Next Issue
Previous Issue

Table of Contents

Climate, Volume 2, Issue 2 (June 2014), Pages 28-128

  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Readerexternal link to open them.
View options order results:
result details:
Displaying articles 1-4
Export citation of selected articles as:

Research

Open AccessArticle Spatial and Temporal Variability of Rainfall over the South-West Coast of Bangladesh
Climate 2014, 2(2), 28-46; doi:10.3390/cli2020028
Received: 6 January 2014 / Revised: 27 February 2014 / Accepted: 26 March 2014 / Published: 22 April 2014
Cited by 5 | PDF Full-text (903 KB) | HTML Full-text | XML Full-text
Abstract
This study examined the spatial and temporal rainfall variability from the 1940s to 2007 in the south west coastal region of Bangladesh. Time series statistical tests were applied to examine the spatial and temporal trends in three time segments (1948–1970, 1971–1990 and 1991–2007)
[...] Read more.
This study examined the spatial and temporal rainfall variability from the 1940s to 2007 in the south west coastal region of Bangladesh. Time series statistical tests were applied to examine the spatial and temporal trends in three time segments (1948–1970, 1971–1990 and 1991–2007) and four seasons (Pre-monsoon; Monsoon; Post-Monsoon and Winter), during the period 1948–2007. Eight weather stations were divided into two zones: exposed (exposed to sea) and interior (distant to sea). Overall, rainfall increased during the period 1948–2007, while the trends intensified during post-1990s. Post-monsoon and winter rainfall was observed to follow significant positive trends at most weather stations during the time period 1948–2007. The rate of change was found in exposed zone and interior zone are +12.51 and +4.86 mm/year, respectively, over post monsoon and +0.9 and +1.86 mm/year, respectively, over winter. These trends intensified both in the exposed zone (+45.81 mm/year) and the interior zone (+27.09 mm/year) 1990 onwards. Winter rainfall does not exhibit significant change (p > 0.1) over the exterior or interior zone, though individual stations like Jessore, Satkhira and Bhola show significant negative trends after 1990s. Although the trends were observed to weaken in the monsoon and pre-monsoon seasons, they are not significant. Moreover, an 11-year cyclicity was found within these two seasons, whilst no cyclicity was observed in the post-monsoon and winter seasons. Sequential Mann Kendal test reveals that the changes in two zones rainfall trends are started around mid-80s, where step change found only for fours season in Khulna stations and also for winter seasons in all weather stations. These changes may have a detrimental effect on rain-fed agriculture in Bangladesh. The application of palaeo-environmental techniques, threshold determination and rainfall analysis across the whole country could be useful to support adaptation planning of the rain-fed agro-economy in Bangladesh. Full article
(This article belongs to the Special Issue Changes in Precipitation and Impacts on Regional Water Resources)
Open AccessArticle Impacts of Urban Development on Precipitation in the Tropical Maritime Climate of Puerto Rico
Climate 2014, 2(2), 47-77; doi:10.3390/cli2020047
Received: 5 December 2013 / Revised: 5 April 2014 / Accepted: 9 April 2014 / Published: 22 April 2014
PDF Full-text (2080 KB) | HTML Full-text | XML Full-text
Abstract
Water is critical for sustaining natural and managed ecosystems, and precipitation is a key component in the water cycle. To understand controls on long-term changes in precipitation for scientific and environmental management applications it is necessary to examine whether local land use and
[...] Read more.
Water is critical for sustaining natural and managed ecosystems, and precipitation is a key component in the water cycle. To understand controls on long-term changes in precipitation for scientific and environmental management applications it is necessary to examine whether local land use and land cover change (LULCC) has played a significant role in changing historical precipitation patterns and trends. For the small tropical island of Puerto Rico, where maritime climate is dominant, we used long-term precipitation and land use and land cover data to assess whether there were any detectable impacts of LULCC on monthly and yearly precipitation patterns and trends over the past century. Particular focus was given to detecting impacts from the urban landscape on mesoscale climates across Puerto Rico. We found no statistical evidence for significant differences between average monthly precipitation in urban and non-urban areas directly from surface stations, but, after subdividing by Holdridge Ecological Life Zones (HELZs) in a GIS, there were statistically significant differences (α = 0.05) in yearly average total precipitation between urban and non-urban areas in most HELZs. Precipitation in Puerto Rico has been decreasing over the past century as a result of a decrease in precipitation during periods (months or years) of low rain. However, precipitation trends at particular stations contradict synoptic-scale long-term trends, which suggests that local land use/land cover effects are driving precipitation variability at local scales. Full article
(This article belongs to the Special Issue Land-Use/Cover Change Impacts on Climate)
Open AccessArticle Using a Risk Cost-Benefit Analysis for a Sea Dike to Adapt to the Sea Level in the Vietnamese Mekong River Delta
Climate 2014, 2(2), 78-102; doi:10.3390/cli2020078
Received: 24 January 2014 / Revised: 28 March 2014 / Accepted: 15 April 2014 / Published: 28 April 2014
Cited by 1 | PDF Full-text (791 KB) | HTML Full-text | XML Full-text
Abstract
The purpose of this study is to conduct an economic valuation of creating a concrete sea dike system as an adaptation measure to counter the impacts of a rise in sea level using a risk cost-benefit analysis framework. It uses an ex-ante approach
[...] Read more.
The purpose of this study is to conduct an economic valuation of creating a concrete sea dike system as an adaptation measure to counter the impacts of a rise in sea level using a risk cost-benefit analysis framework. It uses an ex-ante approach with risk considerations for storms, floods, and salinity by specifying probability distribution functions in a simulation process, in order to incorporate these risk factors into the analysis. The results showed that the benefits of storms and floods avoided dominated the dike options. The benefit of salinity avoided was also valuable, with annual rice and aquaculture productivity losses avoided of USD 331.25 per ha and USD 915 per ha, respectively. This study evaluated a range of dike options to adapt to climate change in the Vietnamese Mekong Delta, showing high levels of benefits compared to costs. The larger in scale the dike system options were, the higher the expected net present values (ENPVs) were. Of the dike alternatives applicable to the Vietnamese Mekong Delta, considering the impacts of sea level rise of storms, floods and raised salinity in soil from flooding, small scale dikes that can subsequently be increased in height should be a priority choice. The sensitivity analyses showed that the ENPVs of dike options were very sensitive with changes in discount rate but were not sensitive with increases in salinized areas at all. The findings provide evidence to support the necessity of the construction of a concrete sea dike system in the Vietnamese Mekong Delta, given the context of global climate change. Full article
(This article belongs to the Special Issue Land-Use/Cover Change Impacts on Climate)
Open AccessArticle The Effects of Great Plains Irrigation on the Surface Energy Balance, Regional Circulation, and Precipitation
Climate 2014, 2(2), 103-128; doi:10.3390/cli2020103
Received: 10 February 2014 / Revised: 15 April 2014 / Accepted: 16 April 2014 / Published: 5 May 2014
Cited by 14 | PDF Full-text (2924 KB) | HTML Full-text | XML Full-text
Abstract
Irrigation provides a needed source of water in regions of low precipitation. Adding water to a region that would otherwise see little natural precipitation alters the partitioning of surface energy fluxes, the evolution of the planetary boundary layer, and the atmospheric transport of
[...] Read more.
Irrigation provides a needed source of water in regions of low precipitation. Adding water to a region that would otherwise see little natural precipitation alters the partitioning of surface energy fluxes, the evolution of the planetary boundary layer, and the atmospheric transport of water vapor. The effects of irrigation are investigated in this paper through the employment of the Advanced Research (ARW) Weather Research and Forecasting Model (WRF) using a pair of simulations representing the extremes of an irrigated and non-irrigated U.S. Great Plains region. In common with previous studies, irrigation in the Great Plains alters the radiation budget by increasing latent heat flux and cooling the surface temperatures. These effects increase the net radiation at the surface, channeling that energy into additional latent heat flux, which increases convective available potential energy and provides downstream convective systems with additional energy and moisture. Most noteworthy in this study is the substantial influence of irrigation on the structure of the Great Plains Low-level Jet (GPLLJ). The simulation employing irrigation is characterized by a positive 850-mb geopotential height anomaly, a result interpreted by quasi-geostrophic theory to be a response to low-level irrigation-induced cooling. The modulation of the regional-scale height pattern associated with the GPLLJ results in weaker flow southeast of the 850-mb anomaly and stronger flow to the northwest. Increased latent heat flux in the irrigated simulation is greater than the decrease in regional transport, resulting in a net increase in atmospheric moisture and a nearly 50% increase in July precipitation downstream of irrigated regions without any change to the number of precipitation events. Full article

Journal Contact

MDPI AG
Climate Editorial Office
St. Alban-Anlage 66, 4052 Basel, Switzerland
climate@mdpi.com
Tel. +41 61 683 77 34
Fax: +41 61 302 89 18
Editorial Board
Contact Details Submit to Climate
Back to Top