–1606. [Google Scholar] [CrossRef] [PubMed]
- Torrie, G.M.; Valleau, J.P. Nonphysical sampling distributions in Monte Carlo free-energy estimation: Umbrella sampling. J. Comp. Phys. 1977, 23, 187–199. [Google Scholar] [CrossRef]
- Isralewitz, B.; Gao, M.; Schulten, K. Steered molecular dynamics and mechanical functions of proteins. Curr. Opin. Struct. Biol. 2001, 11, 224–230. [Google Scholar] [CrossRef]
- Laio, A.; Gervasio, F.L. Metadynamics: A method to simulate rare events and reconstruct the free energy in biophysics, chemistry and material science. Rep. Prog. Phys. 2008, 71. [Google Scholar] [CrossRef]
- Comer, J.; Gumbart, J.C.; Henin, J.; Lelievre, T.; Pohorille, A.; Chipot, C. The adaptive biasing force method: Everything you always wanted to know but were afraid to ask. J. Phys. Chem. B 2015, 119, 1129–1151. [Google Scholar] [CrossRef] [PubMed]
- Markwick, P.R.L.; McCammon, J.A. Studying functional dynamics in bio-molecules using accelerated molecular dynamics. Phys. Chem. Chem. Phys. 2011, 13, 20053–20065. [Google Scholar] [CrossRef] [PubMed]
- Kumar, S.; Bouzida, D.; Swensen, R.H.; Kollman, P.A.; Rosenberg, J.M. The weighted histogram analysis method for free-energy calculations on biomolecules. J. Comp. Chem. 1992, 13, 1011–1021. [Google Scholar] [CrossRef]
- Jarzynski, C. Nonequilibrium equality for free energy diffrences. Phys. Rev. Lett. 1997, 78, 2690–2693. [Google Scholar] [CrossRef]
- Heinzelmann, G.; Chen, P.C.; Kuyucak, S. Computation of standard binding free energies of polar and charged ligands to the glutamate receptor GluA2. J. Phys. Chem. B 2013, 118, 1813–1824. [Google Scholar] [CrossRef] [PubMed]
- Boresch, S.; Tettinger, F.; Leitgeb, M.; Karplus, M. Absolute binding free energies: A quantitative approach for their calculation. J. Phys. Chem. B 2003, 107, 9535–9551. [Google Scholar] [CrossRef]
- Rashid, M.H.; Kuyucak, S. Free energy simulations of binding of HsTx1 toxin to Kv1 potassium channels: The basis of Kv1.3/Kv1.1 selectivity. J. Phys. Chem. B 2014, 118, 707–716. [Google Scholar] [CrossRef] [PubMed]
- Bastug, T.; Chen, P.C.; Patra, S.M.; Kuyucak, S. Potential of mean force calculations of ligand binding to ion channels from Jarzynski’s equality and umbrella sampling. J. Chem. Phys. 2008. [Google Scholar] [CrossRef] [PubMed]
- Shrivastava, I.H.; Jiang, J.; Amara, S.G.; Bahar, I. Time-resolved mechanism of extracellular gate opening and substrate binding in a glutamate transporter. J. Biol. Chem. 2008, 283, 28680–28690. [Google Scholar] [CrossRef] [PubMed]
- Huang, Z.; Tajkhorshid, E. Dynamics of the extracellular gate and ion-substrate coupling in the glutamate transporter. Biophys. J. 2008, 95, 2292–2300. [Google Scholar] [CrossRef] [PubMed]
- Groeneveld, M.; Slotboom, D.J. Na+: Aspartate coupling stoichiometry in the glutamate transporter homologue GltPh. Biochemistry 2010, 49, 3511–3513. [Google Scholar] [CrossRef] [PubMed]
- Holley, D.C.; Kavanaugh, M.P. Interactions of alkali cations with glutamate transporters. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2009, 364, 155–161. [Google Scholar] [CrossRef] [PubMed]
- Larsson, H.P.; Wang, X.; Lev, B.; Baconguis, I.; Caplan, D.A.; Vyleta, N.P.; Koch, H.P.; Diez-Sampedro, A.; Noskov, S.Y. Evidence for a third sodium-binding site in glutamate transporters suggests an ion/substrate coupling model. Proc. Natl. Acad. Sci. USA 2010, 107, 13912–13917. [Google Scholar] [CrossRef] [PubMed]
- Tao, Z.; Rosental, N.; Kanner, B.I.; Gameiro, A.; Mwaura, J.; Grewer, C. Mechanism of cation binding to the glutamate transporter EAAC1 probed with mutation of the conserved amino acid residue Thr101. J. Biol. Chem. 2010, 285, 17725–17733. [Google Scholar] [CrossRef] [PubMed]
- Huang, Z.; Tajkhorshid, E. Identification of the third Na+ site and the sequence of extracellular binding events in the glutamate transporter. Biophys. J. 2010, 99, 1416–1425. [Google Scholar] [CrossRef] [PubMed]
- Bastug, T.; Heinzelmann, G.; Kuyucak, S.; Salim, M.; Vandenberg, R.J.; Ryan, R.M. Position of the third Na+ site in the aspartate transporter GltPh and the human glutamate transporter, EAAT1. PLoS ONE 2012, 7, e33058. [Google Scholar] [CrossRef] [PubMed]
- Tao, Z.; Zhang, Z.; Grewer, C. Neutralization of the aspartic acid residue Asp-367, but not Asp-454, inhibits binding of Na+ to the glutamate-free form and cycling of the glutamate transporter EAAC1. J. Biol. Chem. 2006, 281, 10263–10272. [Google Scholar] [CrossRef] [PubMed]
- Heinzelmann, G.; Bastug, T.; Kuyucak, S. Free energy simulations of ligand binding to the aspartate transporter GltPh. Biophys. J. 2011, 101, 2380–2388. [Google Scholar] [CrossRef] [PubMed]
- Heinzelmann, G.; Bastug, T.; Kuyucak, S. Mechanism and energetics of ligand release in the aspartate transporter GltPh. J. Phys. Chem. B 2013, 117, 5486–5496. [Google Scholar] [CrossRef] [PubMed]
- Lev, B.; Noskov, S.Y. Role of protein matrix rigidity and local polarization effects in the monovalent cation selectivity of crystallographic sites in the Na-coupled aspartate transporter GltPh. Phys. Chem. Chem. Phys. 2013, 15, 2397–2404. [Google Scholar] [CrossRef] [PubMed]
- Venkatasan, S.K.; Saha, K.; Sohail, A.; Sandtner, W.; Freissmuth, M.; Ecker, G.F.; Sitte, H.H.; Stockner, T. Refinement of the central steps of substrate transport by the aspartate transporter GltPh: Elucidating the role of the Na2 sodium binding site. PLoS Comput. Biol. 2015, 11, e1004551. [Google Scholar] [CrossRef] [PubMed]
- Hanelt, I.; Jensen, S.; Wunnicke, D.; Slotboom, D.J. Low affinity and slow Na+ binding precedes high affinity aspartate binding in the secondary-active transporter GltPh. J. Biol. Chem. 2015, 290, 15962–15972. [Google Scholar] [CrossRef] [PubMed]
- Bahar, I.; Lezon, T.R.; Yang, L.W.; Eyal, E. Global dynamics of proteins: Bridging between structure and function. Annu. Rev. Biophys. 2010, 39, 23–42. [Google Scholar] [CrossRef] [PubMed]
- Crisman, T.J.; Qu, S.; Kanner, B.I.; Forrest, L.R. Inward-facing conformation of glutamate transporters as revealed by their inverted-topology structural repeats. Proc. Natl. Acad. Sci. USA 2009, 106, 20752–20757. [Google Scholar] [CrossRef] [PubMed]
- Grazioso, G.; Limongelli, V.; Branduardi, D.; Novellino, E.; de Micheli, C.; Cavalli, A.; Parrinello, M. Investigating the mechanism of substrate uptake and release in the glutamate transporter homologue GltPh through metadynamics simulations. J. Am. Chem. Soc. 2012, 134, 453–463. [Google Scholar] [CrossRef] [PubMed]
- De Chancie, J.; Shrivastava, I.H.; Bahar, I. The mechanism of substrate release by the aspartate transporter GltPh: Insights from simulations. Mol. Biosyst. 2011, 7, 832–842. [Google Scholar] [CrossRef] [PubMed]
- Zomot, E.; Bahar, I. Intracellular gating in an inward-facing state of aspartate transporter GltPh is regulated by the movements of the helical hairpin HP2. J. Biol. Chem. 2013, 288, 8231–8237. [Google Scholar] [CrossRef] [PubMed]
- Gu, Y.; Shrivastava, I.H.; Amara, S.G.; Bahar, I. Molecular simulations elucidate the substrate translocation pathway in a glutamate transporter. Proc. Natl. Acad. Sci. USA 2009, 106, 2589–2594. [Google Scholar] [CrossRef] [PubMed]
- Jiang, J.; Shrivastava, I.H.; Watts, S.D.; Bahar, I.; Amara, S.G. Large collective motions regulate the functional properties of glutamate transporter trimers. Proc. Natl. Acad. Sci. USA 2011, 108, 15141–15146. [Google Scholar] [CrossRef] [PubMed]
- Stolzenberg, S.; Khelashvili, G.; Weinstein, H. Structural intermediates in a model of the substrate translocation path of the bacterial glutamate transporter GltPh. J. Phys. Chem. B. 2012, 116, 5372–5383. [Google Scholar] [CrossRef] [PubMed]
- Gur, M.; Zomot, E.; Bahar, I. Global motions exhibited by proteins in micro- to milliseconds simulations concur with anisotropic network model predictions. J. Chem. Phys. 2013, 139, 121912. [Google Scholar] [CrossRef] [PubMed]
- Das, A.; Gur, M.; Cheng, M.H.; Jo, S.; Bahar, I.; Roux, B. Exploring the conformational transitions of biomolecular systems using a simple two-state anisotropic network model. PLoS Comput. Biol. 2014, 10, e1003521. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Erkens, G.B.; Hanelt, I.; Goudsmits, J.M.H.; Slotboom, D.J.; van Oijen, A.M. Unsynchronised subunit motion in single trimeric sodium-coupled aspartate transporters. Nature 2013, 502, 119–123. [Google Scholar] [CrossRef] [PubMed]
- Akyuz, N.; Altman, R.B.; Blanchard, S.C.; Boudker, O. Transport dynamics in a glutamate transporter homologue. Nature 2013, 502, 114–118. [Google Scholar] [CrossRef] [PubMed]
- Akyuz, N.; Georgieva, E.R.; Zhou, Z.; Stolzenberg, S.; Cuendet, M.A.; Khelashvili, G.; Altman, R.B.; Terry, D.S.; Freed, J.H.; Weinstein, H.; et al. Transport domain unlocking sets the uptake rate of an aspartate transporter. Nature 2015, 518, 68–73. [Google Scholar] [CrossRef] [PubMed]
- Fairman, W.; Vandenberg, R.; Arriza, J.; Kavanaugh, M.; Amara, S. An excitatory amino-acid transporter with properties of a ligand-gated chloride channel. Nature 1995, 375, 599–603. [Google Scholar] [CrossRef] [PubMed]
- Machtens, J.P.; Kortzak, D.; Lansche, C.; Leinenweber, A.; Kilian, P.; Begemann, B.; Zachariae, U.; Ewers, D.; de Groot, B.L.; Briones, R.; et al. Mechanisms of anion conduction by coupled glutamate transporters. Cell 2015, 160, 542–553. [Google Scholar] [CrossRef] [PubMed]
- Cater, R.M.; Vandenberg, R.J.; Ryan, R.M. The domain interface of the human glutamate transporter EAAT1 mediates chloride permeation. Biophys. J. 2014, 107, 621–629. [Google Scholar] [CrossRef] [PubMed]
- Borre, L.; Kanner, B.I. Arginine 445 controls the coupling between glutamate and cations in the neuronal transporter EAAC-1. J. Biol. Chem. 2004, 279, 2513–2519. [Google Scholar] [CrossRef] [PubMed]
- Watzke, N.; Rauen, T.; Bamberg, E.; Grewer, C. On the mechanism of proton transport by the neuronal excitatory amino acid carrier 1. J. Gen. Physiol. 2000, 116, 609–622. [Google Scholar] [CrossRef] [PubMed]
- Grewer, C.; Watzke, N.; Rauen, T.; Bicho, A. Is the glutamate residue glu-373 the proton acceptor of the excitatory amino acid carrier 1? J. Biol. Chem. 2003, 278, 2585–2592. [Google Scholar] [CrossRef] [PubMed]
- Heinzelmann, G.; Kuyucak, S. Molecular dynamics simulations of the mammalian glutamate transporter EAAT3. PLoS ONE 2014, 9, e92089. [Google Scholar] [CrossRef] [PubMed]
- Teichman, S.; Qu, S.; Kanner, B.I. The equivalent of a thallium binding residue from an archeal homolog controls cation interactions in brain glutamate transporters. Proc. Natl. Acad. Sci. USA 2009, 106, 14297–14302. [Google Scholar] [CrossRef] [PubMed]
- Mwaura, J.; Tao, Z.; James, H.; Albers, T.; Schwartz, A.; Grewer, C. Protonation state of a conserved acidic amino acid involved in Na+ binding to the glutamate transporter EAAC1. ACS Chem. Neurosci. 2012, 3, 1073–1083. [Google Scholar] [CrossRef] [PubMed]
- Kavanaugh, M.P.; Bendahan, A.; Zerangue, N.; Zhang, Y.; Kanner, B.I. Mutation of an amino acid residue influencing potassium coupling in the glutamate transporter GLT-1 induces obligate exchange. J. Biol. Chem. 1997, 272, 1703–1708. [Google Scholar] [CrossRef] [PubMed]
- Jensen, S.; Guskov, A.; Rempel, S.; Hanelt, I.; Slotboom, D.J. Crystal structure of a substrate-free aspartate transporter. Nat. Struct. Mol. Biol. 2013, 20, 1224–1226. [Google Scholar] [CrossRef] [PubMed]
- Heinzelmann, G.; Kuyucak, S. Molecular dynamics simulations elucidate the mechanism of proton transport in the glutamate transporter EAAT3. Biophys. J. 2014, 106, 2675–2683. [Google Scholar] [CrossRef] [PubMed]
- Bahar, I. Coupling between neurotransmitter translocation and protonation state of a titratable residue during Na+-coupled transport. Biophys. J. 2014, 106, 2547–2548. [Google Scholar] [CrossRef] [PubMed]
- Broer, A.; Wagner, C.; Lang, F.; Broer, S. Neutral amino acid transporter ASCT2 displays substrate-induced Na+ exchange and a substrate-gated anion conductance. Biochem. J. 2000, 346, 705–710. [Google Scholar] [CrossRef] [PubMed]
- Grewer, C.; Grabsch, E. New inhibitors for the neutral amino acid transporter ASCT2 reveal its Na+-dependent anion leak. J. Physiol. 2004, 557, 747–759. [Google Scholar] [CrossRef] [PubMed]
- Zander, C.B.; Albers, T.; Grewer, C. Voltage-dependent processes in the electroneutral amino acid exchanger ASCT2. J. Gen. Physiol. 2013, 141, 659–672. [Google Scholar] [CrossRef] [PubMed]
- Scopelliti, A.; Heinzelmann, G.; Kuyucak, S.; Ryan, R.M.; Vandenberg, R.J. Na+ interactions with the neutral amino acid transporter ASCT1. J. Biol. Chem. 2014, 289, 17468–17479. [Google Scholar] [CrossRef] [PubMed]
© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Setiadi, J.; Heinzelmann, G.; Kuyucak, S. Computational Studies of Glutamate Transporters. Biomolecules 2015, 5, 3067-3086. https://doi.org/10.3390/biom5043067
Setiadi J, Heinzelmann G, Kuyucak S. Computational Studies of Glutamate Transporters. Biomolecules. 2015; 5(4):3067-3086. https://doi.org/10.3390/biom5043067
Chicago/Turabian StyleSetiadi, Jeffry, Germano Heinzelmann, and Serdar Kuyucak. 2015. "Computational Studies of Glutamate Transporters" Biomolecules 5, no. 4: 3067-3086. https://doi.org/10.3390/biom5043067
APA StyleSetiadi, J., Heinzelmann, G., & Kuyucak, S. (2015). Computational Studies of Glutamate Transporters. Biomolecules, 5(4), 3067-3086. https://doi.org/10.3390/biom5043067