Chemical and Biological Characterization of Melaleuca alternifolia Essential Oil
Abstract
:1. Introduction
2. Results
2.1. Chemical Composition
2.2. Antioxidant Activity
2.3. Antimicrobial Activity Analyzed by Disk Diffusion Method
2.4. Antimicrobial Activity Analyzed by Broth Microdilution Method
2.5. Analysis of Biofilm Degradation
3. Discussion
4. Materials and Methods
4.1. Microorganisms
4.2. Analysis of Chemical Structure
4.3. Antioxidant Activity
4.4. Disk Diffusion Method
4.5. Broth Microdilution Method
4.6. Analysis of Biofilm Degradation
4.7. Statistical Data Evaluation
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Padovan, A.; Keszei, A.; Hassan, Y.; Krause, S.T.; Köllner, T.G.; Degenhardt, J.; Gershenzon, J.; Külheim, C.; Foley, W.J. Four Terpene Synthases Contribute to the Generation of Chemotypes in Tea Tree (Melaleuca alternifolia). BMC Plant Biol. 2017, 17, 160. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Homer, L.E.; Leach, D.N.; Lea, D.; Slade Lee, L.; Henry, R.J.; Baverstock, P.R. Natural Variation in the Essential Oil Content of Melaleuca alternifolia Cheel (Myrtaceae). Biochem. Syst. Ecol. 2000, 28, 367–382. [Google Scholar] [CrossRef]
- Doran, J.C.; Baker, G.R.; Williams, E.R.; Southwell, I.A.; Doran, J.C.; Baker, G.R.; Williams, E.R.; Southwell, I.A. Genetic Gains in Oil Yields after Nine Years of Breeding Melaleuca alternifolia (Myrtaceae). Aust. J. Exp. Agric. 2006, 46, 1521–1527. [Google Scholar] [CrossRef]
- Malhi, H.K.; Tu, J.; Riley, T.V.; Kumarasinghe, S.P.; Hammer, K.A. Tea Tree Oil Gel for Mild to Moderate Acne; a 12 Week Uncontrolled, Open-Label Phase II Pilot Study. Australas. J. Dermatol. 2017, 58, 205–210. [Google Scholar] [CrossRef]
- Wallengren, J. Tea Tree Oil Attenuates Experimental Contact Dermatitis. Arch. Dermatol. Res. 2011, 303, 333–338. [Google Scholar] [CrossRef]
- Chin, K.B.; Cordell, B. The Effect of Tea Tree Oil (Melaleuca alternifolia) on Wound Healing Using a Dressing Model. J. Altern. Complement. Med. 2013, 19, 942–945. [Google Scholar] [CrossRef]
- Loughlin, R.; Gilmore, B.F.; McCarron, P.A.; Tunney, M.M. Comparison of the Cidal Activity of Tea Tree Oil and Terpinen-4-Ol against Clinical Bacterial Skin Isolates and Human Fibroblast Cells. Lett. Appl. Microbiol. 2008, 46, 428–433. [Google Scholar] [CrossRef]
- Mertas, A.; Garbusińska, A.; Szliszka, E.; Jureczko, A.; Kowalska, M.; Król, W. The Influence of Tea Tree Oil (Melaleuca alternifolia) on Fluconazole Activity against Fluconazole-Resistant Candida albicans Strains. Biomed. Res. Int. 2015, 2015, 590470. [Google Scholar] [CrossRef] [Green Version]
- Hart, P.H.; Brand, C.; Carson, C.F.; Riley, T.V.; Prager, R.H.; Finlay-Jones, J.J. Terpinen-4-Ol, the Main Component of the Essential Oil of Melaleuca alternifolia (Tea Tree Oil), Suppresses Inflammatory Mediator Production by Activated Human Monocytes. Inflamm. Res. 2000, 49, 619–626. [Google Scholar] [CrossRef]
- Shapira, S.; Pleban, S.; Kazanov, D.; Tirosh, P.; Arber, N. Terpinen-4-Ol: A Novel and Promising Therapeutic Agent for Human Gastrointestinal Cancers. PLoS ONE 2016, 11, e0156540. [Google Scholar] [CrossRef] [Green Version]
- Li, G.-X.; Liu, Z.-Q. Unusual Antioxidant Behavior of α- and γ-Terpinene in Protecting Methyl Linoleate, DNA, and Erythrocyte. J. Agric. Food Chem. 2009, 57, 3943–3948. [Google Scholar] [CrossRef] [PubMed]
- Aydin, E.; Türkez, H.; Taşdemir, Ş. Anticancer and Antioxidant Properties of Terpinolene in Rat Brain Cells. Arh. Hig. Rada. Toksikol. 2013, 64, 415–424. [Google Scholar] [CrossRef]
- Galan, D.M.; Ezeudu, N.E.; Garcia, J.; Geronimo, C.A.; Berry, N.M.; Malcolm, B.J. Eucalyptol (1,8-Cineole): An Underutilized Ally in Respiratory Disorders? J. Essent. Oil Res. 2020, 32, 103–110. [Google Scholar] [CrossRef]
- Cai, Z.-M.; Peng, J.-Q.; Chen, Y.; Tao, L.; Zhang, Y.-Y.; Fu, L.-Y.; Long, Q.-D.; Shen, X.-C. 1,8-Cineole: A Review of Source, Biological Activities, and Application. J. Asian Nat. Prod. Res. 2021, 23, 938–954. [Google Scholar] [CrossRef]
- Vijayakumar, K.; Manigandan, V.; Jeyapragash, D.; Bharathidasan, V.; Anandharaj, B.; Sathya, M. Eucalyptol Inhibits Biofilm Formation of Streptococcus pyogenes and Its Mediated Virulence Factors. J. Med. Microbiol. 2020, 69, 1308–1318. [Google Scholar] [CrossRef] [PubMed]
- Marchese, A.; Arciola, C.R.; Barbieri, R.; Silva, A.S.; Nabavi, S.F.; Tsetegho Sokeng, A.J.; Izadi, M.; Jafari, N.J.; Suntar, I.; Daglia, M.; et al. Update on Monoterpenes as Antimicrobial Agents: A Particular Focus on p-Cymene. Materials 2017, 10, 947. [Google Scholar] [CrossRef] [PubMed]
- Yasin, M.; Younis, A.; Javed, T.; Akram, A.; Ahsan, M.; Shabbir, R.; Ali, M.M.; Tahir, A.; El-Ballat, E.M.; Sheteiwy, M.S.; et al. River Tea Tree Oil: Composition, Antimicrobial and Antioxidant Activities, and Potential Applications in Agriculture. Plants 2021, 10, 2105. [Google Scholar] [CrossRef]
- Kim, H.-J.; Chen, F.; Wu, C.; Wang, X.; Chung, H.Y.; Jin, Z. Evaluation of Antioxidant Activity of Australian Tea Tree (Melaleuca alternifolia) Oil and Its Components. J. Agric. Food Chem. 2004, 52, 2849–2854. [Google Scholar] [CrossRef]
- Carson, C.F.; Hammer, K.A.; Riley, T.V. Melaleuca alternifolia (Tea Tree) Oil: A Review of Antimicrobial and Other Medicinal Properties. Clin. Microbiol. Rev. 2006, 19, 50–62. [Google Scholar] [CrossRef] [Green Version]
- Cox, S.D.; Mann, C.M.; Markham, J.L.; Gustafson, J.E.; Warmington, J.R.; Wyllie, S.G. Determining the Antimicrobial Actions of Tea Tree Oil. Molecules 2001, 6, 87–91. [Google Scholar] [CrossRef] [Green Version]
- Jafri, H.; Ansari, F.; Ahmad, I. Prospects of Essential Oils in Controlling Pathogenic Biofilm. In New Look to Phytomedicine; Academic Press: London, UK, 2019; pp. 203–236. [Google Scholar] [CrossRef]
- Brożyna, M.; Paleczny, J.; Kozłowska, W.; Chodaczek, G.; Dudek-Wicher, R.; Felińczak, A.; Gołębiewska, J.; Górniak, A.; Junka, A. The Antimicrobial and Antibiofilm In Vitro Activity of Liquid and Vapour Phases of Selected Essential Oils against Staphylococcus aureus. Pathogens 2021, 10, 1207. [Google Scholar] [CrossRef] [PubMed]
- Liu, T.; Wang, J.; Gong, X.; Wu, X.; Liu, L.; Chi, F. Rosemary and Tea Tree Essential Oils Exert Antibiofilm Activities In Vitro against Staphylococcus aureus and Escherichia coli. J. Food Prot. 2020, 83, 1261–1267. [Google Scholar] [CrossRef] [PubMed]
- Francisconi, R.S.; Huacho, P.M.M.; Tonon, C.C.; Bordini, E.A.F.; Correia, M.F.; de Sardi, J.C.O.; Spolidorio, D.M.P. Antibiofilm Efficacy of Tea Tree Oil and of Its Main Component Terpinen-4-Ol against Candida albicans. Braz. Oral Res. 2020, 34, e050. [Google Scholar] [CrossRef] [PubMed]
- Baum, M.M.; Kainović, A.; O’Keeffe, T.; Pandita, R.; McDonald, K.; Wu, S.; Webster, P. Characterization of Structures in Biofilms Formed by a Pseudomonas fluorescens Isolated from Soil. BMC Microbiol. 2009, 9, 103. [Google Scholar] [CrossRef] [Green Version]
- Kumar, H.; Franzetti, L.; Kaushal, A.; Kumar, D. Pseudomonas fluorescens: A Potential Food Spoiler and Challenges and Advances in Its Detection. Ann. Microbiol. 2019, 69, 873–883. [Google Scholar] [CrossRef]
- Borges, K.A.; Furian, T.Q.; de Souza, S.N.; Menezes, R.; de Lima, D.A.; Fortes, F.B.B.; Salle, C.T.P.; Moraes, H.L.S.; Nascimento, V.P. Biofilm Formation by Salmonella enteritidis and Salmonella Typhimurium Isolated from Avian Sources Is Partially Related with Their In Vivo Pathogenicity. Microb. Pathog. 2018, 118, 238–241. [Google Scholar] [CrossRef]
- de Webber, B.; Oliveira, A.P.; Pottker, E.S.; Daroit, L.; Levandowski, R.; dos Santos, L.R.; do Nascimento, V.P.; Rodrigues, L.B. Salmonella enteritidis Forms Biofilm under Low Temperatures on Different Food Industry Surfaces. Cienc. Rural 2019, 49, e20181022. [Google Scholar] [CrossRef]
- Dantas, S.T.A.; Rossi, B.F.; Bonsaglia, E.C.R.; Castilho, I.G.; Hernandes, R.T.; Fernandes, A.; Rall, V.L.M. Cross-Contamination and Biofilm Formation by Salmonella enterica Serovar Enteritidis on Various Cutting Boards. Foodborne Pathog. Dis. 2018, 15, 81–85. [Google Scholar] [CrossRef] [Green Version]
- Liao, M.; Xiao, J.-J.; Zhou, L.-J.; Yao, X.; Tang, F.; Hua, R.-M.; Wu, X.-W.; Cao, H.-Q. Chemical Composition, Insecticidal and Biochemical Effects of Melaleuca alternifolia Essential Oil on the Helicoverpa armigera. J. Appl. Entomol. 2017, 141, 721–728. [Google Scholar] [CrossRef] [Green Version]
- Noumi, E.; Snoussi, M.; Hajlaoui, H.; Trabelsi, N.; Ksouri, R.; Valentin, E.; Bakhrouf, A. Chemical Composition, Antioxidant and Antifungal Potential of Melaleuca alternifolia (Tea Tree) and Eucalyptus globulus Essential Oils against Oral Candida Species. J. Med. Plants Res. 2011, 5, 4147–4156. [Google Scholar] [CrossRef]
- Brun, P.; Bernabè, G.; Filippini, R.; Piovan, A. In Vitro Antimicrobial Activities of Commercially Available Tea Tree (Melaleuca alternifolia) Essential Oils. Curr. Microbiol. 2019, 76, 108–116. [Google Scholar] [CrossRef] [PubMed]
- Elmi, A.; Ventrella, D.; Barone, F.; Carnevali, G.; Filippini, G.; Pisi, A.; Benvenuti, S.; Scozzoli, M.; Bacci, M.L. In Vitro Effects of Tea Tree Oil (Melaleuca alternifolia Essential Oil) and Its Principal Component Terpinen-4-Ol on Swine Spermatozoa. Molecules 2019, 24, 1071. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kedare, S.B.; Singh, R.P. Genesis and Development of DPPH Method of Antioxidant Assay. J. Food Sci. Technol. 2011, 48, 412–422. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, X.; Guo, Y.; Guo, L.; Jiang, H.; Ji, Q. In Vitro Evaluation of Antioxidant and Antimicrobial Activities of Melaleuca alternifolia Essential Oil. Biomed. Res. Int. 2018, 2018, 2396109. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jeyakani, M.; Rajalakshmi, M. Antioxidant Activity, Total Phenolic Content of Essential Oils, and Extract Determined from Natural Leaves, In-Vitro Leaves, and Callus Sources of Melaleuca alternifolia—A Comparative Study. Asian J. Pharm. Clin. Res. 2021, 14, 141–143. [Google Scholar] [CrossRef]
- Zhao, Q.; Bowles, E.J.; Zhang, H.-Y. Antioxidant Activities of Eleven Australian Essential Oils. Nat. Prod. Commun. 2008, 3, 837–842. [Google Scholar] [CrossRef]
- Shah, G.; Dhawan, R.K. Antioxidant Activity of Methanol Extract Leaves of Melaleuca alternifolia (Maiden & Betche) Cheel. J. Mater. Environ. Sci. 2019, 10, 1286–1295. [Google Scholar]
- Puvača, N.; Milenković, J.; Galonja Coghill, T.; Bursić, V.; Petrović, A.; Tanasković, S.; Pelić, M.; Ljubojević Pelić, D.; Miljković, T. Antimicrobial Activity of Selected Essential Oils against Selected Pathogenic Bacteria: In Vitro Study. Antibiotics 2021, 10, 546. [Google Scholar] [CrossRef]
- Esmael, A.; Hassan, M.G.; Amer, M.M.; Abdelrahman, S.; Hamed, A.M.; Abd-raboh, H.A.; Foda, M.F. Antimicrobial Activity of Certain Natural-Based Plant Oils against the Antibiotic-Resistant Acne Bacteria. Saudi J. Biol. Sci. 2020, 27, 448–455. [Google Scholar] [CrossRef]
- Melo, A.D.B.; Amaral, A.F.; Schaefer, G.; Luciano, F.B.; de Andrade, C.; Costa, L.B.; Rostagno, M.H. Antimicrobial Effect against Different Bacterial Strains and Bacterial Adaptation to Essential Oils Used as Feed Additives. Can. J. Vet. Res. 2015, 79, 285–289. [Google Scholar]
- Ergin, A.; Arikan, S. Comparison of Microdilution and Disc Diffusion Methods in Assessing the In Vitro Activity of Fluconazole and Melaleuca alternifolia (Tea Tree) Oil against Vaginal Candida Isolates. J. Chemother. 2002, 14, 465–472. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Shen, D.; Zang, Q.; Qiu, Y.; Yang, X. Chemical Components and Antimicrobial Activities of Tea Tree Hydrosol and Their Correlation with Tea Tree Oil. Nat. Prod. Commun. 2021, 16, 1934578X211038390. [Google Scholar] [CrossRef]
- Mondello, F.; De Bernardis, F.; Girolamo, A.; Cassone, A.; Salvatore, G. In Vivo Activity of Terpinen-4-Ol, the Main Bioactive Component of Melaleuca alternifolia Cheel (Tea Tree) Oil against Azole-Susceptible and -Resistant Human Pathogenic Candida Species. BMC Infect. Dis. 2006, 6, 158. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cordeiro, L.; Figueiredo, P.; Souza, H.; Sousa, A.; Andrade-Júnior, F.; Medeiros, D.; Nóbrega, J.; Silva, D.; Martins, E.; Barbosa-Filho, J.; et al. Terpinen-4-Ol as an Antibacterial and Antibiofilm Agent against Staphylococcus aureus. Int. J. Mol. Sci. 2020, 21, 4531. [Google Scholar] [CrossRef]
- Lee, C.-J.; Chen, L.-W.; Chen, L.-G.; Chang, T.-L.; Huang, C.-W.; Huang, M.-C.; Wang, C.-C. Correlations of the Components of Tea Tree Oil with Its Antibacterial Effects and Skin Irritation. J. Food Drug Anal. 2013, 21, 169–176. [Google Scholar] [CrossRef] [Green Version]
- Ziółkowska-Klinkosz, M.; Kedzia, A.; Meissner, H.O.; Kedzia, A.W. Evaluation of the Tea Tree Oil Activity to Anaerobic Bacteria—In Vitro Study. Acta Pol. Pharm. 2016, 73, 389–394. [Google Scholar]
- Hammer, K.A.; Carson, C.F.; Riley, T.V. Susceptibility of Transient and Commensal Skin Flora to the Essential Oil of Melaleuca alternifolia (Tea Tree Oil). Am. J. Infect. Control 1996, 24, 186–189. [Google Scholar] [CrossRef]
- Bagg, J.; Jackson, M.S.; Petrina Sweeney, M.; Ramage, G.; Davies, A.N. Susceptibility to Melaleuca alternifolia (Tea Tree) Oil of Yeasts Isolated from the Mouths of Patients with Advanced Cancer. Oral Oncol. 2006, 42, 487–492. [Google Scholar] [CrossRef]
- Comin, V.M.; Lopes, L.Q.S.; Quatrin, P.M.; de Souza, M.E.; Bonez, P.C.; Pintos, F.G.; Raffin, R.P.; de Vaucher, R.A.; Martinez, D.S.T.; Santos, R.C.V. Influence of Melaleuca alternifolia Oil Nanoparticles on Aspects of Pseudomonas aeruginosa Biofilm. Microb. Pathog. 2016, 93, 120–125. [Google Scholar] [CrossRef]
- Kwieciński, J.; Eick, S.; Wójcik, K. Effects of Tea Tree (Melaleuca alternifolia) Oil on Staphylococcus aureus in Biofilms and Stationary Growth Phase. Int. J. Antimicrob. Agents 2009, 33, 343–347. [Google Scholar] [CrossRef]
- Sadekuzzaman, M.; Mizan, M.F.R.; Kim, H.-S.; Yang, S.; Ha, S.-D. Activity of Thyme and Tea Tree Essential Oils against Selected Foodborne Pathogens in Biofilms on Abiotic Surfaces. LWT 2018, 89, 134–139. [Google Scholar] [CrossRef]
- Sudjana, A.N.; Carson, C.F.; Carson, K.C.; Riley, T.V.; Hammer, K.A. Candida albicans Adhesion to Human Epithelial Cells and Polystyrene and Formation of Biofilm Is Reduced by Sub-Inhibitory Melaleuca alternifolia (Tea Tree) Essential Oil. Med. Mycol. 2012, 50, 863–870. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Al-Shuneigat, J.; Cox, S.D.; Markham, J.L. Effects of a Topical Essential Oil-Containing Formulation on Biofilm-Forming Coagulase-Negative Staphylococci. Lett. Appl. Microbiol. 2005, 41, 52–55. [Google Scholar] [CrossRef] [PubMed]
- Song, Y.-M.; Zhou, H.-Y.; Wu, Y.; Wang, J.; Liu, Q.; Mei, Y.-F. In Vitro Evaluation of the Antibacterial Properties of Tea Tree Oil on Planktonic and Biofilm-Forming Streptococcus mutans. AAPS PharmSciTech 2020, 21, 227. [Google Scholar] [CrossRef] [PubMed]
- Božik, M.; Cejnar, P.; Šašková, M.; Nový, P.; Maršík, P.; Klouček, P. Stress Response of Escherichia coli to Essential Oil Components—Insights on Low-Molecular-Weight Proteins from MALDI-TOF. Sci. Rep. 2018, 8, 13042. [Google Scholar] [CrossRef]
- Tang, C.; Chen, J.; Zhang, L.; Zhang, R.; Zhang, S.; Ye, S.; Zhao, Z.; Yang, D. Exploring the Antibacterial Mechanism of Essential Oils by Membrane Permeability, Apoptosis and Biofilm Formation Combination with Proteomics Analysis against Methicillin-Resistant Staphylococcus aureus. Int. J. Med. Microbiol. 2020, 310, 151435. [Google Scholar] [CrossRef]
- Singhal, N.; Kumar, M.; Kanaujia, P.K.; Virdi, J.S. MALDI-TOF Mass Spectrometry: An Emerging Technology for Microbial Identification and Diagnosis. Front. Microbiol. 2015, 6, 791. [Google Scholar] [CrossRef] [Green Version]
- Murray, P.R. What Is New in Clinical Microbiology—Microbial Identification by MALDI-TOF Mass Spectrometry. J. Mol. Diagn. 2012, 14, 419–423. [Google Scholar] [CrossRef] [Green Version]
- Stîngu, C.S.; Rodloff, A.C.; Jentsch, H.; Schaumann, R.; Eschrich, K. Rapid Identification of Oral Anaerobic Bacteria Cultivated from Subgingival Biofilm by MALDI-TOF-MS. Oral Microbiol. Immunol. 2008, 23, 372–376. [Google Scholar] [CrossRef]
- Kırmusaoğlu, S. Antimicrobials, Antibiotic Resistance, Antibiofilm Strategies and Activity Methods; Intechopen: London, UK, 2019. [Google Scholar] [CrossRef]
- Kačániová, M.; Galovičová, L.; Ivanišová, E.; Vukovic, N.L.; Štefániková, J.; Valková, V.; Borotová, P.; Žiarovská, J.; Terentjeva, M.; Felšöciová, S.; et al. Antioxidant, Antimicrobial and Antibiofilm Activity of Coriander (Coriandrum sativum L.) Essential Oil for Its Application in Foods. Foods 2020, 9, 282. [Google Scholar] [CrossRef] [Green Version]
- Galovičová, L.; Borotová, P.; Valková, V.; Vukovic, N.L.; Vukic, M.; Terentjeva, M.; Štefániková, J.; Ďúranová, H.; Kowalczewski, P.Ł.; Kačániová, M. Thymus serpyllum Essential Oil and Its Biological Activity as a Modern Food Preserver. Plants 2021, 10, 1416. [Google Scholar] [CrossRef] [PubMed]
- Galovičová, L.; Borotová, P.; Valková, V.; Vukovic, N.L.; Vukic, M.; Štefániková, J.; Ďúranová, H.; Kowalczewski, P.Ł.; Čmiková, N.; Kačániová, M. Thymus vulgaris Essential Oil and Its Biological Activity. Plants 2021, 10, 1959. [Google Scholar] [CrossRef] [PubMed]
- Adams, R.P. Identification of Essential Oil Components by Gas Chromatography/Mass Spectrometry. In Identification of Essential Oil Components by Gas Chromatography/Mass Spectrometry; Allured Publishing Corporation: Carol Streem, IL, USA, 2007. [Google Scholar]
- van Den Dool, H.; Kratz, P.D. A Generalization of the Retention Index System Including Linear Temperature Programmed Gas—Liquid Partition Chromatography. J. Chromatogr. A 1963, 11, 463–471. [Google Scholar] [CrossRef]
- Wiegand, I.; Hilpert, K.; Hancock, R.E.W. Agar and Broth Dilution Methods to Determine the Minimal Inhibitory Concentration (MIC) of Antimicrobial Substances. Nat. Protoc. 2008, 3, 163–175. [Google Scholar] [CrossRef]
- Hassan, A.; Usman, J.; Kaleem, F.; Omair, M.; Khalid, A.; Iqbal, M. Evaluation of Different Detection Methods of Biofilm Formation in the Clinical Isolates. Braz. J. Infect. Dis. 2011, 15, 305–311. [Google Scholar] [CrossRef] [Green Version]
- Pereira, F.D.E.S.; Bonatto, C.C.; Lopes, C.A.P.; Pereira, A.L.; Silva, L.P. Use of MALDI-TOF Mass Spectrometry to Analyze the Molecular Profile of Pseudomonas aeruginosa Biofilms Grown on Glass and Plastic Surfaces. Microb. Pathog. 2015, 86, 32–37. [Google Scholar] [CrossRef] [Green Version]
Retention Index | Identified Compound | % |
---|---|---|
1178 | Terpinen-4-ol | 40.3 ± 0.02 |
1060 | γ-Terpinene | 11.7 ± 0.02 |
1033 | 1,8-Cineole | 7.0 ± 0.01 |
1023 | p-Cymene | 6.2 ± 0.02 |
1016 | α-Terpinene | 3.9 ± 0.01 |
1189 | α-Terpineol | 3.9 ± 0.02 |
938 | α-pinene | 3.4 ± 0.01 |
1088 | α-Terpinolene | 2.2 ± 0.01 |
1443 | Aromadendrene | 2.0 ± 0.01 |
1498 | Ledene | 1.9 ± 0.01 |
1525 | δ-Cadinene | 1.9 ± 0.01 |
1028 | α-Limonene | 1.6 ± 0.01 |
980 | β-Pinene | 1.2 ± 0.01 |
992 | β-Myrcene | 0.8 ± 0.01 |
1183 | p-Cymen-8-ol | 0.8 ± 0.01 |
1503 | Bicyclogermacrene | 0.8 ± 0.01 |
1530 | cis-Calamenene | 0.8 ± 0.01 |
1422 | (e)-Caryophyllene | 0.7 ± 0.01 |
926 | α-Thujene | 0.6 ± 0.01 |
1408 | α-Gurjunene | 0.6 ± 0.01 |
1098 | Linalool | 0.5 ± 0.01 |
1379 | α-Copaene | 0.5 ± 0.01 |
1652 | α-Eudesmol | 0.4 ± 0.01 |
948 | Camphene | 0.3 ± 0.01 |
977 | Sabinene | 0.3 ± 0.01 |
1490 | β-Selinene | 0.3 ± 0.01 |
1504 | α-Muurolene | 0.3 ± 0.01 |
1542 | α-Cadinene | 0.3 ± 0.01 |
1004 | α-Phellandrene | 0.2 ± 0.01 |
1439 | γ-Elemene | 0.2 ± 0.01 |
1456 | α-Humulene | 0.2 ± 0.01 |
1577 | Spathulenol | 0.2 ± 0.01 |
1593 | Viridiflorol | 0.2 ± 0.01 |
1353 | α-Cubebene | 0.1 ± 0.01 |
1371 | Isoledene | 0.1 ± 0.01 |
Microorganism | Inhibition Zone | Activity of EO | Control |
---|---|---|---|
Gram-positive bacteria | |||
Bacillus subtilis | 9.33 ± 1.70 | ** | 31 ± 3.0 |
Enterococcus faecalis | 10.67 ± 1.25 | *** | 28 ± 0.5 |
Micrococcus luteus | 4.67 ± 0.47 | * | 26 ± 2.0 |
Staphylococcus aureus | 7.33 ± 0.47 | ** | 31 ± 1.0 |
Gram-negative bacteria | |||
Pseudomonas aeruginosa | 6.00 ± 0.82 | ** | 22 ± 1.0 |
Yersinia enterocolitica | 6.00 ± 0.82 | ** | 25 ± 2.0 |
Salmonella enterica | 7.33 ± 1.25 | ** | 25 ± 1.5 |
Serratia marcescens | 6.67 ± 0.94 | ** | 27 ± 2.0 |
Pseudomonas fluorescens biofilm | 6.00 ± 0.00 | ** | 26 ± 1.0 |
Salmonella enterica biofilm | 6.00 ± 0.82 | ** | 25 ± 1.0 |
Yeasts | |||
Candida albicans | 10.67 ± 1.70 | *** | 25 ± 2.0 |
Candida glabrata | 7.67 ± 2.62 | ** | 31 ± 1.5 |
Candida krusei | 6.33 ± 0.47 | ** | 31 ± 3.0 |
Candida tropicalis | 8.33 ± 1.89 | ** | 31 ± 1.0 |
Microorganism | MIC 50 (µL/mL) | MIC 90 (µL/mL) |
---|---|---|
Gram-positive bacteria | ||
Bacillus subtilis | 14.25 | 18.36 |
Enterococcus faecalis | 15.86 | 18.45 |
Micrococcus luteus | 13.58 | 18.68 |
Staphylococcus aureus | 11.52 | 14.26 |
Gram-negative bacteria | ||
Pseudomonas aeruginosa | 10.46 | 12.32 |
Yersinia enterocolitica | 12.25 | 15.46 |
Salmonella enterica | 11.82 | 16.36 |
Serratia marcescens | 13.45 | 16.24 |
Pseudomonas fluorescens biofilm | 25.46 | 28.59 |
Salmonella enterica biofilm | 23.18 | 25.43 |
Yeasts | ||
Candida albicans | 22.52 | 26.76 |
Candida glabrata | 24.33 | 29.85 |
Candida krusei | 23.15 | 26.32 |
Candida tropicalis | 21.86 | 27.46 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Borotová, P.; Galovičová, L.; Vukovic, N.L.; Vukic, M.; Tvrdá, E.; Kačániová, M. Chemical and Biological Characterization of Melaleuca alternifolia Essential Oil. Plants 2022, 11, 558. https://doi.org/10.3390/plants11040558
Borotová P, Galovičová L, Vukovic NL, Vukic M, Tvrdá E, Kačániová M. Chemical and Biological Characterization of Melaleuca alternifolia Essential Oil. Plants. 2022; 11(4):558. https://doi.org/10.3390/plants11040558
Chicago/Turabian StyleBorotová, Petra, Lucia Galovičová, Nenad L. Vukovic, Milena Vukic, Eva Tvrdá, and Miroslava Kačániová. 2022. "Chemical and Biological Characterization of Melaleuca alternifolia Essential Oil" Plants 11, no. 4: 558. https://doi.org/10.3390/plants11040558