Antimicrobial Activity of Metabolites Secreted by the Endophytic Bacterium Frateuria defendens
Abstract
:1. Introduction
2. Results and Discussion
2.1. The Effect of F. defendens Filtrate on phytoplasma Symptoms in Periwinkle
2.2. Identification of Potentially Active F. defendens Metabolites
2.3. The Effect of 4-quinolinecarboxaldehyde (QC) and 5-hydroxymethyl-2-furaldehyde (HMF) on Growth of S. melliferum and Other Bacteria
2.4. QC and HMF Phytotoxic Effect
2.5. The Effect of QC and HMF on Phytoplasma in Periwinkle
3. Materials and Methods
3.1. Bacteria Origin and Growth
3.2. Fractionation of F. defendens Supernatant
3.3. Periwinkle Origin and Growth Conditions
3.4. Grafted Periwinkle
3.5. Phytoplasma Quantification
3.6. The Effect of F. defendens Filtrate on Phytoplasma Symptoms in Periwinkle
3.7. Identification of Potentially Active F. defendens Metabolites
3.8. The Effect of QC and HMF on the Growth of S. melliferum
3.9. The Effect of QC and HMF on Growth of Different Bacteria
3.10. QC and HMF Phytotoxic Effect
3.11. The Effect of QC and HMF on Phytoplasma
3.12. Statistical Analyses
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Singh, R.; Kumar, M.; Mittal, A.; Mehta, P.K. Microbial metabolites in nutrition, healthcare and agriculture. Biotechnology 2017, 7, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Gunatilaka, A.L. Natural products from plant-associated microorganisms: Distribution, structural diversity, bioactivity, and implications of their occurrence. J. Nat. Prod. 2006, 69, 509–526. [Google Scholar] [CrossRef] [Green Version]
- Lee, I.M.; Davis, R.E.; Gundersen-Rindal, D.E. Phytoplasma: Phytopathogenic Mollicutes. Annu. Rev. Microbiol. 2000, 54, 221–255. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Caudwell, A. Epidemiology and characterization of Flavescence dorée (FD) and other grapevine yellows. Agronomie 1990, 10, 655–663. [Google Scholar] [CrossRef]
- Weintraub, P.G.; Wilson, M.R. Control of phytoplasma diseases and vectors. In Phytoplasmas: Genomes, Plant Hosts and Vectors; CABI: Boston, CT, USA, 2010; pp. 233–249. [Google Scholar]
- Oliveira, M.J.R.A.; Roriz, M.; Vasconcelos, M.W.; Bertaccini, A.; Carvalho, S.M. Conventional and novel approaches for managing “Flavescence dorée” in grapevine: Knowledge gaps and future prospects. Plant Pathol. 2019, 68, 3–17. [Google Scholar] [CrossRef] [Green Version]
- Bendix, C.; Lewis, D.J. The enemy within: Phloem-limited pathogens. Mol. Plant Pathol. 2018, 19, 238–254. [Google Scholar] [CrossRef] [Green Version]
- Aldaghi, M.; Massart, S.; Druart, P.; Bertaccini, A.; Jijakli, M.; Lepoivre, P. Preliminary evaluation of antimicrobial activity of some chemicals on in vitro apple shoots infected by ‘Candidatus Phytoplasma mali. Commun. Agric. Appl. Biol. Sci. 2008, 73, 335–341. [Google Scholar]
- Iasur-Kruh, L.; Zahavi, T.; Barkai, R.; Freilich, S.; Zchori-Fein, E.; Naor, V. Dyella-Like Bacterium isolated from an insect as a potential biocontrol agent against grapevine yellows. Phytopathology 2018, 108, 336–341. [Google Scholar] [CrossRef] [Green Version]
- Lidor, O.; Santos-Garcia, D.; Mozes-Daube, N.; Naor, V.; Cohen, E.; Iasur-Kruh, L.; Bahar, O.; Zchori-Fein, E. Frateuria defendens sp. nov., bacterium isolated from the yellows grapevine’s disease vector Hyalesthes obsoletus. Int. J. Syst. Evol. Microbiol. 2019, 69, 1281–1287. [Google Scholar] [CrossRef]
- Iasur-Kruh, L.; Naor, V.; Zahavi, T.; Ballinger, M.J.; Sharon, R.; Robinson, W.E.; Perlman, S.J.; Zchori-Fein, E. Bacterial associates of Hyalesthes obsoletus (Hemiptera: Cixiidae), the insect vector of bois noir disease, with a focus on cultivable bacteria. Res. Microbiol. 2017, 168, 94–101. [Google Scholar] [CrossRef]
- Lidor, O.; Dror, O.; Hamershlak, D.; Shoshana, N.; Belausov, E.; Zahavi, T.; Mozes-Daube, N.; Naor, V.; Zchori-Fein, E.; Iasur-Kruh, L.; et al. Introduction of a putative biocontrol agent into a range of phytoplasma- and liberibacter-susceptible crop plants. Pest Manag. Sci. 2018, 74, 811–819. [Google Scholar] [CrossRef] [PubMed]
- Hodgetts, J.; Crossley, D.; Dickinson, M. Techniques for the maintenance and propagation of phytoplasmas in glasshouse collections of Catharanthus roseus. In Phytoplasma; Humana Press: Totowa, NJ, USA, 2013; pp. 15–32. [Google Scholar]
- Eljounaidi, K.; Lee, S.K.; Bae, H. Bacterial endophytes as potential biocontrol agents of vascular wilt diseases—Review and future prospects. Biol. Control. 2016, 103, 62–68. [Google Scholar] [CrossRef]
- Howell, C.R. The role of antibiosis in biocontrol. Trichoderma Gliocladium 1998, 2, 173–184. [Google Scholar]
- Narayanasamy, P. Mechanisms of action of bacterial biological control agents. In Biological Management of Diseases of Crops; Springer: Dordrecht, The Netherlands, 2013; pp. 295–429. [Google Scholar]
- Ramette, A.; Frapolli, M.; Fischer-Le Saux, M.; Gruffaz, C.; Meyer, J.M.; Défago, G.; Sutra, L.; Moënne-Loccoz, Y. Pseudomonas protegens sp. nov., widespread plant-protecting bacteria producing the biocontrol compounds 2, 4-diacetylphloroglucinol and pyoluteorin. Syst. Appl. Microbiol. 2011, 34, 180–188. [Google Scholar] [CrossRef]
- Vinale, F.; Nicoletti, R.; Borrelli, F.; Mangoni, A.; Parisi, O.A.; Marra, R.; Lombardi, N.; Lacatena, F.; Grauso, L.; Finizio, S.; et al. Co-Culture of plant beneficial microbes as source of bioactive metabolites. Sci. Rep. 2017, 7, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Compant, S.; Brader, G.; Muzammil, S.; Sessitsch, A.; Lebrihi, A.; Mathieu, F. Use of beneficial bacteria and their secondary metabolites to control grapevine pathogen diseases. BioControl 2013, 58, 435–455. [Google Scholar] [CrossRef] [Green Version]
- Dermastia, M. Plant hormones in phytoplasma infected plants. Front. Plant Sci. 2019, 10, 477. [Google Scholar] [CrossRef] [Green Version]
- Rosatella, A.A.; Simeonov, S.P.; Frade, R.F.; Afonso, C.A. 5-Hydroxymethylfurfural (HMF) as a building block platform: Biological properties, synthesis and synthetic applications. Green Chem. 2011, 13, 754–793. [Google Scholar] [CrossRef]
- Espinoza, C.; Viniegra-González, G.; Loera, O.; Heredia, G.; Trigos, Á. Antibacterial activity against plant pathogens by cruded extracts and compounds from Idriella sp. Rev. Mex. Micol. 2008, 26, 9–15. [Google Scholar]
- Duru, C.E.; Duru, I.A.; Nwagbara, N.K. Potency of 5-hydroxymethylfurfuraldehyde (HMF) against Bacillus cereus and Proteus mirabilis. Biochem. Indian J. 2012, 6, 41–44. [Google Scholar]
- Cho, J.H.; Lee, C.H.; Lee, H.S. Antimicrobial activity of quinoline derivatives isolated from Ruta chalepensis toward human intestinal bacteria. J. Microbiol. Biotechnol. 2005, 15, 646–651. [Google Scholar]
- Wierckx, N.; Koopman, F.; Ruijssenaars, H.J.; de Winde, J.H. Microbial degradation of furanic compounds: Biochemistry, genetics, and impact. Appl. Microbiol. Biotechnol. 2011, 92, 1095–1105. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Arp, J.; Götze, S.; Mukherji, R.; Mattern, D.J.; García-Altares, M.; Klapper, M.; Brock, D.A.; Brakhage, A.A.; Strassmann, J.E.; Queller, D.C.; et al. Synergistic activity of cosecreted natural products from amoebae-associated bacteria. Proc. Natl. Acad. Sci. USA 2018, 115, 3758–3763. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pospisilova, J.; Synková, H.; Haisel, D.; Semoradova, S. Acclimation of plantlets to ex vitro conditions: Effects of air humidity, irradiance, CO~ 2 concentration and abscisic acid (a Review). Acta Hortic. 2007, 748, 29–38. [Google Scholar] [CrossRef]
- Bateman, R. Rational pesticide use: Spatially and temporally targeted application of specific products. In Optimising Pesticide Use; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2003; p. 131. [Google Scholar]
- Trachtenberg, S.; Gilad, R. A bacterial linear motor: Cellular and molecular organization of the contractile cytoskeleton of the helical bacterium Spiroplasma melliferum BC3. Mol. Microbiol. 2001, 41, 827–848. [Google Scholar] [CrossRef] [Green Version]
- Rand, K.; Bar, E.; Ari, M.B.; Davidovich-Rikanati, R.; Dudareva, N.; Inbar, M.; Lewinsohn, E. Differences in monoterpene biosynthesis and accumulation in Pistacia palaestina leaves and aphid-induced galls. J. Chem. Ecol. 2017, 43, 143–152. [Google Scholar] [CrossRef]
- Kumar, S. Studies on Phytoplasma Disease of Periwinkle [Catharantluis rosens (L) G. Don]. Ph.D. Thesis, UAS, Dharwad, Karnataka, India, 2010. [Google Scholar]
- Gundersen, D.E.; Lee, I.M. Ultrasensitive detection of phytoplasmas by nested-PCR assays using two universal primer pairs. Phytopathol. Mediterr. 1996, 35, 144–151. [Google Scholar]
- Deng, S.; Hiruki, C. Amplification of 16S rRNA genes from culturable and nonculturable Mollicutes. J. Microbiol. Methods 1991, 14, 53–61. [Google Scholar] [CrossRef]
- Chen, W.Y.; Lin, C.P. Characterization of Catharanthus roseus genes regulated differentially by peanut witches’ broom phytoplasma infection. J. Phytopathol. 2011, 159, 505–510. [Google Scholar] [CrossRef]
- Naor, V.; Ezra, D.; Zahavi, T. The use of Spiroplasma melliferum as a model organism to study the antagonistic activity of grapevine endophytes against phytoplasma. Bul. Insectol. 2011, 64, S265–S266. [Google Scholar]
- Pfaffl, M.W. Relative quantification. In Real-Time PCR; Dorak, T., Ed.; International University Line: La Jolla, CA, USA, 2011; pp. 63–82. [Google Scholar]
Treatment | Plantlets | Phytoplasma-16S rRNA Gene Ct * | Periwinkle-Ubiquitin Gene Ct * | % Survival (n) |
---|---|---|---|---|
None | Healthy | 33.1 ± 0.4 a | 21.8 ± 0.4 a | 100 (6) a |
Infected | 28.1 ± 1 b | 21.6 ± 0.3 a | 25 (12) b | |
F. defendens filtrate | Healthy | 33.2 ± 1 a | 21.6 ± 0.4 a | 100 (6) a |
Infected | 28.2 ± 0.7 b | 21.3 ± 0.5 a | 83 (14) a |
Periwinkle (n) | QC and HMF Concentration (mM) | Survival (%) | Leaves Color | |
---|---|---|---|---|
Ex vitro H-plantlets (3) | 0 | 100 *,a | green | |
1 | 100 a | green | ||
2 | 66 a | yellow | ||
5 | 0 b | |||
Ex vitro phytoplasma-infected plantlets (12) | 1 | 0 b | ||
Drenched | Sprayed | |||
Mature plants (4) | 0 | 100 a | 100 a | green |
5 | 100 a | 100 a | green | |
10 | 25 b | 100 a | green | |
20 | 0 b | 25 b | green | |
Grafted-mature periwinkle (6) | 5 | 100 a | 100 a | green |
Un-Grafted Periwinkle | Grafted Untreated Periwinkle | Grafted Periwinkle—Drenched | Grafted Periwinkle—Sprayed | |
---|---|---|---|---|
Symptomatic plants (%) | 0 a,* | 50 b | 0 a | 50 b |
R (2^−ΔΔCt) ** | ND | 4.1 × 10 3 | ND | 5.8 × 103 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Naama-Amar, A.; Gitman, S.; Shoshana, N.; Bahar, O.; Naor, V.; Zchori-Fein, E.; Iasur-Kruh, L. Antimicrobial Activity of Metabolites Secreted by the Endophytic Bacterium Frateuria defendens. Plants 2020, 9, 72. https://doi.org/10.3390/plants9010072
Naama-Amar A, Gitman S, Shoshana N, Bahar O, Naor V, Zchori-Fein E, Iasur-Kruh L. Antimicrobial Activity of Metabolites Secreted by the Endophytic Bacterium Frateuria defendens. Plants. 2020; 9(1):72. https://doi.org/10.3390/plants9010072
Chicago/Turabian StyleNaama-Amar, Alaa, Shani Gitman, Nofar Shoshana, Ofir Bahar, Vered Naor, Einat Zchori-Fein, and Lilach Iasur-Kruh. 2020. "Antimicrobial Activity of Metabolites Secreted by the Endophytic Bacterium Frateuria defendens" Plants 9, no. 1: 72. https://doi.org/10.3390/plants9010072