Development of a Genome-Informed Protocol for Detection of Pseudomonas amygdali pv. morsprunorum Using LAMP and PCR
Abstract
:1. Introduction
2. Results
2.1. Bacterial Isolates Identification
2.2. PCR and LAMP Primer Design for Pseudomonas amygdali pv. morsprunorum
2.3. Primer Validation
2.4. Specificity Tests
2.5. Sensitivity Tests from Pure Bacterial DNA Extracts
2.6. Comparison of Bacterial Detection Techniques from Plant Tissue
3. Discussion
4. Materials and Methods
4.1. Strain Isolation and DNA Extraction
4.2. Bacterial Identification
4.3. Bioinformatic Analysis and Primer Design
4.4. LAMP Optimization Protocol
4.5. Detection of Plant Tissues-Derived Pam
4.6. Specificity and Sensitivity Tests
4.7. Comparison of Detection Techniques from Plant Material
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Roos, I.M.M.; Hattingh, M.J. Bacterial canker of sweet cherry in South Africa. Phytophylactica 1986, 18, 1–4. [Google Scholar]
- Bultreys, A.; Kałużna, M. Bacterial cankers caused by Pseudomonas syringae on stone fruit species with special emphasis on the pathovars syringae and morsprunorum Race 1 and Race 2. J. Plant Pathol. 2010, 92, S1.21–S1.33. [Google Scholar]
- Balaž, J.; Iličić, R.; Ognjanov, V.; Ivanović, Ž.; Popović, T. Etiology and epidemiology of bacterial canker on young sweet cherry trees in Serbia. J. Plant Pathol. 2016, 98, 285–294. [Google Scholar]
- Iličić, R.; Balaž, J.; Ognjanov, V.; Popović, T. Epidemiology studies of Pseudomonas syringae pathovars associated with bacterial canker on the sweet cherry in Serbia. Plant Prot. Sci. 2021, 57, 196–205. [Google Scholar] [CrossRef]
- García, H.M.; Miranda, E.M.; López, M.A.; Parra, S.J.; Rubilar, C.F.; Silva-Moreno, E.D.C.; Rubio, J.M.; Ramos, C.B. First Report of Bacterial Canker Caused by Pseudomonas syringae pv. morsprunorum Race 1 on Sweet Cherry in Chile. Plant Dis. 2021, 105, 3287. [Google Scholar] [CrossRef]
- Kennelly, M.M.; Cazorla, F.M.; de Vicente, A.; Ramos, C.; Sundin, G.W. Pseudomonas syringae Diseases of Fruit Trees: Progress Toward Understanding and Control. Plant Dis. 2007, 91, 4–17. [Google Scholar] [CrossRef]
- Hulin, M.T.; Mansfield, J.W.; Brain, P.; Xu, X.; Jackson, R.W.; Harrison, R.J. Characterization of the pathogenicity of strains of Pseudomonas syringae towards cherry and plum. Plant Pathol. 2018, 67, 1177–1193. [Google Scholar] [CrossRef]
- Freigoun, S.O.; Crosse, J.E. Host relations and distribution of a physiological and pathological variant of Pseudomonas morsprunorum. Ann. Appl. Biol. 1975, 81, 317–330. [Google Scholar] [CrossRef]
- Gomila, M.; Busquets, A.; Mulet, M.; García-Valdés, E.; Lalucat, J. Clarification of Taxonomic Status within the Pseudomonas syringae Species Group Based on a Phylogenomic Analysis. Front. Microbiol. 2017, 8, 2422. [Google Scholar] [CrossRef]
- Gomila, M.; Peña, A.; Mulet, M.; Lalucat, J.; García-Valdés, E. Phylogenomics and systematics in Pseudomonas. Front. Microbiol. 2015, 6, 214. [Google Scholar] [CrossRef]
- Chun, J.; Oren, A.; Ventosa, A.; Christensen, H.; Arahal, D.R.; da Costa, M.S.; Rooney, A.P.; Yi, H.; Xu, X.-W.; De Meyer, S.; et al. Proposed minimal standards for the use of genome data for the taxonomy of prokaryotes. Int. J. Syst. Evol. Microbiol. 2018, 68, 461–466. [Google Scholar] [CrossRef] [PubMed]
- Hulin, M.T.; Jackson, R.W.; Harrison, R.J.; Mansfield, J.W. Cherry picking by pseudomonads: After a century of research on canker, genomics provides insights into the evolution of pathogenicity towards stone fruits. Plant Pathol. 2020, 69, 962–978. [Google Scholar] [CrossRef] [PubMed]
- Bull, C.T.; Clarke, C.R.; Cai, R.; Vinatzer, B.A.; Jardini, T.M.; Koike, S.T.; Ledman, K.E.; Curland, R.D.; Ishimaru, C.A.; Dill-Macky, R.; et al. Multilocus Sequence Typing of Pseudomonas syringae Sensu Lato Confirms Previously Described Genomospecies and Permits Rapid Identification of P. syringae pv. coriandricola and P. syringae pv. apii Causing Bacterial Leaf Spot on Parsley. Phytopathology 2011, 101, 847–858. [Google Scholar] [CrossRef] [PubMed]
- Berge, O.; Monteil, C.L.; Bartoli, C.; Chandeysson, C.; Guilbaud, C.; Sands, D.C.; Morris, C.E. A User’s Guide to a Data Base of the Diversity of Pseudomonas syringae and Its Application to Classifying Strains in This Phylogenetic Complex. PLoS ONE 2014, 9, e105547. [Google Scholar] [CrossRef]
- Macheras, E.; Roux, A.-L.; Bastian, S.; Leão, S.C.; Palaci, M.; Sivadon-Tardy, V.; Gutierrez, C.; Richter, E.; Rüsch-Gerdes, S.; Pfyffer, G.; et al. Multilocus Sequence Analysis and rpoB Sequencing of Mycobacterium abscessus (Sensu Lato) Strains. J. Clin. Microbiol. 2011, 49, 491–499. [Google Scholar] [CrossRef]
- Domingo, R.; Perez, C.; Klair, D.; Vu, H.; Candelario-Tochiki, A.; Wang, X.; Camson, A.; Uy, J.N.; Salameh, M.; Arizala, D.; et al. Genome-informed loop-mediated isothermal amplification assay for specific detection of Pectobacterium parmentieri in infected potato tissues and soil. Sci. Rep. 2021, 11, 21948. [Google Scholar] [CrossRef]
- Kini, K.; Wonni, I.; Silué, D.; Koebnik, R. Development of two loop-mediated isothermal amplification (LAMP) genomics-informed diagnostic protocols for rapid detection of Pantoea species on rice. MethodsX 2021, 8, 101216. [Google Scholar] [CrossRef]
- Dias, V.D.; Fernandez, E.; Cunha, M.G.; Pieretti, I.; Hincapie, M.; Roumagnac, P.; Comstock, J.C.; Rott, P. Comparison of loop-mediated isothermal amplification, polymerase chain reaction, and selective isolation assays for detection of Xanthomonas albilineans from sugarcane. Trop. Plant Pathol. 2018, 43, 351–359. [Google Scholar] [CrossRef]
- Zhao, X.; Wang, L.; Li, Y.; Xu, Z.; Li, L.; He, X.; Liu, Y.; Wang, J.; Yang, L. Development and application of a loop-mediated isothermal amplification method on rapid detection of Pseudomonas aeruginosa strains. World J. Microbiol. Biotechnol. 2011, 27, 181–184. [Google Scholar] [CrossRef]
- Ash, G.J.; Lang, J.M.; Triplett, L.R.; Stodart, B.J.; Verdier, V.; Cruz, C.V.; Rott, P.; Leach, J.E. Development of a Genomics-Based LAMP (Loop-Mediated Isothermal Amplification) Assay for Detection of Pseudomonas fuscovaginae from Rice. Plant Dis. 2014, 98, 909–915. [Google Scholar] [CrossRef]
- Ruinelli, M.; Schneeberger, P.H.; Ferrante, P.; Bühlmann, A.; Scortichini, M.; Vanneste, J.L.; Duffy, B.; Pothier, J.F. Comparative genomics-informed design of two LAMP assays for detection of the kiwifruit pathogen Pseudomonas syringae pv. actinidiae and discrimination of isolates belonging to the pandemic biovar 3. Plant Pathol. 2016, 66, 140–149. [Google Scholar] [CrossRef]
- Chen, Z.-D.; Kang, H.-J.; Chai, A.-L.; Shi, Y.-X.; Xie, X.-W.; Li, L.; Li, B.-J. Development of a loop-mediated isothermal amplification (LAMP) assay for rapid detection of Pseudomonas syringae pv. tomato in planta. Eur. J. Plant Pathol. 2020, 156, 739–750. [Google Scholar] [CrossRef]
- Kant, P.; Fruzangohar, M.; Mann, R.; Rodoni, B.; Hollaway, G.; Rosewarne, G. Development and Application of a Loop-Mediated Isothermal Amplification (LAMP) Assay for the Detection of Pseudomonas syringae Pathovars pisi and syringae. Agriculture 2021, 11, 875. [Google Scholar] [CrossRef]
- Zhou, Y.; Fan, F.; Wang, L.; Chaisiri, C.; Yin, L.; Yin, W.; Luo, C. Development of a loop-mediated isothermal amplification method for the rapid detection of Venturia carpophila on peach. Pest Manag. Sci. 2020, 77, 1383–1391. [Google Scholar] [CrossRef]
- Lakshmi, K.R.S.; Kamalakannan, A.; Gopalakrishnan, C.; Rajesh, S.; Panneerselvam, S.; Ganapati, P.S. Loop-mediated isothermal amplification assay: A specific and sensitive tool for the detection of Bipolaris oryzae causing brown spot disease in rice. Phytoparasitica 2022, 50, 543–553. [Google Scholar] [CrossRef]
- Quoc, N.B.; Xuan, N.T.T.; Nghiep, N.M.; Phuong, N.D.N.; Linh, T.B.; Chau, N.N.B.; Chuong, N.D.X.; Nien, N.C.; Dickinson, M. Loop-mediated isothermal amplification (LAMP) assay for detection of sesame phyllody phytoplasmas in Vietnam. Folia Microbiol. 2021, 66, 273–283. [Google Scholar] [CrossRef]
- Notomi, T.; Okayama, H.; Masubuchi, H.; Yonekawa, T.; Watanabe, K.; Amino, N.; Hase, T. Loop-mediated isothermal amplification of DNA. Nucleic Acids Res. 2000, 28, E63. [Google Scholar] [CrossRef]
- Park, Y.J.; Lee, B.M.; Ho-Hahn, J.; Lee, G.B.; Park, D.S. Sensitive and specific detection of Xanthomonas campestris pv. campestris by PCR using species-specific primers based on hrpF gene sequences. Microbiol. Res. 2004, 159, 419–423. [Google Scholar] [CrossRef]
- Guilbaud, C.; Morris, C.E.; Barakat, M.; Ortet, P.; Berge, O. Isolation and identification of Pseudomonas syringae facilitated by a PCR targeting the whole P. syringae group. FEMS Microbiol. Ecol. 2015, 92, fiv146. [Google Scholar]
- Kałużna, M.; Albuquerque, P.; Tavares, F.; Sobiczewski, P.; Puławska, J. Development of SCAR markers for rapid and specific detection of Pseudomonas syringae pv. morsprunorum races 1 and 2, using conventional and real-time PCR. Appl. Microbiol. Biotechnol. 2016, 100, 3693–3711. [Google Scholar] [CrossRef]
- Kiran, R.; Kumar, P.; Akhtar, J.; Nair, K.; Dubey, S.C. Development of multiplex PCR assay for detection of Alternaria brassicae, A. brassicicola and Xanthomonas campestris pv. campestris in crucifers. Arch. Microbiol. 2022, 204, 224. [Google Scholar] [CrossRef] [PubMed]
- Ley, R.E.; Lozupone, C.A.; Hamady, M.; Knight, R.; Gordon, J.I. Worlds within worlds: Evolution of the vertebrate gut microbiota. Nat. Rev. Microbiol. 2008, 6, 776–788. [Google Scholar] [CrossRef] [PubMed]
- Bulgarelli, D.; Garrido-Oter, R.; Münch, P.C.; Weiman, A.; Dröge, J.; Pan, Y.; McHardy, A.C.; Schulze-Lefert, P. Structure and Function of the Bacterial Root Microbiota in Wild and Domesticated Barley. Cell Host Microbe 2015, 17, 392–403. [Google Scholar] [CrossRef]
- Walke, J.B.; Becker, M.H.; Loftus, S.C.; House, L.L.; Cormier, G.; Jensen, R.V.; Belden, L.K. Amphibian skin may select for rare environmental microbes. ISME J. 2014, 8, 2207–2217. [Google Scholar] [CrossRef] [PubMed]
- Adair, K.L.; E Douglas, A. Making a microbiome: The many determinants of host-associated microbial community composition. Curr. Opin. Microbiol. 2017, 35, 23–29. [Google Scholar] [CrossRef]
- Smith, C.C.; Snowberg, L.K.; Caporaso, J.G.; Knight, R.; I Bolnick, D. Dietary input of microbes and host genetic variation shape among-population differences in stickleback gut microbiota. ISME J. 2015, 9, 2515–2526. [Google Scholar] [CrossRef]
- Zhang, J.; Zhou, M.; Liu, W.; Nie, J.; Huang, L. Pseudomonas syringae pv. actinidiae Effector HopAU1 Interacts with Calcium-Sensing Receptor to Activate Plant Immunity. Int. J. Mol. Sci. 2022, 23, 508. [Google Scholar] [CrossRef]
- McCann, H.C.; Rikkerink, E.H.A.; Bertels, F.; Fiers, M.; Lu, A.; Rees-George, J.; Andersen, M.T.; Gleave, A.P.; Haubold, B.; Wohlers, M.W.; et al. Genomic Analysis of the Kiwifruit Pathogen Pseudomonas syringae pv. actinidiae Provides Insight into the Origins of an Emergent Plant Disease. PLOS Pathog. 2013, 9, e1003503. [Google Scholar] [CrossRef]
- Sarkar, S.F.; Guttman, D.S. Evolution of the Core Genome of Pseudomonas syringae, a Highly Clonal, Endemic Plant Pathogen. Appl. Environ. Microbiol. 2004, 70, 1999–2012. [Google Scholar] [CrossRef]
- King, E.O.; Ward, M.K.; Raney, D.E. Two simple media for the determination of pyocianine and fluorescein. J. Lab. Clin. Med. 1954, 44, 301–307. [Google Scholar]
Strain | Species |
---|---|
11116B2 | Pseudomonas amygdali pv. morsprunorum |
S1 Pam | Pseudomonas amygdali pv. morsprunorum |
S2 Pam | Pseudomonas amygdali pv. morsprunorum |
133398 | Pseudomonas syringae pv. tomato |
44527 | Pseudomonas syringae pv. unknown |
11116B1 | Pseudomonas syringae pv. syringae |
9298.1 | Pseudomonas syringae pv. syringae |
S2 | Pseudomonas syringae pv. syringae |
H07.18 | Pseudomonas syringae pv. syringae |
11117YB4 * | Pseudomonas syringae pv. syringae |
M11 | Pseudomonas syringae pv. unknown |
b191 | Pseudomonas paracarnis |
Detection Method | Primers | Primer Sequence (5′–3′) | Fragment Size (bp) |
---|---|---|---|
PCR | HopAU1_F3 | GGCCTGAAGCGGCTGAGT | 339 |
HopAU1_B3 | CTGTTTGCGTGATGCCACT | ||
LAMP | HopAU1_F3 | GGCCTGAAGCGGCTGAGT | - |
HopAU1_FIP | TGTTTATTTGACCAGCCGGCAAGAGCTGTCTTTGGAACCCTCCTGTG | ||
HopAU1_BIP | AAGCCCGTTCAATCAGTTAGTGCATATTTCATGAGAGCATGACGCTTCT | ||
HopAU1_B3 | CTGTTTGCGTGATGCCACT |
DNA Concentration | 10 ng/µL | 1 ng/µL | 100 pg/µL | 10 pg/µL | 1 pg/µL | 100 fg/µL | 10 fg/µL | 1 fg/µL | 100 ag/µL | 10 ag/µL | 1 ag/µL | ||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Diagnostic Method | |||||||||||||
PCR | HopAU1 (Pam) | + | + | + | − | − | − | − | − | − | − | − | |
LAMP | HopAU1 (Pam) | + | + | + | + | + | + | + | + | − | − | − |
DNA Concentration | 107 cfu/mL | 106 cfu/mL | 105 cfu/mL | 104 cfu/mL | 103 cfu/mL | Blank (No Bacteria) | ||
---|---|---|---|---|---|---|---|---|
Diagnostic Method | ||||||||
PCR | Pseudomonas amygdali pv. morsprunorum | + | + | − | − | − | − | |
LAMP | Pseudomonas amygdali pv. morsprunorum | + | + | + | + | + | − |
Isolate Code | Hosts | Geographical Location | Ref_Seq |
---|---|---|---|
11116B1 | Prunus avium | San Fernando, R. de O’Higgins | JARNJA000000000 |
9298.1 | Prunus avium | San Fernando, R. de O’Higgins | JARNIZ000000000 |
44527 | Phaseolus vulgaris | San Fernando, R. de O’Higgins | JARNJB000000000 |
133398 | Lycopersicum esculentum P. mil | Quillota, R. de Valparaíso | JASJMY000000000 |
11116B2 | Prunus avium | San Fernando, R. de O’Higgins | JASJNB000000000 |
11117YB4 * | Prunus avium | San Fernando, R. de O’Higgins | - |
M11 | Actinidia deliciosa | Chillán, R. de Ñuble | JAROCH000000000 |
B191 | Prunus avium | San Fernando, R. de O’Higgins | JASJMX000000000 |
S2 | Prunus avium | Curicó, R. del Maule | JARNIX000000000 |
H07.18 | Prunus avium | Curicó, R. del Maule | JARNIY000000000 |
S1 Pam | Prunus avium | Osorno, R. de Los Lagos | JASJNA000000000 |
S2 Pam | Prunus avium | Chile Chico, R. de Aysén | JASJMZ000000000 |
Sample Type | Time of Collection | Sampling Area |
---|---|---|
Branch | Winter 2021 | Melipilla, R. Metropolitana |
Root | Winter 2021 | Melipilla, R. Metropolitana |
Branch | Spring 2021 | Melipilla, R. Metropolitana |
Branch | Spring 2021 | Placilla, R. de O’Higgins |
Placilla, R. de O’Higgins | ||
Placilla, R. de O’Higgins | ||
Chimbarongo, R. de O’Higgins | ||
Branch | Spring 2021 | Romeral, R. del Maule |
Romeral, R. del Maule | ||
Río Claro, R. del Maule | ||
Rio Claro, R. del Maule | ||
Río Claro, R. del Maule | ||
Molina, R. del Maule | ||
Branch | Spring 2021 | San Nicolás, R. del Ñuble |
San Nicolás, R. del Ñuble |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Díaz, D.; Zamorano, A.; García, H.; Ramos, C.; Cui, W.; Carreras, C.; Beltrán, M.F.; Sagredo, B.; Pinto, M.; Fiore, N. Development of a Genome-Informed Protocol for Detection of Pseudomonas amygdali pv. morsprunorum Using LAMP and PCR. Plants 2023, 12, 4119. https://doi.org/10.3390/plants12244119
Díaz D, Zamorano A, García H, Ramos C, Cui W, Carreras C, Beltrán MF, Sagredo B, Pinto M, Fiore N. Development of a Genome-Informed Protocol for Detection of Pseudomonas amygdali pv. morsprunorum Using LAMP and PCR. Plants. 2023; 12(24):4119. https://doi.org/10.3390/plants12244119
Chicago/Turabian StyleDíaz, Daniela, Alan Zamorano, Héctor García, Cecilia Ramos, Weier Cui, Claudia Carreras, María Francisca Beltrán, Boris Sagredo, Manuel Pinto, and Nicola Fiore. 2023. "Development of a Genome-Informed Protocol for Detection of Pseudomonas amygdali pv. morsprunorum Using LAMP and PCR" Plants 12, no. 24: 4119. https://doi.org/10.3390/plants12244119