Design and Implementation of a 4D Web Application for Analytical Visualization of Smart City Applications
Abstract
:1. Introduction
2. Related Research and Current Trends
3. Proposed Architecture
4. Deployment of 4D CANVAS
4.1. Data Format
4.2. Energy Simulations Applications in Cities
4.3. Description of the Interface and Functionnalities
5. Discussion
5.1. Discussion of Results
5.2. Performance Testing
6. Conclusions
6.1. Summary
6.2. Limitations
6.3. Future Research
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Nouvel, R.; Zirak, M.; Dastageeri, H.; Coors, V.; Eicker, U. Urban energy analysis based on 3D city model for national scale applications. In Proceedings of the BauSIM 2014: 5th German-Austrian IBPSA Conference, Aachen, Germany, 22–24 September 2014. [Google Scholar]
- Murshed, S.M.; Lindsay, A.; Picard, S.; Simons, A. PLANTING: Computing High Spatio-temporal Resolutions of Photovoltaic Potential of 3D City Models. In Geospatial Technologies for All. AGILE 2018. Lecture Notes in Geoinformation and Cartography; Mansourian, A., Pilesjö, P., Harrie, L., van Lammeren, R., Eds.; Springer: Cham, Switzerland, 2018; pp. 27–53. [Google Scholar]
- Resch, B.; Wohlfahrt, R.; Wosniok, C. Web-based 4D visualization of marine geo-data using WebGL. Cartogr. Geogr. Inf. Sci. 2014, 41, 235–247. [Google Scholar] [CrossRef] [Green Version]
- WebGL Overview. Available online: https://www.khronos.org/webgl/ (accessed on 9 July 2018).
- Cesium.js. Available online: https://cesiumjs.org (accessed on 28 May 2018).
- Glob3m. Available online: http://glob3mobile.com/ (accessed on 4 June 2018).
- Wendel, J.; Murshed, S.M.; Sriramulu, A.; Nichersu, A. Development of a Web-Browser Based Interface for 3D Data—A Case Study of a Plug-in Free Approach for Visualizing Energy Modelling Results. In Progress in Cartography; Lecture Notes in Geoinformation and Cartography; Gartner, G., Jobst, M., Huang, H., Eds.; Springer: Cham, Switzerland, 2016; pp. 185–205. [Google Scholar]
- Open Geospatial Consortium (OGC). OpenGIS City Geography Markup Language (CityGML) Encoding Standard; Open Geospatial Consortium Inc.: Wayland, MA, USA, 2008; p. 234. [Google Scholar]
- CityGML Example FZK-Haus. Available online: http://www.citygmlwiki.org/index.php?title=FZK_Haus (accessed on 22 June 2018).
- Nouvel, R.; Kaden, R.; Bahu, J.-M.; Kaempf, J.; Cipriano, P.; Lauster, M.; Benner, J.; Munoz, E.; Tournaire, O.; Casper, E. Genesis of the citygml energy ADE. In Proceedings of the CISBAT 2015 Future Buildings and Districts Sustainability from Nano to Urban Scale, Lausanne, Switzerland, 9–11 September 2015. [Google Scholar]
- Becker, T.; Nagel, C.; Kolbe, T.H. Integrated 3D modeling of multi-utility networks and their interdependencies for critical infrastructure analysis. In Advances in 3D Geo-Information Sciences; Lecture Notes in Geoinformation and Cartography; Kolbe, T.H., König, G., Nagel, C., Eds.; Springer: Berlin/Heidelberg, Germany, 2011; pp. 1–20. [Google Scholar]
- Döllner, J.; Kersting, O. Dynamic 3D maps as visual interfaces for spatio-temporal data. In Proceedings of the 8th ACM International Symposium on Advances in Geographic Information Systems, Washington, DC, USA, 6–11 November 2000; ACM: New York, NY, USA, 2000. [Google Scholar]
- ISO/IEC. Software Engineering—Product Quality—Part 1: Quality Model. International Organization for Standardization; ISO/IEC 9126-1:2001; International Electrotechnical Commission: Geneva, Switzerland, 2001. [Google Scholar]
- Manferdini, A.; Remondino, F. A Review of Reality-Based 3D Model Generation, Segmentation and Web-Based Visualization Methods. Int. J. Herit. Digit. Era 2012, 1, 103–123. [Google Scholar] [CrossRef]
- VRML Virtual Reality Modeling Language. Available online: https://www.w3.org/MarkUp/VRML/ (accessed on 9 July 2018).
- Three.js. Available online: https://threejs.org/ (accessed on 6 June 2018).
- Unity 3D. Available online: https://unity3d.com/ (accessed on 6 June 2018).
- Unreal Engine. Available online: https://www.unrealengine.com/en-US/blog (accessed on 30 May 2018).
- X3dom. Available online: https://www.x3dom.org/ (accessed on 6 June 2018).
- OSG.js. Available online: http://osgjs.org (accessed on 6 June 2018).
- O3D. Available online: https://code.google.com/archive/p/o3d/ (accessed on 29 May 2018).
- WebGLEarth. Available online: https://www.webglearth.com (accessed on 2 July 2018).
- WebGL Globe. Available online: https://opensource.google.com/projects/webglglobe (accessed on 2 July 2018).
- Evangelidis, K.; Papadopoulos, T.; Papatheodorou, K.; Mastorokostas, P.; Hilas, C. 3D geospatial visualizations: Animation and motion effects on spatial objects. Comput. Geosci. 2018, 111, 200–212. [Google Scholar] [CrossRef]
- Brovelli, M.A.; Minghini, M.; Zamboni, G. New Generation Platforms for Exploration of Crowdsourced Geo-Data. In Earth Observation Open Science and Innovation; ISSI Scientific Report Series; Mathieu, P., Aubrecht, C., Eds.; Springer: Cham, Switzerland, 2018; pp. 219–243. [Google Scholar] [Green Version]
- Julin, A.; Jaalama, K.; Virtanen, J.-P.; Pouke, M.; Ylipulli, J.; Vaaja, M.; Hyyppä, J.; Hyyppä, H. Characterizing 3D City Modeling Projects: Towards a Harmonized Interoperable System. ISPRS Int. J. Geo-Inf. 2018, 7, 55. [Google Scholar] [CrossRef]
- Energy Atlas Berlin. Available online: http://energyatlas.energie.tu-berlin.de/en/ (accessed on 2 July 2018).
- Kaden, R.; Kolbe, T.H. City-wide total energy demand estimation of buildings using semantic 3D city models and statistical data. ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci. 2013, II-2/W1, 163–171. [Google Scholar] [CrossRef]
- Kaden, R.; Kolbe, T.H. Simulation-Based Total Energy Demand Estimation of Buildings using Semantic 3D City Models. Int. J. 3-D Inf. Model. 2014, 3, 35–53. [Google Scholar] [CrossRef]
- Giovannini, L.; Pezzi, S.; Di Staso, U.; Prandi, F.; De Amicis, R. Large-Scale Assessment and Visualization of the Energy Performance of Buildings with Ecomaps. In Proceedings of the 3rd International Conference on Data Management Technologies and Applications (DATA 2014), Vienna, Austria, 29–31 August 2014; SCITEPRESS–Science and Technology Publications, Lda Setúbal: Vienna, Austria, 2014. [Google Scholar]
- Chaturvedi, K.; Yao, Z.; Kolbe, T.H. Web-based Exploration of and Interaction with Large and Deeply Structured Semantic 3D City Models using HTML5 and WebGL. In Bridging Scales-Skalenübergreifende Nah-und Fernerkundungsmethoden; 35. Wissenschaftlich-Technische Jahrestagung der DGPF; Deutsche Gesellschaft für Photogrammetrie, Fernerkundung und Geoinformation (DGPF) e.V: Köln, Germany, 2015. [Google Scholar]
- 3DCityDB. Available online: https://www.3dcitydb.org/3dcitydb/ (accessed on 2 July 2018).
- Kolbe, T.H.; Yao, Z.; Herreruela, J.; Nagel, C.; Kunde, F.; Willkomm, P.; Hudra, G. 3D City Database for CityGML. In Addendum to the 3D City Database Documentation Version; Technical University Berlin: Munich, Germany, 2013. [Google Scholar]
- Kolbe, T.H.; Burger, B.; Cantzler, B. CityGML goes to Broadway. In Proceedings of the Photogrammetric Week’15, Stuttgart, Germany, 9–13 September 2015; Wichmann/VDE Verlag: Belin/Offenbach, Germany, 2015. [Google Scholar]
- Zhu, W.; Simons, A.; Wursthorn, S.; Nichersu, A. Integration of CityGML and Air Quality Spatio-Temporal Data Series via OGC SOS. In Proceedings of the Geospatial Sensor Webs Conference (GSW), Munster, Germany, 29–31 August 2016. [Google Scholar]
- Lin, F.; Chang, W.-Y.; Tsai, W.-F.; Shih, C.-C. Development of 3D Earth Visualization for Taiwan Ocean Environment Demonstration. In Data Mining and Big Data; Tan, Y., Takagi, H., Shi, Y., Eds.; Springer International Publishing: Cham, Switzerland, 2017; pp. 307–313. [Google Scholar]
- Santana, J.M.; Wendel, J.; Trujillo, A.; Suárez, J.P.; Simons, A.; Koch, A. Multimodal Location Based Services—Semantic 3D City Data as Virtual and Augmented Reality. In Progress in Location-Based Services 2016. Lecture Notes in Geoinformation and Cartography; Gartner, G., Huang, H., Eds.; Springer: Cham, Switzerland, 2017; pp. 329–353. [Google Scholar]
- Trujillo, A.; Suárez, J.P.; de la Calle, M.; Gómez, D.; Pedriza, A.; Santana, J.M. Glob3 Mobile: An Open Source Framework for Designing Virtual Globes on iOS and Android Mobile Devices. In Progress and New Trends in 3D Geoinformation Sciences; Pouliot, J., Daniel, S., Hubert, F., Zamyadi, A., Eds.; Springer: Berlin/Heidelberg, Germany, 2013; pp. 211–229. [Google Scholar]
- Krämer, M.; Gutbell, R. A case study on 3D geospatial applications in theWeb using state-of-the-art WebGL frameworks. In Proceedings of the 20th International Conference on 3D Web Technology (Web3D’15), Heraklion, Greece, 18–21 June 2015; ACM: New York, NY, USA, 2015. [Google Scholar]
- Smart Dubai. Available online: https://smartdubai.ae/en/Pages/default.aspx (accessed on 2 July 2018).
- Buyuksalih, I.; Bayburt, S.; Buyuksalih, G.; Baskaraca, A.; Karim, H.; Rahman, A.A. 3D Modelling and Visualization based on the Unity Game Engine—Advantages and Challenges. ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci. 2017, IV-4/W4, 161–166. [Google Scholar] [CrossRef]
- Pirotti, F.; Brovelli, M.A.; Prestifilippo, G.; Zamboni, G.; Kilsedar, C.E.; Piragnolo, M.; Hogan, P. An open source virtual globe rendering engine for 3D applications: NASA World Wind. Open Geospat. Data Softw. Standards 2017, 2, 4. [Google Scholar] [CrossRef]
- Leaflet.js. Available online: https://leafletjs.com/ (accessed on 6 June 2018).
- Mapbox. Available online: https://www.mapbox.com (accessed on 4 June 2018).
- Wrld3d. Available online: https://www.wrld3d.com (accessed on 29 May 2018).
- Eegeo.js. Available online: https://www.sitepoint.com/3d-maps-with-eegeo-and-leaflet/ (accessed on 6 June 2018).
- Graphics Tech in Cesium—Renderer Architecture. Available online: https://cesium.com/blog/2015/05/15/graphics-tech-in-cesium-architecture (accessed on 2 July 2018).
- Murshed, S.M.; Picard, S.; Koch, A. CityBEM: An Open Source Implementation and Validation of Monthly heating and cooling energy needs for 3D Buildings in Cities. ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci. 2017, IV-4/W5, 83–90. [Google Scholar] [CrossRef]
- HTML5. Available online: https://www.w3.org/TR/html5/ (accessed on 2 July 2018).
- Introducing 3D Tiles. Available online: https://cesium.com/blog/2015/08/10/introducing-3d-tiles/ (accessed on 2 July 2018).
- Zhu, L.; Wang, Z.; Li, Z. Representing Time-Dynamic Geospatial Objects on Virtual Globes Using CZML—Part I: Overview and Key Issues. ISPRS Int. J. Geo-Inf. 2018, 7, 21. [Google Scholar] [CrossRef]
- Zhu, L.; Li, Z.; Wang, Z. Representing Time-Dynamic Geospatial Objects on Virtual Globes Using CZML—Part II: Impact, Comparison, and Future Developments. ISPRS Int. J. Geo-Inf. 2018, 7, 18. [Google Scholar] [CrossRef]
- ISO. Energy Performance of Buildings—Calculation of Energy Use for Space Heating and Cooling; ISO 13970:2008; ISO/TC 163/SC 2 Calculation Methods: Geneva, Switzerland, 2008; p. 162. [Google Scholar]
- Mouse vs. Fingers as Input Device. Available online: https://www.nngroup.com/articles/mouse-vs-fingers-input-device/ (accessed on 28 May 2018).
- CesiumJS Feature Checklist. Available online: https://cesiumjs.org/features/ (accessed on 20 June 2018).
- Data-Curtains. Available online: http://nasa-gibs.github.io/data-curtains/ (accessed on 20 June 2018).
- Brewer, C.A.; Pickle, L. Evaluation of methods for classifying epidemiological data on choropleth maps in series. Ann. Assoc. Am. Geogr. 2002, 92, 662–681. [Google Scholar] [CrossRef]
- Peterson, M.P. Interactive cartographic animation. Cartogr. Geogr. Inf. Syst. 1993, 20, 40–44. [Google Scholar] [CrossRef]
- Song, Y.; Wang, X.; Tan, Y.; Wu, P.; Sutrisna, M.; Cheng, J.C.; Hampson, K. Trends and Opportunities of BIM-GIS Integration in the Architecture, Engineering and Construction Industry: A Review from a Spatio-Temporal Statistical Perspective. ISPRS Int. J. Geo-Inf. 2017, 6, 397. [Google Scholar] [CrossRef]
- The Next Generation of 3D Tiles. Available online: https://cesium.com/blog/2017/07/12/the-next-generation-of-3d-tiles/ (accessed on 30 June 2018).
- Integrate Cesium 3D Tiles Using FME. Available online: https://www.safe.com/integrate/cesium-3d-tiles (accessed on 30 June 2018).
- Batched 3D Model. Available online: https://github.com/AnalyticalGraphicsInc/3d-tiles/tree/master/TileFormats/Batched3DModel (accessed on 3 July 2018).
Category | Sub-Category | Purpose of Use |
---|---|---|
Script languages | Python (interpreter Python 3.3) | Used for writing scripts to structure and extract data from the energy database. Python scripts also automatize the data exportation in different formats such as JSON, CZML, etc. |
HTML5 | The markup code for displaying pages on the web browser. | |
CSS | A method used to add styles to the HTML page. | |
JavaScript | Used to program how the webpage behaves by adding actions and listening to events. | |
Libraries/API | Cesium.js 1.45 | Cesium is the main library on which the 3D interface is built on. |
AmCharts 4 | Utilized for creating and displaying interactive charts. | |
JQuery UI 1.12.1 | Facilitates UI interactions with widgets and functionalities. | |
JQuery Touch Punch | This library enables JQuery UI to be implemented on multi-touch screens. | |
GeoStats 1.5.0 | A JavaScript library that allows data classification using different methods such as natural breaks and equal intervals. | |
Software | 3D City Database Importer/Exporter | A Java-based front-end that allows importing CityGML data to the database. |
pgAdmin III | Used for viewing the database tables. | |
Eclipse Oxygen.2 | A programming environment used for Python coding with PyDev extension. | |
Brackets 1.12 | A programming environment used for HTML, CSS, and JavaScript coding. | |
FME | Used to facilitate the conversion from GeoJSON to Cesium 3D Tiles. | |
Data formats | CityGML | The data format imported into the database for implementing energy simulations. |
JSON | The format used for the graphics created by AmCharts. | |
GeoJSON | Used to visualize static geospatial data of LOD1 and LOD2. | |
CZML | Used to visualize spatiotemporal data of LOD1. | |
Cesium 3D Tiles | Used to visualize huge geospatial datasets with LOD2. |
Visualization | Functional Capabilities | |||||
---|---|---|---|---|---|---|
Data Formats | Geospatial (2D/3D) | Temporal | Data Representation | Suitability in 4D CANVAS | Complexity Level | Level of Detail Support |
JSON | No | No | Charts representing attributes | Yes | Simple | N/A |
GeoJSON | Yes | No | Thematic building surfaces | Yes | Simple | LOD2 |
CZML | Yes | Yes | Thematic building as a whole | Yes | Moderate | LOD1 |
3D Tiles | Yes | No | Thematic building surfaces | Yes | Very Complex | LOD2 |
City (LODx, Number of Surfaces) | PLANTING Outputs and Temporal Resolutions | CityBEM Outputs and Temporal Resolutions |
---|---|---|
Kuwait (LOD1, 25,364) |
|
|
Abu Dhabi (LOD1, 30,588) | ||
Hong Kong (LOD1, 31,744) | ||
Lyon (LOD2, 53,983) | ||
Karlsruhe (LOD2, 60,000) |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Murshed, S.M.; Al-Hyari, A.M.; Wendel, J.; Ansart, L. Design and Implementation of a 4D Web Application for Analytical Visualization of Smart City Applications. ISPRS Int. J. Geo-Inf. 2018, 7, 276. https://doi.org/10.3390/ijgi7070276
Murshed SM, Al-Hyari AM, Wendel J, Ansart L. Design and Implementation of a 4D Web Application for Analytical Visualization of Smart City Applications. ISPRS International Journal of Geo-Information. 2018; 7(7):276. https://doi.org/10.3390/ijgi7070276
Chicago/Turabian StyleMurshed, Syed Monjur, Ayah Mohammad Al-Hyari, Jochen Wendel, and Louise Ansart. 2018. "Design and Implementation of a 4D Web Application for Analytical Visualization of Smart City Applications" ISPRS International Journal of Geo-Information 7, no. 7: 276. https://doi.org/10.3390/ijgi7070276
APA StyleMurshed, S. M., Al-Hyari, A. M., Wendel, J., & Ansart, L. (2018). Design and Implementation of a 4D Web Application for Analytical Visualization of Smart City Applications. ISPRS International Journal of Geo-Information, 7(7), 276. https://doi.org/10.3390/ijgi7070276